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On the maximally overdetermined system

of linear differential equations (I)

by
M. KASHIWARA

INTRODUCT ION

The purpose of this papef is to present-finiteness
théorems and several;pfoperties of cohomologies of holomorphic
solution sheaves of maximally overdetermined systems of linear
differential equations. The proof reliés on the finiteness
theorem for elliptic systems due to T. Kawai [4}, as an
analytic tdol, and on the thedry of stratifications 6f analytic
sets introduced by H. Whitney [8] and [91, as a geometric tool.

Our goal is the following theorem.

Theorem (3.1) Let ﬁQ'be a maximally overdetermined
systeﬁ on_a complex manifold X and X=UX, be a stratification
of X satisfying the regularity conditions of H. Whitney.

If the singular support of 72 is contained in the union of
- .conormal projective Bundles of straté, then the restriction
of ‘Sxtégxcﬁz,fgx) to each stratum is a locally pdﬁstaﬁt '

sheaf of finite rank.
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We mention that the introduction of differential operators
of infinite order is indispensable when we analyzé_more'
precisely, the structure of maximally overdetermined systems,
but we leave this subject to the next paper and we restrict
ourselves in the category of finite order differential operators
in this paper.

| As for notions on systems of differential equations, we
refer Kashiwara [2] and Sato-Kawai-Kashiwara [6].

We will 1ist up the notations used in this paper.

Notations
X : complex manifold
‘l©=;8x : the sheaf of differential operators of finite

order on X

Y248 : a wherent @X-Module

0&_ the sheaf of holomorphic functions on X, which
is a left coherent ﬂax—Module

ﬁ&lx i a left 08x Module‘[ig(ﬁk) where d=codim Y

Q§ - ¢ the sheaf of holomorphic n-forms, which is a
right Oy-Module if n=dim X
real analytic manifold
the right derived function in the derived category g

£, : the direct image by the map f with proper’support..




§1. Finiteness theorem for elliptic systems

In this section, we recall the finiteness theorem for
elliptic systems due to T. Kawai [4].

Let M be a real analytic manifold, X be its complexifica-
tion. We will denote by égx ’the sheaf of differential operators
of finite order. f@M is the reétrié#ion of °©X to M.
Let 7! be an elliptic system of différential equations on
M, that is, the coherent v@M—Module whose singular support .
does hot intersect with V-1S*M = s&x. Let £ be a relgtively
compact open subset in M whose boundary is a real analytic

hypersurface in M. The following theorem is due to T.Kawai

[41.

Theorem (1.1) 1f M is an elliptic system on M and

if the system ﬁ?an induced from ¢ to the boundary 239 of @

is an elliptic system on 3Q, then
Exthm;.ﬂz,ﬁzM). = Extp (717, 6y)

are finite dimensional vector spaces (where LZM (resp. ¢3M) ~
is a sheaf of real analytic functions (resp. hyperfunctions)
on M). |

This theorem is not sufficient for our study of maximally
bverdetermined system. We muét discuss on the invariantness
of the cohomology group by thé perturbation of domains.

Let {QC}CG.R be ? family of relatively
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compact open subsets in M which have real analytic hyper-

surfaces as their boundaries satisfying the following properties

(1.1) ch:>QC2 | fqr CL > ¢y

(L.2) For any Cp» R is a union of LN whére c runs

C
o 0
over the set of all numbers strictly less than o°
(1.3) For any oo {QC; c > co} is a neighborhood syitem

of the closure ﬁé - of Q. -
0 0

Theorem (1.2) Let {g.} be a family satisfying the above
conditions. If 12 and ﬂ?ag are elliptic, then the

c
- restriction homomorphisms

thi«%ﬂ (Qc;ﬂ’é, Ty ~ thfbM(fch. s, 0y

-are isomorphisms for c 2 c'.

Proof | : . :

B S |
Set E_ = Exty (032, Ay -
Then there is a canonical map Eé > Ei, if ¢ > c'. Note :
the following lemma (we omit its proof),4

Lemma (1.3) Let {V_ } ., bea family of finite dimensional

vector spaces parametrized by c€R. For c > c', there

Ve >V, satisfying the

.are given the homomorphism Perct Ve

following chain condition:

(1.4.1) P, p =p
€€, CyCa ¢4, for
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(1.4.2) pe o = identity

Moreover, they satisfy the following property of continuity.
(1.5.1) lim V_ <2y for any <

- : "\.— '
(1.5.2) 7 lig VC — V_ . qur‘gny o
' c>cq
Then all Pcrc are isomorphisms.

By virture of this lemma, it suffices to show

. i Li . i _ (i
Lin E¢ = Eg, Lin E; = Eg.
c>0 c<0
, R S |
Lemma (1.4) lig EC E0
' c>0

Proof
Since 772 is elliptic and ”289 is elliptic, we have
: ‘ : 89, :

Rr(32y; R, R Nom (72, ) [8%) =0

by virture of Kashiwara-Kawai '[3], where Z = M - ﬁo.
It follows that

l%QH;AyfV; R Nom (72,00,))

= 1i i .
‘ - li, EXtZ/\V(V, n, OLM)
\'A h

= 0

where V runs over the neighborhood system of 3Qg -

There for

- i od o - _
lim Ext (Qc mod Qs 772,0(M) =0
cd0
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The long exact sequence

-+ > Ext’(g.mod qu; 772, () ~> Ext™ (9572, 0Ly)
> thi(no;?lz,OCM) -

implies the desired result. Lastly, we will prove the following

. i _ i

vLemma(l.S} lim EC = E0
,c<0
Proof o
-Since Bl 45 finite dimensional, {Ei—l} satisfies
» c ’ c. “¢c<0
‘the condition (ML). Therefore lim Eé = E; (see [1]).
- c<0
Q.E.D.

'This completes the proof of Thébrem‘(l.Z); A

We will apply Theorem (1.2) to the special case; e

Lef X be a complex manifold, 77 be a coherent ¥9X-Module.
A real analytic submanifold Ni of X is said to be non
characteristic with respect to ﬂi when-thé s%nglax support

of 772 does not intersect with the conormal bundle of N.

Theorem (1.6)  Let {Q

\ | é}céR b? g famiiy-of relétively,
compact open subsets of X with real analytic hypersurfaces
‘as boundary satisfying (1.1), (1.2) and (1.3), 72 be a

coherent X?x ‘Module. Assume that the boundary anc is’non—

characteristic with respect to /2. Then Exg% (Qc;ﬂq,é*xj
‘ X

are finite dimensional and all the restriction homomorphisms
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EXtojéx(Qc;Wz’ 0’)() e Etiiax,(Qci ;772: 0”)()

are isomorphisms for c > c'.

Proof

We will consider X as real analytic manifold and (7k.
be a solution of Cauchy—Riemann,equation. We can lékev X x X
as a complex neighborhood of X whéfe X is the complex
conjugate of X.

Then 0)( = R Nem g (@ngﬁ—i;ﬁx).

X*X

Therefcre-

Since ”7@0)—( is an elliptic system on X and 7/2%03(‘39
c

is also eiliptic,'the theorem follows from Theorem (1.1) and

(1.2).
Q.E.D.
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§2. Finitistic sheaves
In order to clarify the main theorem of this paper, we will
introduce the following notion. In this section, A is always
a. commutative enoetherian ring and Sheaves are A-Modules.  In

the following sections we take € as A.

Definition (2.1) Let S be an analytic space, F be

a sheaf on S. We will say that F 1is finitistic, if there

is a stratificafibn of S Suéhlfﬁat F is 1oca11y3constant

on eaéh’stratum and every stalk is an A-module of finifertype,;
It is evident that the category of finitistic sheaves i% an -

abelian category, and if there is an exact sequence

o > F > G »> H— .0

of sheaves and two of them are finitistic, then so is the other.
_if»iF; and G are finitistic, then 7;2 (F, G) is
also finitistic. | ‘

Firstly, we will pfove the following

Lemma (2.2) Let ‘F be a sheaf on S, S=de »bé a

» stratification‘which satisfies the reqularity conditiéns of
Whitney, and F is locally constant on each stratum.
.Thén,'fbr every ;XOEEXd’ thefe is sufficiently small open

neighborhood U of Xg ‘such that
FU) —> F_

'is an isomorphism for every point x in Xa sufficiently

s -
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near X, and Hk(U, F)=0 for every k > 0.

Proof.

We choose a localvcoordiﬁate. It’is sufficient to show
that any e-neighbofhood of xOA satisfies fhe condition of the
lemma for any sufficientlyrémall €. ‘Let Xg be anqopen 4
gtiatum in the support 6f F and j' be the inclution map.
Then,

0 +3,(Fly ) »F +F}S_XB + 0
= B

is an exact sequence in a neighborhood of .Xq. Since the

B

support .j,(F]X ) is contained in X, and thét of FIS—X~
. ! 8 A
is contained in S-XB, we can assume that the support of F

is concentrated onto only one stratum X dominating Xa‘

B
Then, if U is an ve—neighborégod and x is a point in Xa .
sufficiently hear ;8, then V/\XB is a deformation retract
of Ur{XB for sufficiently small open ball V with éenter
x. It follows that Hk(U, F) Z-Hk(V, F), which shows this

lemma. Q.E.D.

Lemma (2.3) Let 'S be an analytic set, F be a finitistic

sheaf on S. Let W be the largest open set in S such that
F[W is locélly constant on W.' Then T=S-W is an analytic
subset of S with condimension >1. |

Proof

It is evident that T is nowhere dense. So, it suffices
to show that T is an analytic set. Let S=UXd be a
stratisfication which satisfies the régularitfrconditions of
Whitﬁey of S such that F is localiy constant on each

stratum. It suffices to show that Wf\Xa%¢, then W contains

-9 -
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Xa’ because this implies that T 1is a union of strata.

Sincé Xa is conpected, it‘sﬁffices to shpw that . Wr\Xa is

a closed subset. Let X, be g.cluster point of W(\Xa in Xa'
By the induction of codimension of strata, we may aséume that

W contains all strata dominating Xq’ which implies that F.

is locally constant Qh U-X&, where U 1is a sufficient small
neighborhood o6f XO. By the preceding lemma, we can assume

that
F(U) — Fx

is an isdmorphism for any x<EXa sufficiently near Xx.  Since
F is locally constant on W, F(U)—A»Fx‘ is an isomorphism for
somé»goint x in Wr\Xaf{U. It implies F is locally l
constant in a neighﬁorhood of"x0 because we can assume

~ that ‘U/ﬂX It implies

8 is connected for any stratum XB .

that X is contained in W. Q.E.D.

By using above lemmas, we can show that finitisticity is

-a 1o¢a1 property.

j . -Proposition (2.3) Let F be a sheaf on S. If there
is an open covering of S such that F is finitistic on
.eééh over, then F is finitistic. |

Proof

Let W be the largest open subset of § én which F
is locally constant. Set T=S-W. T is a closed analytic
set of S. Then, by the induction, we can assume that F[T

is finitistic. Therefore F is finitistic. Q.E.D.



We will introduce the following notion.

Definition (2.4) Let F be a sheaf on S. The stratifica-

tion S=UXa of S 1is said to be regular with respect to F
if it satisfies the regularity conditions of Whitney and -F
is locally constant on each stratum.

We will prove that "finitisticity" is invariant under
"cohomology".

\

Proposition (2.45) Let S=UX, be a stratification

which satisfies thé rggularity conditons of Whitney, T be
a cloéed aﬁalytic subset of S which is a union of strata
and j be the inclusion map S-T & S. .

Let F be a fihitistic sheaf on S-T locally constant
on any stratum. Then Rkj*(F) and Rkj:(F) are finitistic
sheaves on S and locally constant on each stratum. Moreover,
if S 1is a manifold and Z is @ submanifold of S transversal

to'each stratum; then

R4 (F) |, = RS54 (F| )

RSj, (F) |, = RNj, (F[,)

on Z.
Proof

By the 1ongvexa¢t sequence

e Rkj:(F) > RS (F) » RYj, () g+

- 11 -
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it is sufficient to shqw the statement on the direct image.
We can suppose without loss of generality that S is af
-manifold and the support of F consists of only one stratum
XB' Let Xa- be the stratum contained in T and dominated

by X,. Let d be the codimension of Xa’ H be the sub-

B

manifold of dimension d transversal to Xa. Since (XB’
Xa) is locally isomorphic to ((XBf\H?XXa, Xa),» R J*CF)IXQ
is. locally constant. Since XB/\H is triangulated by

finite cell, the stalk of Rj,(F) is an A-module of finite

type.

(XB,\Z, Z,\Xa) being local isomorphic to ((xe,gH)x

K5a(F]y) .

(ZnX), ZnX,), we obtain RFj.(F)|, = R

Q.E.D.

As a corollary of this proposition we obtain the

- . following

Proposition (2.6) If F is a finitistic sheaf on S

and T is a closed analytic set in = S, the ,ﬁﬁg(F) is
alsd a finitistic sheaf on T. More precisély, if S = UX,
is -a stratification of § reguiar with respect to F ~and
T is a union of strata, then it is a stratification regulaf
with réspect ot ﬁi%(F).

Proof

Let j be the inclusion map S-T<S. Then the exact

sequences

_12...



0 > HYE) > F o g - Bl o
k k-1. .- o
FrE) = ROy, (x > 1)
andiPr0positioh (2.5) impliés theypfdposition.

In the same reasoning, we obtain the following

Proposition (2.7) Let X be a~coﬁplex'manifold Y be
a submanifold, T be an analytic subset of X and F be a
. finitistic sheaf on X.- Assume that there exists a Stratifica—
tion of X regular with respect to F such that Y is ;'\

transversal to each stratum.and T is a union of strata, then

i

Axmly>SHE, Fl). :

Corollary (2.8) Under thé assumption as above; the-

support of ﬁf%(F) ‘is a locally closed analytic set of
codimension > k/2in S. ' :

In fact, if ”Xa is a stratum of chiﬁenSion <’k/3
"~ we can take Y whose dimension < k/2. Therefore |
Pf¥ Y(F]Y) =0 beéause the real dimension of Y is less
than k. |

_13_
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§3. Finiteness theorem for S

maximally overdetermined system

Let X be a complex manifold of dimension n. We will

show, in this section, the following main theorem.

Theorem (3.1) If YU is a maximally overdetermined

system on X, then %"&X(% @x) are finitistic.

o ‘Remember that a maximally overdetermlned system on X

is, by the definition, a coherent RQX .Module whose 51ngu1a;

support is of codimension n in P*X at each point in it.
From now, I is always a maximally overdetermined system.
Flrstly, we will discuss the Lagrangean analytlc set.

Lagrangean analytic set is by the definition the’ 1nvolutoryi

analytic subset in P*X of dimension (n- 1) (a fortlorl, 7(

- purely (n-1) dimenéional); An analytic set of pure codimen-

'sion n is Lagrangean if and only if the fundamental 1-form

on ’P*thahishes~on the tangent‘cone of it at any point

(equ1valently on the non 51ngu1ar lows). The Siﬁgulér support .

of a max1ma11y overdetermined system is always Lagrangean.

Lemma (3.2) Let A be a Lagréngean closed analytic
set in P#*X. Then there is a stratification X=UXj of X
satisfying the regularity c0ndition§ a) and b) of Whitney
[ ] such that ‘
(3.1) A C UP} X
. a

where Pi X is the conormal projective bundle of X ~ in X.
a. . .

S - 14 -
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Proof

Let =« bé-the projection from P*X onto X. Set Xg =
X-m(A). XO_ is a dense open set in X because dim w(A) |
is less than (n-}). Letr Xi be a set of non singular

point of w(A). Note the following fact.

Sublemma (3.3) Let A be a Lagrangean closed analytic

set in P*X. Assume that 'Y = n(A) be a non singular set.

Then A contains P{X and w(A-PFX) is an analytic subset

of Y with codimension 21.
Proof

The question being local in Y, we can assume that Y

is defined by X] = gee = X =-0. Since A 1is involutory

A is invariaht'by the infinitesimal transformation
a/agl, caes a/agr where £ is cotangent vector. Therefore

n=0}’.

A containes {(x,£); Xq= ... =xr=Q, €i+1= R 3

which equals to P%X. Since ,A-P?X is also Lagrangean, and

N_-DPEY s *
A PYX does not contain PY

Q.E.D.

X, ntA—P?X), is not equal to Y.

Set Ay = '—‘“P‘*_Xix, X; = X{-n(A;): Then X = XgU X Um(Ag).

By the induction we define Xj’ Xi and A as follows.

i+l
Xj is a non singular locus of w(Aj).

= A.-P%.X
a1 = AP
XJ = Xj - n(Aj+1)

Then, since dim Xj is strictly decreasing, X ,1= ¢, and

therefore A =¢. It is clear that {Xj} is a stratification-

- 15 -
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-of X and satisfies (3 1) By Whitney [ ], there ex1sts a
fefinemeﬁt of {Xi} which is a stratlflcatlon satlsfylng
the tegulerity.condltlons It is evident that this stratifi-
catlons satlsfles (3.1). | | | ',
We remark that the regularlty condltlon (a) of Whitney
is equivalent to say that UP* X 1is a closed analytic set"
, X

Of;jP*X Slnce the stratlflcatlon which satlsfles (3. 1)

appears frequently, we 1ntroduce the follow1ng notion.

Definition (3.4) Let 7% be a maximallyyovefdetermined

system on X. The straticication of X is said to be
regﬁlar Qith feéﬁect to T if it satisfies the regularity
cohditiens é) bj o%.Whitney‘aﬁa the singular support of 7T
is contained in the ﬁnion of theicondrmai projective'bundle
of strata. - - o

- Now we will prove the foilohing refined form fo Theorem :

(3.1).

“Theorem (3.5) Let L be a max1ma11y overdetermlned

system on X X= UX be a stratification of. X which is
regular with respect to 42. Then s;g& (ﬁ@,(ﬂx)[x " is a
- ” ' X a .
“-locally constant C€-Module of finite rank.

We will prove firstly the following preparatory iemma.

Lemma (3.6) Let X be a point in Xa,.and choose a

local coo:dinate near Xxg. Then (x, (x-y)») does not belong

to SS(7) for xeX, yeX, such that |x-xgl<<1, [y-x4]%<1

- 16 -



and x#y. (where X is the complex conjugate of x)

We may assume xe;Xé, where XB is a strétum whose
closure contains Xa' If the lemma is false there is é
sequence Xsé X, and Xaa Yn 'which converge to | X, and

(x> (—)En—yl‘l)oo) e SS(‘%) . We may assume that (TX tends _‘

B)
to T and antxn'yn)' tends to a non zero vector v in T,
'where a_ = is é-sequenCe in CX.;’By the assumption
a_(x —y )€ CT* X)X , whlch is an orthogonal vector space of
(TXB)X . It follows that Vv belongs in the orthogonal of
T, which implies «<v,v>=0. This ‘'is a contradiction.
Q.E.D. ‘

Now we can prove Theorem (3.5). Let Xy be a point in
Xa. We chose a local coordinate of X sucg-thét Xg is the
origin and X, 1s a vector space. Suppose that (x, (X-y)«)
EESS(%) for y’e X,» xeX such that lxl;c, lylzc, x#y.
Set 50(t,x,_y)‘ = ]x-(l-t)yl2 - 'tzcz/z. Then 3, P(t,x,y) # 0

and
(x, 3, P(t,x,y))¢ SS(70)
for 0<tgl, |y|<c/2, g (t,x,y)=0.
"It implies that the boundary of Qt‘y = {x; P(t,x,y)<0} is
=P t, )
non characteristic to 7¢. ‘
Q if t, <t
Qtlyyc tysYy ,1 1= "2
and @, y is ‘independent on y. By Theorem (1.6),

_]_7 -
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restriction homomorphism
ig. -+ Extl :
Ext(0; o3 7, ¢y~ Ext (G m,&x)

are isomorphisms. Since ‘{Qt y}t>0 is a neighborhood system
. ’ .

of y,'we have
gl ) o i
Bxt® (g o3 7, By) = €L (7T, &) .

for evezv'y‘v y. It follows that %it%, &S()IX& is locally
c&nstant. ’Since Exti(ﬂl’o; qc, cﬂxj is finite dimensional,
€¢x§(Zm” §k)y is finite dimensional. It completes the
proof of Theorem (3.5).

Let Y ’be a cpqpiex submanifold of X of codimenéion
o By ;
- Remark that’\}¥5(69k) ;vanishés for any k except d.

is, by the definition, a left dax—Module .}¢$(dgx).

/6'x|x is. nothing but (9~X.

Theorem (3.7) Let X = UX& be a reguiar stratification
with'reSpect to a maximally‘overdetérmined syétenl ., and
Y Bé a complex submanifold of ‘X which is a union of strata;
Then E&@%_(ﬁm;_¢3le) is finitistic on Y rand locally
constant onxeach stratum. '

This is a coroiiary of Theotrem (S.S)band Proposition

fzjé) because 5?5Q§k£%¢,‘65ylx) is.quél‘to

Theorem (3.8) Under the same assumption as above,

- 18 -
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.

Exlly, (T, By|y) 12 % &xgzcmz, Bynz|2)

for any i and any submanifold Z transversal to every

stratum, where 7%, is the induced system of 7 onto .

Z
~ This is a corollary of Theorem (3.7) and Propoéition

(2.7).
Lastly, wevﬁill'remark the following propositions.
&S§IX is, by the definition, a maximally overdetermined

&lx Module 1im 5&{@_((}X/ ?k; C?x) where r is the codimen-
-X )

sion of Y and,‘} is the defining ideal of Y. If Y is

. . v on . . £
de;flned by X1= ee. =X 0 for a local coordinate, QYIX =

R/ Byxy + wvv v Byxy + Bybdpyy + o v Byp

Proposition (3.9) Let 7€ be a maximally overdetermined

system whose support is contained in an submanifold Y and
whose singular support is contained in P?X, then 925 is

locally isomorphic to the direct sum of finite copies of

f
Y|X*

Proof
We choose a local coordinate (Xl’ ey xn) such that
Y= L0y, ey x5 Kpm e =X =0}, |
Let u be a non zero section of 9”3. Since Gu is a
»coherent sheaf whose support is contained in Y, there is k

N

such that xNu = ... =X U= 0. Therefore, there is a non

1
zero section u of M such that xju = . = X, u = 0.
Since 8%1}(&3§|x, é3§lx) = 0, if we prove the proposition

- 19 -
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for &}u and ﬂmy§§u, then the proposition is true for 7.
Since It is‘noethérian, it suffices to show it for Q.
Let Qu = gx 3 contains X, ..., X.. If ?’ ‘contains
P(x",D) = ZPa(x",D")D'u (where X"=(xr;1, cees X2,
D'=(D1;~..., Dr)’,D" = (Dr+l’ ceey Dﬁ)) then g' contaiﬁs
all Pa(x",D”) since [xi,Di} = 1. It follows that |

Bu - (USRI (B G, where & = 8

[

T

Q' = B -y - Since the singular support of RQ'/ 3'"
T

- a void set, &Qﬁ/é}" is a f1n1te sum-of (} (TT (See

Kashiwara [2]). It follows the prop051t10n. Q.E.D.

~Corollary (3.10) 1If @k@é_(ﬁf, é%x) = 0 for every i,
then = 0. o
Because Q“I%Q‘(ngIX’ C}X)r%-CY, where T is thé
"codlmen51on of Y. 4 , -
' This coroliary means that the fun;tor' 5Z§P*ﬁ1ﬁkmxiﬁﬁi,c;x)
is a faithful funCtor.» This will be investigated more | V

1

precisely in the next paper.



§4 Several properties of cohomologies of holomorphic

solutions of maximally overdetermined systems

Let 9/C be a maximally overdetermined system on a complex
manifold X of dimension n. We fix a stratification> X'=
ux, of X‘ which is regular with respect to Zx. ‘The
support Supp géCi(ﬂk, G%X) is a set of x -wﬁere
gxI}(%m, 6>X)x # 0. Since @@ti(%@, éfx) is locally
constant on the strata, its support is a union of strata,
which implies that the support is a locally closed analytic

set (and its closure is also an analytic set).

Theorem (4.1)  The support of é&xﬁcit,'é>x) is a

locally closed analytic set of codimension >i.

Corollary (4.2) If s is . section of E%J?(ﬂ?, 6LX),
then the support of s is analytic set of codimension 2i. |
Firstly we introduce the notation of the modified singular
sup&mrt SAS(%). SAS(%) = T*X'n'SS(Qi’C@ﬂ@-C/f@mt)k, whére
t -is a cbordinateiof C and we embed ~T*X into P*(Xx €)
in the following way:. (x,£) » (x,0; (£,1)=)). ééCﬂt) is
a closed analytic set in the cotangent bundle T#*X. It is
clear that éE(Z&D is a cone, that is, invariant by the
multiplication of complex number. Note that the image of
‘the map $5(72)-X > P*X coincides with ‘SS(ﬂﬂD. é%(ﬁ@}’=
¢ if and only if =0 and é%(%%) is contained,in the

zero section if and only if 7€ is locally isomorphic to

..}2]_..
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the finite number of direct sum of (9x. If 2%,= UZEL is
.a good filtration of %/, then ég(ﬁt) is the support of |
the coherent sheaf on T*X corresponding‘tofthe,graded“

‘Module GB(ﬁTk/ﬂzk_l). (See Kashiwara [2]1).

Prop051t10n (4.3) In a nelghborhood of x in X, we

have E%X%&_(%@ é; ) =0 for i> dlm(SSCWt)r\T*X)

any coherent é§ -Module %t (not necessarlly max1ma11y over?
determined); T#X 1is a fiber on x.

Proof

Set d=dim(é§(%@3(\T§X). If d=-«, then this is cléar.
Suppose that d>1. Then there is a d-dimensional subménifold
Y through ‘xl such-;hét P?X)TSS(%@).= ¢ 1in a neighborhood -
of x which means that Y is non‘characteri;tié With |

respect to 9Cc. By ‘Kashiwara'[Z], we have -
R R |
By (T, Oy - &‘L&Y(%Y’&Y)x

where '%KY is the induced system of €. Since the global
dimension of ‘AQY‘X- is d = dim Y ' (See Kashiwara [2]),
, ‘

'E;btg,(@my, & ), = 0 for i>d. Since dim (SS(?QD/\T*X)

is upper semi- contlnuous, the prop051t10n follows. 'Q.E.D;

Corollary (4.4) EL (7, &X)[Xa =0 for i> codim X,.
This corollary immediately implies Theofem (4.1). Let

Y be a submanifold of X of codimension c. By taking a

refiniment of the regular stratification of Y, we may assume

- 22 -
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that Y 1is a union of strata. By replacing 6& with

&SYIX’ we obtain the same type of the preceding theorems.

Theorem (4.7) The support.of &d}i(%, (8le) is a

(locally closed) analytic subset of Y of codimension >

(i-¢) - in Y.~

Iy

Corollary (4.8) Thé support of a_global'secfiqn of

e, e, éSYlX) is an analytic subset of Y of codimension
2 (i-c).
Since this theorem can be proved in the same way as

before, we do not repeat it. .
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§5. Duality

Let 7 be a makimally overdetermined system on comple‘x
manifold X of dimension n and ico be a point in X. .

Then there ex1sts a free resolution _
P (x D) Pl(x',D) PN(x,D)

- r T S | T,
(5.1) 0<—-772;<—08X° B ,83)(1 < - @XN<—0
71n a nelghborhood of Xq ‘where P (x D) is an (ri+1 Xri)
matrix of differential operators. Then W@(ﬂz 0‘) is
Xp
an i-th cohomology of _ ;
P, (x,D) o Py (x,D)

T , T T
(5.2) G0 —s Fl ... > N
| X,xg X,X, " X,x

orol& (@Ei)}lx ,m:) js an ‘i-th homology of

oo (m)r, (mry ..., N
s-3) By, ST - B i X — 6,

where ﬁ{x HX 'is a left 09 Module defined by K[, }(0_)()

ht &, Module defined b *o
and‘ﬁ{x}l a right &y Module defined by
n o | o An
Oy eox ﬂ{x}lx = }e{xo}(&x) :

Since 0')( X is an. '(DFS) topological vector space and
’ b

- 24 -
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2
ﬁ%g)}lx is a (FS) topological vector space and they are
dual to each other. Since the.cohomology of (5.2)'15 finite
dimensional, ga.} (7/(?-,',(9-)()5't is a dual vector space of

, Toﬂ%(dg{x }IX This,duagity is obtained by the canonical

cup product

(5.4) w@cﬂt,@x) « Tox ) @Egg},x,wy

— fé{x }IX KQ C} xg €.
Setting ﬁf 6“%9 (e, K? ) Q9 ﬂ?gm:l) , we call it the
ad;ouﬂ:system of . ﬁf is ilso a’maximally overdetermined
system and (ﬂt ) =T, andfﬁffﬁ'ﬁz* is a cohfiaﬁariant‘
exact functor from the categofy of maXimally'ovéfdétermined
systems into itsglf. ,(See'Késhiwara [21, Séto-Kéwai-' ;
Kashiwara [6]). !Remark that the existence of such a fﬁnctor
1mmedlate1y 1mp11es that a stalk of max1ma11y overdetermined .

system is a Q- module of flnlte length. Note that

% ' o & PR
ﬁx = 0)( a“‘?- {x; X = B{xo}lx -t

08 @{X }lxgm) %%i(m*, ﬂ{xoi}[x) ’

we obtain the folloW1ng

Since Tor

. Proposition (5.1) Qﬂi;s (WZ ¢8{x }lX) and
i%I;QCWT’CQX)x are dual vector space of each other.
CWO .
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We will generalize this proposition. Let Y be a

submanifold of X of codimension d,‘k be a point in Y.

¢3Y|X is by the definition the left 29X—Modu1e
d.p . . d
” NY(&X)_ and 65‘%?))( is the right P@X-Module_ MYCQ;) .

Since Tor’i8 (ﬁﬁl))(,ox) = EY for i =n-d and 0 for

v i # n-d, thgre is a Cup product
(5-5) €“€2)(”Z’ng)x><Torn+i~d(ﬂ3§T% ’2Z)x

— ‘Torn_d(¢9§?% NS

.Théorem‘(S;Z)m Let X =’L1Xd be. a regular

kN

stratification with respect to T . Let Xu be a
stratum of codimension d and x be a point in X, -

~

Then, there is a canonical perfect pairing
i d-i,,,* .
(5-6)  ¢utg n, 0y, x b g (I By |5~ C
: a
“ that is, the two cohomologies are dual to each other.

Proof;'

- d-i % _ cpm) .
Slnce' %‘I’ (77'2: ,@Xalx) = %n-d+i(6XaIX’%)’
the pairing (5.6) is induced from (5.5). Let Z be a
d-dimensional submanifold transversal to X, and through

'x. Then, by Theorem (3.8)
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Gard (1, 0, = taty (M Oy

E N

AN | a8
%@;(% ,ﬂxulx)x = w%;(ﬁfz, ﬂxa/\zlz)x .

Therefore the theorem is a corollary of Proposition

(5.1). qg.e.d.
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