43

Cartesian product of a homotopy 4-sphere with E1

Ву

Kazuaki Kobayashi

§0. In this paper we will show that $H^4 \times E^1$ is PL homeomorphic to $S^4 \times E^1$ where H^4 is a homotopy 4-sphere which is a PL manifold and E^1 is an 1-dim. euclidean space. It is an alternating proof of [9. Th. 6], [10. p. 67]. Throughout this paper we consider PL category of polyhedra and piecewise linear maps (see [8]) if otherwise is stated. E^n , S^n , D^n always mean n-dimensional euclidean space, n-dim. PL sphere and PL ball.

§1.

Proposition 1. Let Σ^4 be a PL 4-sphere which is locally flat PL embedded in S^5 . Then M, the closure of one of the complement of Σ^4 in S^5 , is a PL 5-ball.

Proof. Since Σ^4 is PL locally flat embedded in S^5 , M is a PL manifold which is (TOP) homeomorphic to D^5 [1], [2]. And $\partial M = \Sigma^4$ is a (standard) PL 4-sphere. So (p* ∂M) \cup M is a PL manifold which is homeomorphic to S^5 . Then by the uniqueness of PL structure on S^5 [4], (p* ∂M) \cup M is a PL 5-sphere and hence $M \cong S^5$ - Int st(v, S^5) is a (standard) PL 5-ball.

Proposition 2 [3, p 89]. Let K be a closed PL subspace in

the interior of a PL manifold M. Then there exists a regular neighborhood of K in M which is unique up to ambient isotopy keeping K fixed.

Lemma 1. Let $f: S^3 \times E^1 \to E^5$ be a locally flat PL embedding satisfying the following condition; for any 5-ball $B^5 \subset E^5$ containing $f(S^3 \times \{0\})$ in its interior there is a positive number s = s(B) such that $f(S^3 \times ((-\infty, -s] \cup [s, \infty))) \cap B^5 = \emptyset$. Then $(f(S^3 \times \{0\}) \subset E^5)$ is a PL trivial knot. And there is a locally flat PL embedding $g: D^4 \to E^5$ of 4-ball D^4 such that $g(\partial D^4) = f(S^3 \times \{0\})$, $g(Int D^4) \cap f(S^3 \times E^1) = \emptyset$.

Proof. Let $B^5 \subset E^5$ be a 5-ball with Int $B^5 \supset f(S^3 \times \{0\})$. Then by the assumption there is a $s = s(B^5) > 0$ such that

$$f(s^3 \times ((-\infty, -s] \cup [s, \infty))) \cap B^5 = \phi.$$

So $f(\{x\} \times [0,s]) \cap \partial B^5 = f(\{x\} \times \{s_1\}) \cup \cdots \cup f(\{x\} \times \{s_m\})$ where $x \in S^3$, $0 < s_1 < \cdots < s_m < s$ and m = 2p + 1. Now if B_1^5 is a 5-ball in E^5 with Int $B_1^5 \supset B^5 \cup f(S^3 \times [0,s])$, by the assumption there is a $t = t(B_1) > 0$ such that

$$f(s^3 \times ((-\infty,-t] \cup [t,\infty))) \cap B_1^5 = \phi.$$

Since $f(\{x\} \times (s_{2r-1}, s_{2r})) \cap B^5 = \emptyset$, $1 \le r \le p$, we take a simple are γ_r on ∂B^5 joining $f(\{x\} \times \{s_{2r-1}\})$ with $f(\{x\} \times \{s_{2r-1}\})$ where $\gamma_i \cap \gamma_j = \emptyset$ ($i \ne j$). Then the simple closed curve $f(\{x\} \times [s_{2r-1}, s_{2r}]) \cup \gamma_r$ is homotopic to constant in B_1^5 - Int $B^5 \cong S^4 \times I$. Then using general position technique there

are non-singular 2-balls $\delta_{\mathbf{r}}$ (1 \leq \mathbf{r} \leq \mathbf{p}) such that

- ① Int $\delta_r \subset B_1^5$ Int B^5
- \oslash $\partial \delta_r = f(\{x\} \times [s_{2r-1}, s_{2r}]) \cup \gamma_r$
- $3 \delta_r \cap B^5 = \gamma_r$

Using $\delta_{\mathbf{r}}$ (1 \leq r \leq p) we can engulf $f(\{x\} \times [s_{2r-1}, s_{2r}])$ into B^5 by an ambient isotopy i.e. there is a level preserving PL homeomorphism $F: E^5 \times I \to E^5 \times I$ such that $F|(E^5-B_1^5) \times I = \mathrm{id.}$, $F_0 = \mathrm{id.}$ and $F_1f(\{x\} \times [s_{2r-1}, s_{2r}]) \subset \mathrm{Int} \ B^5$ (1 \leq r \leq p). Then

$$F_1f(\{x\} \times [0,s]) \cap \partial B^5 = F_1f(\{x\} \times [0,t]) \cap \partial B^5$$

= $F_1f(\{x\} \times \{s_m\}).$

Let

$$F_1 f(s^3 \times \{0\}) \cup F_1 f(N(x) \times [0,t]) \cup F_1 f(s^3 \times \{t\})$$

- $F_1 f(Int N(x) \times [0, t]) = s^3$.

Then $(\Sigma^3 \subset E^5)$ is a knot which is the sum of the knots $(f(S^3 \times (0)) \subset E^5)$ and $(f(S^3 \times (t)) \subset E^5)$ using ∂B^5 and it is trivial because Σ^3 bounds a 4-ball $f((S^3-Int\ N(x))\times [0,t])$ in E^5 . So $(f(S^3 \times \{0\}) \subset E^5)$, $(f(S^3 \times \{t\}) \subset E^5)$ are both topologically trivial by [5] and then piecewise linearly trivial by [7].

Now we define an embedding $g: D^4 \to E^5$ satisfying $g(\partial D^4)$ = $f(S^3 \times \{0\})$ and $g(Int D^4) \cap f(S^3 \times E^1) = \phi$. Since $(f(S^3 \times \{0\})) \in E^5$ is trivial, $f(S^3 \times \{0\})$ bounds a locally flat 4-ball B_0^4

in E^5 and $(f(S^3 \times \{t\}) \subset E^5)$ is trivial for any t by using the infinite cylinder $f(S^3 \times E^1)$. Furthermore $(f(S^3 \times \{0\}) \cup f(S^3 \times \{t\})) \subset E^5$ is a split link by the assumption for f. So $(f(S^3 \times \{0\}) \cup f(S^3 \times \{t\})) \subset E^5$ is a trivial link for any $t \in E^1$ and there is $E^5 = 0$ such that $f(S^3 \times [-\epsilon, \epsilon]) \cap Int B_0^4 = \emptyset$. And hence for any $E^5 = 0$ there is a 4-ball $E^5 = 0$ such that $E^5 = 0$ such that $E^5 = 0$ and $E^5 = 0$ so there is a 4-ball $E^5 = 0$ in $E^5 = 0$ satisfying $E^5 = 0$ so there is a 4-ball $E^5 = 0$ satisfying $E^5 = 0$ so there is a 4-ball $E^5 = 0$ satisfying $E^5 = 0$ so $E^5 = 0$ so there is a 4-ball $E^5 = 0$ satisfying $E^5 = 0$ so E^5

Let H^{IJ} be a homotopy 4-sphere which is a PL manifold and $V^{IJ} = H^{IJ}$ - Int σ^{IJ} where σ^{IJ} is a 4-simplex.

Lemma 2. If $f: S^3 \times E^1 \to \partial V^4 \times E^1$ is a PL homeomorphism, there is a PL homeomorphism $g: D^4 \times E^1 \to V^4 \times E^1$ which is an extension of f.

Proof. Let \widetilde{c}_1 : $\partial D^4 \times I + D^4$, \widetilde{c}_2 : $\partial V^4 \times I + V^4$ (I = [0, 1]) be boundary collars i.e. \widetilde{c}_1 , \widetilde{c}_2 are embeddings such that $\widetilde{c}_1(x, 0) = x$ ($x \in \partial D^4$) and $\widetilde{c}_2(y, 0) = y$ ($y \in \partial V^4$). And let c_1 : $\partial D^4 \times I \times E^1 + D^4 \times E^1$, c_2 : $\partial V^4 \times I \times E^1 + V^4 \times E^1$ be $c_1(x, s, t) = (\widetilde{c}_1(x, s), t)$, $c_2(y, s, t) = (\widetilde{c}_2(y, s), t)$. Let f_1 : $c_1(\partial D^4 \times I \times E^1) + c_2(\partial V^4 \times I \times E^1)$ be $f_1c_1(p, s, t) = c_2(p', s, t')$ where $f_1c_1(p, 0, t) = f_1(p, 0, t) = c_2(p', 0, t')$. Since Int $V^4 \times E^1 \cong E^5$ by [6], let \mathcal{J} : Int $V^4 \times E^1 + E^5$ be a PL homeomorphism. Then $\mathcal{J}f_1c_1|\partial D^4 \times \{1\} \times E^1$: $\partial D^4 \times \{1\} \times E^1$

 \rightarrow E⁵ satisfies the condition for f of Lemma 1, i.e. for any 5-ball B⁵ \subset E⁵ containing $\mathcal{F}_{1}c_{1}(\partial D^{4} \times \{1\} \times \{0\})$ in its interior there is a positive number s = s(B) such that $\mathcal{F}_{1}c_{1}(\partial D^{4} \times ((-\infty, -s] \cup [s,\infty))) \cap B^{5} = \emptyset$. Because $\mathcal{F}^{-1}(B^{5}) \subset \text{Int } V^{4} \times (-s', s')$ for some s' > 0 and $\mathcal{F}^{-1}(B^{5}) \cap c_{2}(\partial V^{4} \times \{1\} \times ((-\infty, -s'] \cup [s', \infty))) = \emptyset$. Hence there is a number s > 0 such that

$$\mathcal{S}^{-1}(\mathsf{B}^5) \wedge \mathsf{f}_1\mathsf{c}_1(\mathsf{\partial D}^4 \times \{1\} \times ((-\infty, -\mathsf{s}] \cup [\mathsf{s}, \infty))) = \emptyset$$

and so

$$B^{5} \cap \mathcal{I}_{1}c_{1}(\partial D^{4} \times \{1\} \times ((-\infty, -s] \cup [s, \infty))) = \emptyset.$$

So by Lemma 1 $(\mathcal{F}_1c_1(\partial D^4 \times \{1\} \times \{0\}) \subset E^5)$ is a trivial knot and it bounds a locally flat 4-ball \widetilde{B}_0^4 with Int $\widetilde{B}_0^4 \cap \mathcal{F}_1c_1(\partial D^4 \times \{1\} \times E^1) = \phi$. So $f_1c_1(\partial D^4 \times \{1\} \times \{0\})$ bounds a locally flat PL 4-ball $B_0^4 = \mathcal{F}^{-1}(\widetilde{B}_0^4)$ such that

Int $B_0^4 \cap f_1c_1(\partial D^4 \times \{1\} \times E^1) = Int B_0^4 \cap c_2(\partial V^4 \times \{1\} \times E^1) = \phi$.

Similary we may assume there are 4-balls B_t^4 ($t \in Z$: integer) such that $\partial B_t^4 = f_1 c_1 (\partial D^4 \times \{1\} \times \{t\})$ and Int $B_t^4 \cap c_2 (\partial V^4 \times \{1\} \times E^1) = \phi$. And we may assume $B_t^4 \cap B_{t+1}^4 = \phi$ ($t \in Z$). So we can extend f_1 to

$$f_2: c_1(\partial D^4 \times I \times E^1) \cup (D^4 \times Z)$$

$$\longrightarrow c_2(\partial V^4 \times I \times E^1) \cup B_t^4$$

by a cone extension. Since

 $f_1c_1(\partial D^4 \times \{1\} \times [t,t+1]) \cup B_t^4 \cup B_{t+1}^4 \ (t \in Z)$ is a PL 4-sphere which is locally flat embedded in Int $V^4 \times E^1 \cong E^5$, it bounds

a PL 5-ball B_t^5 by Proposition 1. So we can extend f_2 to a required PL homeomorphism

g: $D^4 \times E^1 \rightarrow c_2(\partial V^4 \times I \times E^1) \cup \bigcup_{t \in Z} B_t^5 (= V^4 \times E^1)$ by a cone extension.

Theorem. $H^4 \times E^1$ is PL homeomorphic to $S^4 \times E^1$ where H^4 is a homotopy 4-sphere which is a PL manifold.

Proof. Since any regular neighborhood N of p × E¹ in H⁴ × E¹ is PL homeomorphic to D⁴ × E¹, we identify N = D⁴ × E¹ \subset H⁴ × E¹ using Proposition 2. So H⁴ × E¹ - Int N is PL homeomorphic to V⁴ × E¹. Let \mathcal{S}_1 : D⁴ × E¹ + N be a PL homeomorphism. We may consider S⁴ × E¹ = (D⁴ × E¹) \cup (D⁴ × E¹) where the one of D⁴ × E¹ is a regular neighborhood of q × E¹ for some q \in S⁴. Then by Lemma 2 we can extend $\partial \mathcal{F}_1$ = ($\mathcal{F}_1 \mid \partial D^4 \times E^1$) to another D⁴ × E¹ and so we can get a PL homeomorphism \mathcal{F} : S⁴ × E¹ + H⁴ × E¹.

References

- [1] M. Brown: A proof of the generalized Schoenflies Theorem, Bull. Amer. Math. Soc. 66, 74-76 (1960).
- [2] : Locally flat imbeddings of topological manifolds,
 Ann. Math. 75, 331-341 (1962).
- [3] J. F. P. Hudson: Piecewise linear topology. Benjamin, Inc. New York, Amsterdum (1969).
- [4] R. C. Kirby: Lectures on triangulations of manifolds (mimeographed note).
- [5] B. Mazur: On the structure of certain semigroups of spherical knot classes, Publs. Math. I. H. E. S., 3 (1959) 19-27.
- [6] J. Stallings: The piecewise linear structure of Euclidean space, Proc. Camb. Phil. Soc. Math. Phys. Sci. 58, 481-488 (1962).
- [7] C. T. C. Wall: Locally flat submanifolds with codimension two, Proc. Camb. Phil. Soc. 63 (1967), 5-8.
- [8] E. C. Zeeman: Seminar on combinatorial topology (mimeographed notes), I. H. E. S. Paris (1963).
- [9] M. W. Hirsch: On homotopy spheres of low dimension.

 Diff. & Comb. Topology. Symposium in honor of M. Morse.

 Princeton Math. Ser. No. 27.
- [10] C. T. C. Wall: On bundles over a sphere with fiber euclidean space. Fund. Math. LXI (1967) 57-72.