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On Compact 3-manifolds with Infinite

Cyclic First Homology Groups

Akio Kawauchi

Dept. of Math.  Kobe Univ,

The knot theory has been discussed by many topologists
since the origin of topology. We know not only many interesting
examples of knots but also many generai properties of them,
When we study a tame knot SlC.Sj, it is fruitful to take the
complement SB~ T -for the open tubular neighborhood - % of Sl
in 83. Then clearly go- f is a compact 3-manifold with

H

1(83- T37)= 2. We will call this manifold the closed knot
complement for the knot SlClSB.
The purpose of this paper is to consider the following

problem: To what extent can we generalize the properties of

the closed knot complements to those of compact 3-manifolds with

infinite cyclic first integral homology groups 2

Section 1 is a classification of compact 3-manifolds with
Hl= Z in the homological sense, In Section 2 the fundamental
properties of Alexander polynomials are established. Section 3
shows the existence of Seifert surfaceéi The final Section

gives examples and questions.
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1. Classifications

For simplicity we will deal with only a compact connected
3-manifold M whose boundary is either empty or contains no
2-spheres throughout this paper.

First, we shall show that if Hl(M;Z)=Z then M has the
same homology groups as one of the following four types : the
orientable handle SlX‘Sz, the non-orientable handle SlX&SZ,
the solid torus S-X B° and the solid Klein bottle SiXgB.

That is,

1.1 Theorem. Let Hl(M;Z)=Z. In case M = P, H (M;Z) is
isomorphic to either H,(S'Xs%;2) or H,(s1%sS%;2). In case

M £ 9, H*(M;Z):;H*(Sl;z). Furthermore, 9M is connected and

is homeomorphic to the torus Sl%\sl or the Klein bottle

81X§Sl according as M is orientable or non-orientable.

Proof. If 9M =@ and M is orientable, then, by the
Poincaré duality, we obtain that H*(M;Z)?sH*(Slx\Sz;Z). If
M = @ and M is non-orientable, we know that H3(M;Z)= 0
and HB(M;Z)=22. Since the BEuler characteristic A(M) is. equal
to 0, it follows that H2(M;Z) is a torsion group. Hence

H,(M;2) ~H>(M;2)= Z,. This implies that H, (M;2) == H, (s1%c5%52)

X
In case M # P, we use an infinite cyclic covering p:ﬁ — M
associated with natural epimorphism XE‘Ki(M) —_— Hl(M;Z)= Z.
By [ 3, Proposition 4.4] Hl(ﬁﬁzz) is finitely generated over

Z, because Hl(M;Zz)= Z;Z By the Partial Poincaré Dﬁality[3 ,

Theorem 2.1] we obtain Z.= Ho(ﬁ}22)¢t:H2(ﬁ,§ﬁ}Z2). Consider

2
the following part of the exact sequence of the pair (ﬁ,ﬁﬁ )
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H, (¥, W;2,) — H,(¥W;2,) — H,(¥;2,). Since the both
rsides are finitely generated, we obtain that Hl(Sﬁ;Z2) is-
finitely generated over Z2. For each component N of 9M

let V*:TTI(N) —> 7 be the composite TTl(N) JE;'ﬂi(M) ;£> Z.
Y* is a non-trivial homomorphism. Otherwise, by [ 3 ,Lemma 3.1],
M must contain infinitely many copies of N as components.
Because N is not 2-sphere by assumption, Hl(QFﬁZZ) is not
finitely generated over Z2. This is a contradicfion.

Therefore T* is non-trivial and hence each component ﬁ' of
the preimage p’l(N)’ is an infinite cyclic covering space over
N (See [ 3 ,lemma 3.1]). Using that Hl(gﬁ}zz) is finitely
generated, we obtain that H*(ﬁ;zg) is finitely generatéd. This
implies X(N) = O (See J.W.Milnor[ 9 ]). Hence X(3i)= O. By the
formula )X%M) = 2%(M), 7(0%) = 0, From this we see that HZ(M;Z)
is a torsion group. However, Hz(L;Z) is free since 3JM £ @.
Thus, we have H*(M;Z)it:H*(Sl;Z). Furthermore, by the Poincaré
duality, Hy(M,3M;2,) AB°(M;2,) = O. This implies H,(3M;Z,)=0.
That is, M is connected. Since Hy(M,9;2) = Hy(9U;2),. it
follows that the orientability of JM coincides with that of M.
Therefore, by using X(9M)= 0, we see that 3M is homeomorphic

1

to SlX.Sl or S XtSl according as M is orientable or

non~orientable. This completes the proof.

Next, we consider the special case 7‘1(M) = Z. If Poincaré

Conjecture is true, such 2 manifold M must be homeomorphic to

2

one of the four types: STXS2, s1%s?, sTx B and sixcB2.
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More precisely, we obtain the following :

1.2 Theorem. If 1Yl(M) = %2, then M is_homeomorphic to one

of the following connected sums (SlXS2)#§3, (SerSZXF§3,

(stx B2 5> ‘and (slxthr#§5, where §° is a homotopy 3-svhere.

Sketch of Proof. In case 3JIM = ¢, using a result of H.Kneser
[ 6], the sphere theorem in the sense of J.H.C.Whitehead (15 ]
and a technique of J.W.Milnor [ ® ], we obtain that M . is
homeomorphic to (SIX'SZ)#%'} or (Slx-csz)#,§3. In case JM£ 9,
applying the Partial Poincaré Duality [ 3,Theorem 2.lj, we
obtain that M is homotopy equivalent %o Sl. By the loop
theorem [ |2], M is homeomorphic to (slx Bz)#’ﬁ“‘;3 or (SleBz)#§3.

See [ 5] for details.

2.Alexander Polynomials
Throughout this section we let M bYe a dompact 3-manifold
with Hy(M;Z)= 2 and p : ¥ ——> M be an infinite cyclic
covering assbciated with natural epimorphism 1Tl(M)—+> Hl(M;Z)=Z.
By [ 3,Proposition 4.4], Hl(ﬁﬁQ) is a finitely generated
torsion module over the rational group ring Q[Z]. Since Q[Z]
is a principal ideal domain, Hl(ﬁﬁQ) deéomposes into cyclic
modules, say, |

H, (¥50) %} Qlzl/(2,(4)) @ "“""QBQ{ZJ/(fr(t')')Q |

, where t denotes a fixed generator of 7 and fi(t) are
non-zero polynomials and ~(fi(t))Q are the ideals over Q[Z]
generated by fi(t).

2.1 Definition. A non-zero element A(t) in Qlz] 1is cailed
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the Alexander polynomial of M, if A(t) is a generator of the

product ideal (f;(t)f,(t) "**"f (%)), and A(t) takes the

. ) . m .
form of the following ay + a;t + + a t, where aga # O
and ag, 8y, ... ;8 (m > 0) are relatively prime integers.

( For example, see J.Levine [T] and J.W.Milnor{9 ].)
From the above érgument, it is easy to see that the
Alexander polynomial of M always exists and that it is

uniquely determined up to the choice of units.

2.2 Theorem. A(1) = + 1 .

2.3 Theorem. In case M is orientable, then A(t):th(t'l)

for some even integer m. In case M is non-orientable and

‘ ' : t ' -
M =0, then A(t) = (-l)m"'/ztm A(-t™1) for some even integer

m'. In case M is non-orientable and M £ @, then, under the

assumgtion that Hl(M,%M;Z) = 0, the same eguality holds.

2.4 Remark. For closed knot complements, Theorems 2.2 and

2.3 . are well-known, and these Alexander polynomials were called

the knot polynomials. For example, seé‘R.H.Crowell and R;ﬁ.Fox

[2].

2.5 Remark. Now consider the case QM # ©. Then by Theorem
1.1 H,(M;Z) avH,($1;2) and @M is homeomorphic to stx st

or 'Slxtsl. For the proof of Theorem 2.3 Hl(M,QM;Z) will

—~5-
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have to be vanished. If M is orientable, then, by the Poincaré
duality, Hl(M,aM;Z)zH2(M;Z)= 0. If M is non-orientable, then
it is easy to see that Hl(M,QM;Z)ﬁvad for some odd integer d,
( Use Hy(M,3M;2,)7% H°(M;2,)= 0.) In the final section, in .
fact ,‘ we will give an example of a compact 3-manifold M with
Hl(M;Z) ==:Z and Hl(M,'aM;Z) = 2y for a given odd integer. 4.
So, in this case, the assumption that Hl(M,'aM;Z) = 0 makes

sense.

Proof of Theorem 2.2. We use a technique of Y.Shinohara and
D.W.Sumners [11]; Let /A be the integral group ring of 32 :
A= d(z] (J is the ring of integers.). Consider a presentation

matrix M(t) for- ;11(’131’;2) over A. i.e. consider an exact

sequence F, > F, —> Hl(ﬁ;Z)'"-———> 0 with free A-modules

Fl’ }i‘_2 of rgnks‘ Ty, r2‘,’respectively, and with the homomorphism -
the ideal over A. generated by the determinants of ' TAT,—
submatrices of vM(t) (B(M(%)) is often called the first
elementary ideal of M(t).). And let E(M(t))Q " be the
covr‘respondrin‘g ideal over Q[Z]. It is well-known that E(M(t))Q
is an invariant of the module Hl(M;Q). Hence, by the definition
of A(t), we have E(M(t))Qr. (A(j;))Q."This implies ;
E(M(t))C(A(t)) as ideals over A ( Use Gauss lemma.). Let
8:A.—> J be the augmentation sending t to 1. By taking
a triangulation of M, we obtain a short éxact sequence of chain

complexes over /A 0 —> c(¥;z) -1, C(ﬁ;z) L5 ¢(M;2) — O,

\——G'_‘



This induces the exact sequence Hl('IVI;Z) =1 Hl(?’f;z) — 0,

because Hl(M;Z) = Z. Therefore Hl(fa’;z)®ez= 0. Since M(1)
is a presentation matrix for O = Hl(l?f;z)@%z, it follows that
E(M(1)) = J. Hence J = E(M(1))=g(E(M(t)))C e(A(t))=(A(1)).

Thus, A(1l) = + 1. This completes the outlined proof.

To prove Theorem 2.3, we shail use the following.

s
2.6 Theorem, M  is always orientable.

Proof. By Theorem 1.1 and (31, H*(ﬁ;Q) ~and H*('Q’IVI;Q)
are'finitely generated over Q.-Thus, by [4.], M is orientable
if and only if Hz(ﬁ,gﬁ;Z) # 0., If M is orientable, so is M.
Hence it suffices to prove for the case that M is non-orientable.
First, we consider the case 3M = @§. Then from the following
short exact sequence of chain modules over J[Z]

0 — ¢(¥;2) =L ¢(¥M;2) 2> c(4;2) — 0, we obtain the
exact sequence 0 —> Hz(ﬁ;z) L=l Hz(ﬁ;z)—P%HZ(M;Z)—» 0

X
Z

2

, because H,(M;Z) =~ H*(SlXtSZ;Z) ( Use the fact vthat H*(ﬁ;z)

is a Noetherian module and that any surjective endomorphism

of a Noetherian module is actually an automorphism.). Hence, in
particular,‘- HZ(I‘E;Z) # 0. This implies that ?’f is orientable.
Second, we consider the case 3JM # @. Then Hl(M,QM;Z)%Zd

for some odd integer d > 1., Let R ©be the ririg consisting of
all re&Q such that r = i/dj, where i, j€J. From the universal
coefficient theorem, we have Hl(M,aM;R)Q: Zd®R = 0,

Hy (M, 9M;R)X 2 PR~Z, and H3(M,’3M;R) = 0. Since R[Z] is a

— =
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Noetherian ring, Hl(ﬁ,aﬁ}ﬁ)' is a Noetherian module over R[Z].

Hence frem the short exact sequence

0 — o(¥,3;r) =L o(H, M;r) —B> c(M,3M;R) —> O
, We obtain the exact sequence

0 —> HZ(ﬁ,a'ﬁf;R) =l Hz(ﬁ,?ﬁ;R) —P sy (M,?BM;R) —> 0.
: ?
2y

~ A~ N v ~” o~
In particular,‘Hz(M,’aM;R) # 0. But HZ(M,')M;R) %Hz(m,am;z)(@R.

2

Therefore Hz(ﬁlﬁﬁ;z) # 0. This implies that M is orientable.

2.7 Remark. By Theorem 2.6 and [ 3, Theorem 2.1], there is
a duality Hy(W,9%2)~B%(W;2) = 2. Then + induces the
automorphism of Hz(ﬁﬁ?ﬁ;z)a&z of degree 1 or -1 according
as the original manifold M is orientable or non-orientable.
In fact, if M is orientable, we have an exact sequence
Hy (M, 33 2) s i, (¥, 3; 2) -l 1, (ff, 4t; 2) —=> B, (M,4;2)

5 5 # O
Hence t-1: H2(ﬁ,3ﬁ;z) i H2(ﬁ,9ﬁ;Z) is a trivial
homomorphism, This implies that +t induces the identity
homcmérphism. If M is non-orientable, from the proof of -

Theorem 2.6, it is easy to see that there is an exact sequence

0 —> Hz(ﬁ{?aﬁ;z) =L Hz(ﬁ;?aﬁ;z) z, —> O.
Z : Z

This implies that +t induces the automorphism of degree -1.

Proof of Theorem 2.3. Let 2 E'Hz(ﬁ;gﬁ;Z) be a generator.

By the Duality Theorem of J.W.Milnor [9 ] or [ 3,Theorem 2.1]



or [ 4], there is a duality N2 : Hl(ﬁ}Q)a; Hl(ﬁ,gﬁ}Q), where
{1 denotes the cap product operation. If M is orientable,from
the remark 2.7, we obtain the formula +t[(tu)NZ]= ul(t2)=u N Z.

Hence the following diagram is commutative:

1L (W Q) ——— 1, (7,9%;0) 1, (4;Q)
Nz inclusion

“~Nv - . ~ -

~lt ~lt~L ~ |t

(% Q) —H—— 1 (], 0 0) 2 i, (6Q)
iz inclusion

( We note that in case M # §, the fact that H (M,9M;2Z)= 0
is used. In fact, by using this, the inclusion homomorphism
Hy(3M;2) —— H,(4;2) is onto. By [ 3, Lemma 3.1], M is
connected. Hence the inclusion homomorphism Hl(ﬁEQ)—~> Hl(ﬁ,éﬁ;q)
is an isomorphism,) | -
This diagram implies that if Hl(ﬁﬁQ) is isombrphic to
Qz)/(£(£)) ® QLz]/(£,(1)) D@ Q[2]/(£,(¢))y ,then
Hl(@ﬁQ) is isomorphic to
QLz)/ (£, I @~ - - D a2/ (£,(87H) (as Qlz]-modules ).
On the other hand, since Hl(ﬁﬁQ) = Hom[Hl(ﬁ,Q),Q], Hl(ﬁ}Q) and
Hl(@&Q) are isomorphic as Q[Z]-modules. Thus,

(£ (6)onnn £06))g = (6700 £ (471,
Using Gauss lemma, A(t) =+ th(t—l) for some integer m. By
Theorem 2.2, A(1) £ 0. So we have A(t) = t™A(+"1). A standard

argument implies that m is an even integer ( See R.H.Crowell

._.‘1’—



10 "
and R.H.Fox [2].). If M is non-orientable, from the remark 2.7,
we obtain the formula +t[(tu)ll z]= uli(t2) = - ulZ. Hence the

" following diagram is commutative:

H(M;Q) > H, (11,34;Q) < H, (M;Q)
i inclusion
~ ~ ~ ~
Bt (¥%;Q) > H, (¥, 2%;Q) i, (W;Q)
nz inclusion

( We note that in case QM # @, the assumption that Hl(M,aM;Z)=O
is used.‘In fact, bj using this, the same argument as in the
orientable case asserts that the inclusion homomorphism
Hl(ﬁ;Q)'——-—é> Hl(ﬁiZﬁﬂQ) is an isomorphism,)
By the same argument as in the orientable case, we obtain that
L 2 — .
A(t) = et™ A(-% l) for some integer m', where €= 1 or -1.
‘t
Now we shall show that m' is an even number and e=(-1)" /2.
o _ Lm'
Let A(t) = ag + ayt+. ...t At , a; € 7 and aoam.£ 0.
: ' - '
By the equality A(t) = €t™ A(-t™1), we have a, =(-1)"€ a,
and an =i§ao. If m' is odd, ag = ap. =‘0,_which contradicts
to ag8 #£ 0. Hence m' is even. Then, by using A(1) = + 1
, ' B
and the equality A(t) = €t™ A(~t l), we obtain
) m'/2. =1y _
(1 +& )ao+(l+(—l)l€)al et (1+(=1)F/ 5)am./2 _p tap g, =t 1

]
and anr/p = Ei—l)m /2am‘/2’ The first equality implies am,/zél
mod 2, and hence, in particular, am./2 £ 0, By the second

equality, E(—l)m'/2 =1, Therefore, 8::(-l)m'/2. This completes

~\0—
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the proof.(The essential part of the above proof is due to R.C.
Blanchfield [1 ]. Also, see J.W.Milnor (9 1.)

%, Seifert Surfaces
3.1 Definition. A'proper, connected,collared”surféce‘ F 'in

M is called a Seifert surface or M, if M - F 1is connected.

The following may be considered as the EXISTENCE THEOKEM OF
A SEIFERT SURFACE for a 3-mahifold with Hy = Z.
3.2 Theorem. Let ‘f:TTi(M) ——3> Z be an epimorphism. If

Hl(M;Z) = Z, then there exists a P.L.map f: M —> Sl such that

1) =TT () —— T, (1) =2 |

(2) TFor some point peESl, F = f'l(p) is a proper, connected
, orientable, collared surface ' |

(3) M - F is connected and orientable.

Proof. Sincé there is a one-~-to-one correspondence between the
homotopy class (M, Sl] and the induded homqmorphism class
Hom[ U, (M), TYl(Sl)], we can choose a map f: ME—5—€> s which
1 arg‘simplicial
1

induces Y . We may consider that M and S

complexes and that f 1is a simplicial map. Let p€&S be a

point which is not a vertex of this triangulation. Then f-l(p)= T
is a proper, collared surface which need not be connected. Let

Tl, T2,.....,.T be the components of T. Pick points aieiTi.

n
Then J.Stallings [|3] showed that there is a map @:M —>[’ from

M to a connected graph [7in M containing points ay such that

....“__.
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the composite (Q: M ——g—e>f7 is homotopic to the identity: such
that @ 1(a;) = T. for all i jand such that the following

triangle is homotopy- commutative: -
M I 5t
& /;“7 |

Passing to;fhe homology, we get a commutative triangle'

H, (M;2) I PR Hl(Sl;Z)
%\ ////lefﬂ*
Hy ([ 2)

f, is an isomorphism because f, 1is onto and Hl(M;Z)-z Z., Ve
note that @, is onto. Then (fl(ﬁ* : Hl(fﬁz) —_— Hl(Sl;Z)
is an isomorphism. Since [7 is a connected graph, fl["is

1

homotopic to a map h : f’-——————€> 8™ so that h'l(p) ‘consists

of just one of the pdints a;, Say ay . Then hQ is a map from

o}

M to S which is homotopic to f and such that (h§)”(p)=1, .

: o

Next, we let M* be a manifold obtained by splitting along Ti .
o

Now, we use the fact that the infinite cyclic covering space
M over M associated with \H‘Hi(M)k————f>'ﬂi(Sl)=Z can be
construétedvfrom M* ( See L.P,Neuwirth [|0].). By Theorem 2.6,
35 is orientable. Hence M* is orientable. Thus, it follows
that M - Ti and Ti are orientable.’This completes the

. ] (o]
proof,

4, Examples and Questions

-\L1—
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4,1. Now we shall show that, given any odd m > 1, there

is a 3-manifold M with 3M = STxes!

and Hl(M;Z) = Z and
H)(M,3;2) = Z_. For m = 1, the solid Klein bottle is such an
example. So, we may consider m > 1., Consider a 2-sphere D with
m holes and let Cl’ CZ"""’ CIn be components of 9D. Take
the product DXI, where I 'is the unit interval, and let

DXI be oriented. We choose orientations of DXO and DX1

induced from that of DXI. Let M be the manifold obtained by

attaching DXO to DX1 by an orientation-preserving

homeomorphism sending ClX 0 +to 02)( 1, 02)(‘0 to 03)( i
Cm—lx O- to Cle and CmXO to‘ clx 1. Since m is odd, it
follows that M = SlXtSl. The first homology group Hl(M;Z) is
an abelian group generated by an infinite order element t and
cycles Cl, ..... . Cm obtained from g:omponents of 9D with
relations Cl= —02, 02-: -03, vesenny Cm-—l= -Cm, Cm= -C:L and

C.+ C2+......+ C = 0., Because m is odd, m-1 is =ven. So,

1 m

—Gm= Cl+ 02+.....+ Cm

= (Cp+ Col4yunnnet (Cp o+ C o J)
= 0.
Thus, Cl= C2=...
cyclic group generated by t. Since the infinite-cyclic covering

ceee e Cm= 0. That is, Hl(M;Z) is an infinite

space M associated with TTl(M) — Hl(M;Z) = Z can be
constructed from DX I, it follows that 9M consists of m

components. Hence, by [ 3,Lemma 3.1],

H)(M;2)/Im[ B, (OM;2) — H,(42)] = Z_ .
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Using the exact sequence of the pair (M,JM), we obtain that
Hl(M;aM;Z)ﬁts Zm.  Also, it is easily seen that the Aiexander

polynomial of this example is given by t"+1/ t+1.

4.2, By the classical knof theory, it is well-known that,
given aﬁ integral polynomial A(t) with A(l)=+ 1 and
A(t) = th(tfl), there exists a closed knot complement whose
Alexander polynomial is A(t). Accordingly, the following question
occurs(naturally: Q;zgg A(t) with A(1)=+ 1 and '

A(t) = t®A(+™1), then does there exist a closed 3-manifold with

H, = Z whose Alexander polynomial coincides with A(t) ?

1

0f course, by Theorem 2.3, such a manifold must be orientahle
, unless A(t) is a constant.
The'question/for non-orientablé Z-manifolds is as follows:

Given a polynomial A(t) ( with integral coefficients )gatisfving

A(l)=+ 1 and A(t) = (-1)m/2th(-t‘l), then do there exist

closed and bounded 3-manifolds with H, = Z whose Alexander
polynomials-are A(t)?
0f course, by Theorem 2.3, such manifolds are always

non-orientable, unless A(t) is a constant.

- 4.3. We consider a compact, connected, orientable surface F
with_genus g€ = 1 whose boundary is either empty or homeomorphic
to the circle. To characterize a homeomorphism between surfaces,

H.Terasaka [[{ ] introduced a skew-orthogonal matrix.

Definition (Terasaka). A skew-orthogonal matrix is an

— 14—
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integral (2g)X(2g)-matrix A satisfying A.X = €E, where if

211 212 213 814 ¢ -
851 Bpp 8pz Bpg - v - ~
e : then A denotes the matrix

. . . . . . . . o

8.22 —312 e o e
—321 all e s e e
‘ 8.24 —8.14 o
—3.23 8.13 o e e

,and &=1 or -1, and £ 1is the unit matrix.

Note that any integral 2X2-matrix whose determinant is + 1 is
a skew—orfhogonal matrix.
Let F be oriented, and choose a.standard basis (al, bl,..w..

, ag; bg)»for Hl(F;Z) with intersection numbers ai'bi =1, ai‘bj=0

(i # j) and aj.8y = bi'bj =0 (all 4, j). Then H.Terasaka [ 4]

showed that, given a skew-orthogonal matrix A, then there is'an
auto-homeomorphism h: F ———= F such that the automorphiém

hyt Hl(F;Z) —_— Hl(F;Z) represents A with the basis <‘al, b,
ey B, bg)-,and conversely. In this case, we can see that h

g
is orientation-preserving or orientation-reversing according as

8: 1 or -1,

Now take the orientation of the real line Rl so that-the map

1 1

Rl —> R, y —> y+1 is orientation-priserving, and let ﬁ; EXR
be oriented by the orientation induced from those of F and Rl.

The transformation t : M —> M defined by +t(x,y)=(hx,y+1)
induces the automorphism t,: Hl(ﬁ;z) — Hl(ﬁ;z) representing

the matrix A with the basis (al, bisecesy @ bg}_01early, t is

g’

-5 —-
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orientation-preserving or orientation-reversing according as g= 1

or -1, Since the infinite cyclic group Z generated by + acts

w properly discontinuously, the orbits space M =Wz is a compact
manifold so that the natural projection ‘ﬁf———€> M 1is an infinite
cyclic covering whose covering transformation group is Z. By Remark
2.7, we know that M 1is orientable or non-orientable according as
€=1 or -1, Since H{(M2)RZ @ Hl(ﬁ;z)/(E—A)Hl(f{;Z)’, it
follows that Hl(M;Z)cc Z 1is equivalent to det(E-A) = +1,

Note that, from construction, M is a fibered manifold over Sl
with fiber F. Since the Alexander polynomial of M is det(tE-4),
we showed the following:

Theorem. Given a skew—orthogonal matrix A with det(E-A)=+1,

then there exist fibered, both closed and bounded, compact

3-manifolds with Hl = Z whose Alexander polynomials are equal

to det(tE-A). Such manifolds can be chosen to be orientable or

non-orientable according as €=1 or -1,

1 -1

For example, let Aoz( ) and consider a (2g)X(2g)-matrix
, 1 0
Ao
A 0 '
A= 0 . Then AKX =E and det(E-A)= 1.
A

A J

Hence there are orientable, fibered,both closed and bounded

manifolds with Hl=Z whose Alexander polynomials are (tz—t4l)g.

. . B :

Similarly, if we let B = ( 11 )and B=( % , ©
0

1 0 o 9.

-
-

—\6— >
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we see that there are non-orientable, fibered, closed and bounded
manifolds with Hl=_Z whose Alexander polynomials are
det(tE - B) = (t°~t -1)&, because B.F = - E and det(B-B)=(-1)8.
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