The fixed point set of an involution and theorems of the Borsuk-Ulam type

Akio HATTORI

1. Statement of results. In this note h^* will denote either the unoriented cobordism theory \mathcal{N}^* or the usual cohomology theory with \mathbf{Z}_2 -coefficients $\mathbf{H}^*(~;~\mathbf{Z}_2)$. The corresponding equivariant cohomology theory for \mathbf{Z}_2 -spaces will be denoted by $h^*_{\mathbf{Z}_2}$.

Let M be a manifold and σ an involution on M^1 . We define an embedding $\Delta: \mathbb{M} \longrightarrow \mathbb{M}^2 = \mathbb{M} \times \mathbb{M}$ by $\Delta(x) = (x, \sigma x)$. Then Δ is equivariant with respect to the involution σ on \mathbb{M} and the involution T on \mathbb{M}^2 which is defined by $T(x_1, x_2) = (x_2, x_1)$. Let $\Delta_!: h^q_{\mathbb{Z}_2}(\mathbb{M}) \longrightarrow h^{q+m}_{\mathbb{Z}_2}(\mathbb{M}^2)$ denote the Gysin homomorphism for $\Delta_!: h^q_{\mathbb{Z}_2}(\mathbb{M}) \longrightarrow h^{q+m}_{\mathbb{Z}_2}(\mathbb{M}^2)$.

In the present note we shall give an explicit formula for $\theta(\sigma)$ and apply it to get theorems of the Borsuk-Ulam type. Our results generalize those of Nakaoka [3], [4]. From the formula for $\theta(\sigma)$ we shall also derive a sort of integrality theorem concerning the fixed point set of σ ; see Theorem 4. Detailed accounts will appear elsewhere.

Let S^{∞} be the infinite dimensional sphere with the antipodal

¹⁾ In this note we work in the smooth category. All manifolds will be connected, compact and without boundary unless otherwise stated.

involution. The projection $\pi: S^{\infty} \times M^{2} \longrightarrow S^{\infty} \times M^{2}$ induces the Gysin homomorphism $\pi_{!}: h^{*}(M^{2}) \longrightarrow h^{*}_{\mathbb{Z}_{2}}(M^{2})$ and the usual homomorphism $\pi^{*}: h^{*}_{\mathbb{Z}_{2}}(M^{2}) \longrightarrow h^{*}(M^{2})$. Let $d: M \longrightarrow M^{2}$ be the diagonal map. Since d(M) is the fixed point set of T, $h^{*}_{\mathbb{Z}_{2}}(d(M))$ is isomorphic to $h^{*}_{\mathbb{Z}_{2}}(pt) \otimes h^{*}(M)$ and d induces $d^{*}: h^{*}_{\mathbb{Z}_{2}}(M^{2}) \longrightarrow h^{*}_{\mathbb{Z}_{2}}(pt) \otimes h^{*}(M)$.

Lemma 1. The homomorphism

$$\pi^* \oplus d^* : h_{\mathbb{Z}_2}^*(M^2) \longrightarrow h^*(M^2) \oplus (h_{\mathbb{Z}_2}^*(pt) \underset{h^*(pt)}{\otimes} h^*(M))$$

is injective.

We denote by S the multiplicative set $\left\{w_1^k \mid k \geq 1\right\}$ in $h_{Z_2}^*(pt) = h^*(P^{\omega})$ where w_1 is the universal first Stiefel-Whitney class. If X is a Z_2 -space then $h_{Z_2}^*(X)$ is an $h_{Z_2}^*(pt)$ -module and we can consider the localized ring $S^{-1}h_{Z_2}^*(X)$ of $h_{Z_2}^*(X)$ with respect to S. Note that $h_{Z_2}^*(pt)$ is isomorphic to a formal power series ring $h^*(pt)[[w_1]]$ and $h_{Z_2}^*(pt) \otimes h^*(M)$ is canonically embedded in $(S^{-1}h_{Z_2}^*(pt)) \otimes h^*(M)$.

To state our main theorem we need some notations. Let $P: h^q(M) \longrightarrow h_{\mathbf{Z}_2}^{2q}(M^2)$ be the Steenrod-tom Dieck operation; see [4], [6]. For $u \in h^q(M)$ we define $P_0(u)$ to be $d^*P(u)/w_1^{2q}$. Then P_0 is extended to a ring homomorphism $P_0: h^*(M) \longrightarrow (S^{-1}h_{\mathbf{Z}_2}^*(pt)) \otimes h^*(M)$. For a real vector bundle \mathfrak{F} over a $h^*(pt)$ CW-complex X its h^* -theory Wu classes $v_{\alpha}(\mathfrak{F}) \in h^*(X)$ are defined

in a similar way as in [5]. The Wu classes of the tangent bundle of a manifold X will be denoted by $v_{\alpha}(X)$. Finally we define $a_{i}(x) \in h^{*}(pt)[[x]]$ by

$$F(x, y) = \sum_{0 \le i} a_j(x) y^j$$

where F is the formal group law of the theory h*. For a multiindex $\alpha = (\alpha_1, \alpha_2, \dots)$ we put $a^{\alpha}(x) = \prod_{1 \le j}^{\alpha_j} (x)$, $\ell(\alpha) = \sum_{j} \alpha_j$ and $|\alpha| = \sum_{j} j \alpha_j$, cf. [6].

Theorem 2. Let M be a manifold and σ an involution on M. Let F be the fixed point set of σ . F is a disjoint union of submanifolds F_1, \dots, F_ℓ .

i)
$$\pi^* \theta(\sigma) \in h^*(M^2)$$
 is given by
$$\pi^* \theta(\sigma) = \Delta_1(1)$$

where the $\Delta_{:}$ on the right-hand side is the usual Gysin homomorphism $h^*(M) \longrightarrow h^*(M^2)$. If $\{u_i\}$ is a homogeneous $h^*(pt)$ basis of $h^*(M)$ and $\Delta_{:}(1) = \sum a_{ij}u_i \times u_j$ with $a_{ij} \in h^*(pt)$ then the a_{ij} 's satisfy the relation

$$\sum_{j} a_{ij} c_{jk} = \delta_{ik} \quad (\underline{\text{the Kronecker}} \quad \delta)$$

where $c_{jk} = p_!(u_j \cup 6^*u_k)$ with $p : M \longrightarrow pt$.

ii)
$$d^*\theta(\sigma) \in h_{\mathbb{Z}_2}^*(pt) \otimes h^*(M) \subset (S^{-1}h_{\mathbb{Z}_2}^*(pt)) \otimes h^*(M)$$

is given by

$$d^*\theta (\sigma) = w_1^m \frac{\sum_{i=1}^{\ell} \sum_{\alpha} w_1^{2(-\ell(\alpha)+|\alpha|)} a^{2\alpha} (w_1) P_0(j_! (v_{\alpha}(F_i)^2)}{\sum_{\alpha} w_1^{-\ell(\alpha)+|\alpha|} a^{\alpha} (w_1) P_0(v_{\alpha}(M))}$$

where j. is the Gysin homomorphism of the inclusion j : F C M

and $m = \dim M$.

Remark 3. In Theorem 2, when the theory h* is the usual cohomology theory H*(; \mathbb{Z}_2), the formula for d* θ (σ) reduces

to

$$d^* \theta(\sigma) = w_1^m P_0 \left\{ \left\{ \sum_{i=1}^{\ell} \sum_{s=0}^{\lfloor \frac{i}{2} \rfloor} j_! (v_s(F_i)^2) \right\} / \left\{ \sum_{s=0}^{\lfloor \frac{m}{2} \rfloor} v_s(M) \right\} \right\}$$

where $f_i = \dim F_i$.

Theorem 4. Let M, σ and F_i be as in Theorem 2. Suppose that $h^* = H^*(; \mathbb{Z}_2)$. If we write

$$\frac{\ell \left[\frac{f_{i}^{2}}{2}\right]}{\sum_{i=1}^{\infty} \sum_{s=0}^{j} j! (v_{s}(F_{i})^{2}) / \sum_{s=0}^{m} v_{s}(M) = \sum_{i=0}^{m} u_{i}}$$

where $u_i \in H^i(M; \mathbb{Z}_2)$ then we must have

$$u_i = 0$$
 for $i > \frac{m}{2}$.

Corollary 5. Under the situation of Theorem 4 the element θ (5) $\in H^m_{\mathbb{Z}_2}(M^2; \mathbb{Z}_2)$ is given by

$$\theta(\sigma) = \sum_{i=0}^{\left[\frac{m}{2}\right]} w_1^{m-2i} P(u_i) + \theta_1$$

where $heta_1$ is characterized by the conditions

a) $\rho \in \pi$, -image

and

b)
$$\pi^* \int = \Delta_!(1) + u_{\underline{m}} \times u_{\underline{m}}$$
.

Corollary 6. Under the situation of Theorem 4 assume moreover that dim F_i < dim M/2 for all i. Then

$$\begin{cases}
\left[\frac{f_{i}}{2}\right] \\
\sum_{i=1} \sum_{s=0}^{\infty} j_{i} \left(v_{s}(F_{i})^{2}\right) = 0
\end{cases}$$

and $\theta(\sigma) \in H_{\mathbb{Z}_2}^*(M^2; \mathbb{Z}_2)$ is characterized by the conditions

a) $\theta(\varsigma) \in \pi_{,-image}$

and

b)
$$\pi^*\theta(\sigma) = \Delta_1(1)$$
.

Corollary 7. Let M be an m-manifold which is a Z₂-homology sphere and of an involution on M. Then, in the usual homology theory $H^*(; \mathbf{Z}_2)$, the element $\theta(\sigma) \in H^m_{\mathbf{Z}_2}(M^2; \mathbf{Z}_2)$ is given by

$$\theta(\sigma) = \begin{cases} \pi_!(1 \times \mu) & \text{if } \sigma \text{ is not trivial,} \\ w_1^m + \pi_!(1 \times \mu) & \text{if } \sigma \text{ is trivial,} \end{cases}$$

where $\mu \in H^m(M; \mathbb{Z}_2)$ is the cofundamental class.

Now let N be another manifold with an involution T $f: N \longrightarrow M$ a continuous map. We put

$$A(f) = \{ y \mid y \in N, f\tau(y) = \sigma f(y) \}$$

and define an equivariant map $\hat{f}: N \longrightarrow M^2$ by $\hat{f}(y) = (f(y), f\tau(y))$. The following is fundamental for our theorems of the Borsuk-Ulam type.

Theorem 8. If $A(f) = \phi$ then the class $\hat{f}^* \theta(\sigma) \in h_{\mathbf{Z}_2}^m(N)$ vanishes.

Corollary 9. Let f denote the restriction of f on the fixed point set $F(\tau)$ of τ . Suppose that we have $\overline{f}^*(\sum_{i=1}^{\ell}\sum_{s=0}^{\lfloor \frac{f_i}{2}\rfloor}j!(v_s(F_i)^2)) \neq 0$

$$\overline{f}^*(\sum_{i=1}^{\infty} \sum_{s=0}^{2} j!(v_s(F_i)^2)) \neq 0$$

When the involution $\, au \,$ on N is free the module $\, h^{\star}_{\overline{Z}_2}(N) \,$ is canonically identified with $\, h^{\star}(N/Z_2) \, .$

Corollary 10. Let M and N be manifolds of the same dimension m. Let σ be an involution on M such that dim $F_i < \frac{m}{2}$ for all components F_i of the fixed point set of σ . Let τ be a free involution on N and $f: N \longrightarrow M$ a continuous map. Then, in the usual cohomology, the evaluation of the class $\hat{f}^*\theta(\sigma) \in H^m(N/\mathbb{Z}_2)$ on the fundamental class $[N/\mathbb{Z}_2]$ is given by $\langle [N/\mathbb{Z}_2], \hat{f}^*\theta(\sigma) \rangle = \hat{\chi}(f)$

where $\hat{\chi}(f)$ is the equivariant Lefschetz number of f as defined in [3]. Consequently if $\hat{\chi}(f) \neq 0$ then $A(f) \neq \emptyset$.

Corollary 11. Let M be an m-manifold which is a \mathbb{Z}_2 -homology sphere with an involution \mathfrak{G} . Let N be an m-manifold with a free involution \mathfrak{T} and $\mathfrak{f}: \mathbb{N} \longrightarrow \mathbb{M}$ a map. Then we have

 $\langle [N/Z_2], \hat{f}^*\theta(\sigma) \rangle = \begin{cases} 1 + \deg f & \text{if } \sigma \text{ is trivial,} \\ \deg f & \text{if } \sigma \text{ is not trivial.} \end{cases}$

Consequently if σ is not trivial and $\deg f \neq 0$ then $A(f) \neq \phi$.

2. Indication of proofs. Lemma 1 is a consequence of the following structure theorem for $h_{\mathbb{Z}_2}^*(M^2)$ and a localization theorem due to tom Dieck [2] applied to the diagonal map d.

Theorem 12. In $h_{\mathbf{Z}_2}^*(M^2)$ the union $\bigcup_{k\geq 1} ({}^{\mathsf{U}} w_1^k \underline{-kernel})$ coincides with $\pi_! \underline{-image\ which\ is\ isomorphic\ to}\ h^*(M^2) / h^*(M^2)^T$ through $\pi_!$.

The homomorphism π^* restricted on $\pi_!$ -image is injective.

The quotient $h_{\mathbb{Z}_2}^*(M^2)/(\pi_!$ -image) is a free $h_{\mathbb{Z}_2}^*(pt)$ -module and is generated by P-image. Its rank is equal to the rank of the $h^*(pt)$ -module $h^*(M)$.

Theorem 12 is proved using the Gysin exact sequence of the double covering $\pi: S^{\omega} \times M^2 \longrightarrow S^{\omega} \times M^2$ and the following properties of $\pi_!$, π^* and P: $\pi^*\pi_!(u \times v) = u \times v + v \times u,$

$$\pi^* \pi_! (u \times v) = u \times v + v \times u$$

 $\pi^* P(u) = u \times u$.

Part i) of Theorem 2 follows from the commutativity of the diagram

$$h^{*}(M) \xrightarrow{\Delta_{!}} h^{*}(M^{2})$$

$$\pi^{*} \uparrow \qquad \uparrow \pi^{*}$$

$$h^{*}_{Z_{2}}(M) \xrightarrow{\Delta_{!}} h^{*}_{Z_{2}}(M^{2})$$

which holds since π is a covering projection.

In order to prove Part ii) we consider the submanifolds $\Delta(M)$ and d(M) of M^2 . They are invariant under the action T. Their intersection is canonically identified with F. Let $j': F \subset \Delta(M)$ and $j: F \subset d(M)$ be the inclusions. Let \mathcal{V}_j , and \mathcal{V}_d be the normal bundles of j' and d respectively. We see that $\Delta(M)$ and d(M) cut each other cleanly along F, that is, \mathcal{V}_j , is a subbundle of $j^*\mathcal{V}_d$. Thus we have the excess bundle $E = j^*\mathcal{V}_d/\mathcal{V}_j$, and it follows from the clean intersection formula (cf. [6]) that

$$d^*\Delta_1(1) = j_1(e(E))$$

where $e(E) \in h_{\mathbb{Z}_2}^*(pt) \otimes h^*(F)$ is the h*-theory Euler class of $h^*(pt)$

the bundle E with \mathbf{Z}_2 -action. In our situation we have

Lemma 13. The bundle E is isomorphic to the normal bundle $\nu_{\rm d}$, of the diagonal map d': F \longrightarrow F² where the \mathbf{Z}_2 -action on $\nu_{\rm d}$, is induced from T.

From Lemma 13 and the clean intersection formula applied to the commutative diagram

$$\begin{array}{ccc}
\mathbf{F} & \xrightarrow{\mathbf{d'}} & \mathbf{F}^2 \\
\downarrow \mathbf{j} & & \downarrow \mathbf{j}^2 \\
\mathbf{M} & \xrightarrow{\mathbf{d}} & \mathbf{M}^2
\end{array}$$

we infer that

(*)
$$d^*\Delta_!(1) = d^*\left(\frac{(j^2)_!(d_!(1)^2)}{d_!(1)}\right),$$

in $(S^{-1}h_{\mathbb{Z}_2}^*(pt) \otimes h^*(M)$. But we have a formula due to Nakaoka $h^*(pt)$

[5] which expresses $d_!(1)$ in terms of $v_{\alpha}(M)$, P_0 and $a^{\alpha}(w_1)$ and a similar one for $d_!(1)$. Using these in (*) we obtain the formula in Part ii) of Theorem 2.

Finally Theorem 8 follows from the fact that $\hat{f}^* \theta(\sigma)$ is the Poincaré dual (in the equivariant cohomology) of $\hat{f}^{-1}(\Delta(M)) = A(f)$ in N.

References

- [1] Tammo tom Dieck, Steenrod-Operationen in Kobordismen-Theorien, Math. Zeit., 107, 380-401.(1968).
- [2] ______, Lokalisierung äquivarianter Kohomologie-Theorien,
 Math. Zeit., <u>121</u>, 253-262 (1971).
- [3] M. Nakaoka, Continuous maps of manifolds with involution I, to appear in Osaka J. Math.
- [4] _____, idem II, to appear in Osaka J. Math.
- [5] _____, Characteristic classes with values in complex cobordism, Osaka J. Math., <u>10</u>, 521-543 (1973).
- [6] D. Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Math., 7, 29-56 (1971).