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The fixed point set of an involution and theorems

of the Borsuk-Ulam type

Akio HATTORI

1. Statement of results. In this note h* will denote either
the unoriented cobordism theory ¥ or the usual cohomology theory
with zz—coeffic'ients H¥( Zzl). The corresponding equivariant

cohomology theory for 'Zz-spaces will be denoted by h’% .
, 2

Let M Be a manifold and ¢ an involution on M].') We define
an embedding A : M — M =M x M by A() = (x, ¢x). Then
A is equiva’riant with respect to the involution ¢ on M and
the inVolution T on M2 which is defined by T(xl,' x2) = (XZ’ xl).
Let A! : hgz(M) —> h%;m(MZ) denote the Gysin homomorphism for
2

A, where m =dim M. We put 6(¢) = 4,(1) éhgz(M ).

In the present note we shall give an explicit formula for
‘ 6 () and apply it to get theorems of the Borsuk-Ulam type. . Our
results géneralize those of Nakaoka [3], [4]. From the formula
for 6 (6) we shall also derive a sort of integrality theorem
concerning the fixed point set of 6 ; see Theorem 4. Detailed
accounts will appear. elsewheré.

Let S® be the infinite dimensional sphere with the antipodal

1) 1In this note we work in the smooth category. All manifolds
will be connected, compact and without boundary unless other-

wise stated.

-1 -



39

involution. The projection T : S%%x M2 —> 5% x M2 induces

Zy
the Gysin homomorphism TC, : h*(Mz) ———>h’; (Mz) and the usual
N ’ : 2 :
homomorphism 7* : h’; (Mz) -—*h*(Mz). Let d : M -—7M2 be the
2

diagonal map. Since d(M) is the fixed point set of T, h; am)

; 2
is isomorphic to h; (pt) ® h*M) and d induces d* . h; (Mz)
2 h*(pt) ' 2
—>hy () ® h*().
2 h* (pt)

Lemma 1. The homomorphism

7 @ d* : b} o) —> n* ) @ <h (pt) ® B*QD))
2 ‘ %" "h*(pt)

is injective.

We denote by S the multiplicatiyve set {wlk | k2 1}
12
h;z (pt) = h*(Pw) where Wy is the universal first Stiefel-Whitney

class. If X is a Zz-spa‘ce then h’; (X) 1is an h; (pt) -module

2 2
and we can consider the localized ring s~ h (X) of h; (X) with
2 A
respect to S. Note that h;‘ (pt) is isomorphic,to a formal power
2 . _ .

series ring h*(pt)[[wl]] and h’; (pt) ® h*(M) is canonically

2 h* (pt) , '
embedded in (S—lh; (pt)) ® h*m).

2 h* (pt)

To state our main theorem we need some notations. Let P :

4 ™ — h;q(MZ) be the Steenrod-tom Dieck operation; see [4],
2
[6]. For ue hq(M) we define Po(u) to be d*P(u)/wiq. Then

Py is extended to a ring homomorphism Py ¢ h*M) —

(s~ h* (pt)) ® )h*(M). For a real vector bundle E over a
2 h* (pt

CW-complex X 1its h*-theory Wu classes vy (§) € h*(X) are defined
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in a similar way as in [5]. The Wu clasSes"o_f the téngent bundle
of a manifold X will be denoted by vg(X). Finally we define
aj(X) € b*(pt)[[x]]. b

F(x, y) = Za =)y
_ } O‘J
where' F is the formal group 1aw of the theory h* For a mult:.-
index ® = (., &,, -+-) we put a°‘<x> - TTa, J<x>, L(x) =
: 1’722 1% j S
3.« and I°<I, 2_.Ja( .» cf. [6].
" Theorem 2. Let M _be a man‘ifoldfand & an involution on M.

Let F ' be the fixed poin‘t set of 6 . F is a disjoint union of

submanifolds Fi’ ceey FZ .

i) w*¥6(s) e h*(Mz) is given by>

T () = A, (1)

where the A4, on 'thémf:‘;grht-ﬁand side is the 'usual- Gysin homoxﬁor-'

phism h* (M) -#h*(sz)_; If {ui}r is a homogeneous h*(pﬁ) ‘basis

* : ) - = s ‘ ' 1 ) * ' -
of h™(M) and Az(l) Laijuix'uj with _aiJ' € h™(pt) then

the aiJ."s satisfy the r‘elationf_'

%_aijc;jk = 8§,  (the Kronecker &)
where cjk = p.(u. Us'*uk) with p : M --—>pt :

1) d*e(o—>eh (t) . ® h*M) ¢ (sThE (pt)) IR
) h*(pt) ) h(pt)

is given by

4 |
> 5wy CAHORD 2 yey SHCHEN )2)
o

1
S_;; wi ARt (v, )

where j, 1is the Gysin homomorghism‘ of the inclusion j : Fc M
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'and m = dim M.

Remark 3. In Theorem 2, when the theory h* is the usual

cohomology theory H*( 2'2), the formula for d* @ (&) reduces

L £,

105
d*g(s) = ({Z 22_.' Jiv (B )}/{Z vs(M)})

i=1 s=0

where £, =dim F,.
—_— T i

Theorem 4. Let M, ¢ and Fi be as in Theorem 2. Suppose

that h* = H*( ; 2,). 1f we write

£.
e S m
417 151 R
. > G EDH/ TS v ) = S
i=1 s226 21'0’ s i=0
where u € Hl(M 22) then we must have
= i m
u; 0 | for i 5 -

Corollary 5. Under the situation of Theorem 4 the element

6(s) € H‘;‘Z(MZ; 7,) is given by
| (27

8e) = Z% i JCR NN
&

where 61 is characterized by the conditions
a) ? € T,-image

and

b) ‘R'-*f = A,Q1) + u Xu
. E Ky

Corollary 6. Under the situation of Theorem 4 assume moreover

that dim F, < dim M/2 for all i. Then
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£, .
[=]

. 2
) JE(VS(Fi) ) =0

M >

N E

and 6O(s) eH’; m-; ZZ) is characterized by the conditions
Y2 ‘

a) 6(s)e m, ~image
and |

b) TO@E) = A, D) .

Corollary 7. Let M be an m-manifold which is a Zz-homology

sphere and 6  an involution on M. Then, in the usual homology

m 2 . .
z m~; ZZ) is given by

2

theory H*( ; 22), _the element 8 (&) € H

T,(Axm) if 6 is not trivial,

B(r) =
wit T, (Lxpm) if o is trivial,

where ME Hm(M; 22) is the cofundamental class.

Now let N be another manifold With an involution =T and
f : N—»M a continuous map. We put
A ={ylyeN, fx(y) =iy}
and define an equivariant map £f:N ‘—‘7M2 by f(y) = (£(y), £x(y)).
The following is fundamental for our theorems of the Borsuk-Ulam
type. |

Theorem 8. If A(f) = ¢ then the class E*G(o‘") € h[; (N)
: 2

vanishes.

Corollary 9. Let f denote the restriction of f on the

fixed point set F(T) tgi T . Suppose that we have
¢ 5] )
D 25,0 £ 0
s=0

i=1
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in H§ (pt) ® H*(F(T); 22) then the set A(f) is not empty.
-T2

‘When the involution T on N is free the module h"zf, (N)
, , 7 . 2
is canonically identified with h*(N/ZZ).

Corollary 10. Let M and N be manifolds of the same dimen-

sion m. Let 6 ©be an involution on M such that dim Fi<%

for all components F, of the fixed point set of ¢ . Let T be

a free involution on N and £ : N—>M a continuous map. Then,

in the usual cohomology, the evaluation of the class. £*0(s) €

Hm(N/ZZ) on the fundamental class [N/ZZ] is given by

<IN/2,)], B¥6(s)> = X(E)

A : ) :
where X (£f) 1is the equivariant Lefschetz number of £ as defined

_3'._11[3‘]. C.onsequently if )/Z(f) # 0 then A(f) # ¢.

Corollary 11. Let M be an m-manifold which is a Zz-homology

sphere with an involution 6§ . Let N be an m-manifold with a

free involution T and £ : N—>M a map. Then we have

, . l+deg £ if ¢ is trivial,
<IN/2,], E¥6()) = | o
deg £ if ¢ 1is not trivial.

Consequently if ¢ 1is not trivial and degf # 0 \then A(E) # ¢.

2. 1Indication of proofs. Lemma 1 is a consequence of the

following structure theorem for h; (Mz) and a localization theorem
2 ! .

due to tom Dieck [2] applied to the diagonai map d.

Theorem 12. In h; (Mz) the union U (Uw]1_<~kgrne1) coincides
. 2 —_—————— k_>.1 ‘ — T .

with TC,-image which is isomorphic to h*(Mz)/h*(MZ)T through T,.
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The homomorphism 7Tt* restricted on 7C,-image is injective.

The quotient h’; (Mz)/(‘rc,-image) is a free h’; (pt)-modtile and

is generated by P-image. 1Its rank is equal to the rank of the

h*(pt) -module h*M).

Theorem 12 is proved using the Gysin exact sequence of the

double covering Tt: SMXM2 — s* X M2 and the following prop-

2y

‘erties of TC,, TT* and P :

TL*7C,(qxv) =uxv+vyxu,
TE*P(u) =uxu.
Part i) of Theorem 2 follows from the commutativity of the

diagram |
4, )
“h*M) ——— hFMO)

a0 I ko
nk ) ———> 13 o)
2 2 '

which holds since 7t is a covering projection.

In order to prove Part ii) we consider the submanifolds 4 (M)
and d(M) of M2.. They are invariant under the action T . Their
rintérsection is canonically identified with F. Let j' : F c AQM)
and j : FC d(M) be the inclusions. Let , ‘Vj' and vd be the
- normal bundles of j' and d respectively. We see that AM)
and d(M) cut each other cleanly along F, that is, ))j. is a
| subbundle of j* Vdr Thus we have the excess bundle E = j*l)d/ Vj,

and it follows from the clean intersection formula (cf. [6]) that
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a* A, (1) = 3, (e(E))

(pt) @ h*(F) is the h*-theory Euler class of

where e(E) € h;
2 h*(pt)

the bundle E with Zé-action. In our situétion we have

Lemma 13. The bundle E 1is isomorphic to the normal bundle

Y., of the diagonal map d': F -——>F2 - where the Zz-action on

yﬁ, is induced from T.

From Lemma 13 and the clean intersection formula applied to

the commutative diagram

F —> F
. .2
|3 s
M d i MZ
we infer that.
| L b @
(*) d Az(l) =d / d:(l) | s
in (S-lhg (pt) *Q§ h*(M). But we have a formula due to Nakaoka

_ 2 h™ (pt)
[5] which expresses,‘d!(l) in terms of qx(M), P0 and a“(wl)
and a similar one for d;(l). Using these in (*) we obtéin the
formula in Part ii) of Theorem 2.

Finally Theorem 8 follows from the fact that f*e(cﬁ is the
Poincaré dual (in the equivariant cohqmology) éf f-l(,A(M)) = A(f)

in N.
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