ooooboooao
2270 19750 33-38

33
Theory of differential equations with regular singularity

and eigen-functions of Laplacian of symmetric spaces.

by Masaki KASHIWARA

The purpose of this paper is to develop the theory of differential
equations with regular singularity. Our study is invoked by the requirement
in the representation theory of groups.

General speaking, any irreducible representation can be realized in the
subspace of eigen-functions of invariant differential operators on the
symnetric space, and, at the same time, in the space of functions on the
Martin boundary of the symmetric space.

It is natural to think that the boundary value problem gives the intertwining
operator between these two realization. The’invariant differential operators,
however, are degenerate at the boundary of the symmetric space. Therefore,
the boundary value problem in the usual sense does not work in this situation
and one must study the boundary value problem when the differential equétion is
degenerate at the boundary. This paper is devoted to the analysis of such a
problem.

In ofder to help readers' understanding, Qe will analyse the typical
example : G = SL(2 : R). |

The maximal compact subgroup K of G = SL(2 : R) is SO0(2) and the
symmetric space X = G/K can be identified with the upper half domain

{z=x+1iy ¢ C; y > 0}, and its boundary is the real projective space

2 2
R U {«}. The invariant differential operator , is yz(—§§A+ -2%?.
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Now we will consider the differential equation

(& - s(s-1)ulx, y) = 0.
In order to see the behavior of the eigenfunction u(x, y) near the
boundary y = 0, assume u(x, y) has a formal development

u(x, y) = = A+j.

fj(X)y
j=0

Then, we have the relation
. : "
[+ G+a-1)-s(s-D) £+ , = 0.
Setting j = 0, we get ) =s or 1-s. If A =s, we have
0  for j odd
fj(X) = 2

D
—— - D, for =2k,
k! (s+5,K)

where (a, n) = a(a+l) (a+n-1).

Thus,
D2
1 k 2k
ulx, ¥) = 1 ——— (- 79 £y~
k=0 k! (s+3,k)

1f fo(x) is a real analytic function, this series converges when vy
is sufficiently small. Set
1k Yy ok
.

A (Y, X, D ) = X
s X k=0 k!(s+%3k)

Then, if ¥.(x) and ¢¥,(x) are real analytic, then
1 2
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(1) ulx, ) =A_(y, x, Dx)v?I(X)yS * AL X, Dx)fE(XJyl"s

is convergent when y is sufficiently small and eigenfunctions of A with
eigenvalue s(s-1). We call the solution of this type ideally analytic.
Of course, when Re s > %
. s-1
lim y” “ulx, y) = §;(x),
y +0

and when Re s < %

lim y Su(x, y) = $, (x).
y +0 ,

Thiskinvestigation permits us to call #&(x) and g}(x) the boundary
value of ideally analytic solution u(x, y).
When ?1(x) and yz(x) are not real analytic the representation (1)
loses his meaning in the first appearance. But idear lying beneath the
theory of hyperfunction endows the formula (1) with an authentic meaning
of it.
Since u 1is real analytic for y > 0, u(x, y) has an analytic continuation
to the space {(x, y) ; x e C, ¥y € R}. The theory of bicharacteristies says
u(x, y) is defined on y > |Im x|. Moreover, u(x, y) is the sum of two
solutions u+(x, y) and u (x, y), where ui(x, y) is defined on

{(x, ¥) e CxR;y>0, |Im x| >y}

and u+(x, y) also the form
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@) u, (%, ¥) = A0y, DIF, (Y A (y, D v, 00y 5,

where ?+(x) and ¢+(x) are holomorphic functions defined on {xe € ; 1Im x z 0}.
Remark that the right hand side of (2) has meaning because they converge.

Thus, intuitively, we can write

(3) u(x, y) =u_(x, y) +u_(x, y)

A (D) (F, (x+i0) + @_(x_10))y®

+ A, D) (W, (x+30) + y_(x-10))y°

where ?(x+i0) is the boundary value of holomorphic functions ¢(x) defined
on '{im x 2 0}. So, we call ¢(x) = ¢ (x+i0) + v (x-i0) and y(x) =

+ -
¢+(x+10) + y_(x-i0) the first and the second boundary values of u(x, y).

For example, as for the Poisson kernel

= Y 3S
Ps(x’ Y) - (xz 2) ’

+y
we have
P(s+%ay y1-s . y1—s y+ix
P ¥) = —gesay Yymax P (L 108, Is, 553 + Yo FlLs 1osy Iss, o)
on y > |Im x|
and
1-s . tris_s
Y __R(1, 1-s, 1+s, L3iX) o T(#s)e” "y
y+ix YFixX

2 (s+%9cosw5(y2+x2)s

S 1 2y
* 5T -y—ﬁ-—i-F(l, 1-s, 2-2s, —=% )} on 0 <y< |Imx]|.
J

Y+ix
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Thus, the first boundary value is le—zs = TTls(x+10)

/nF(s—%J
and the second is ——m—— §(x).
r(s)

TrlS(x 10) }/Zcosns,

The representation (3), although, has no meaning, because As(y, Dx)ja(x)ys
converges only on {(x, y) ; 0 <y < Im x} and As(y, Dx)?_(x)yS on {(x, y) ;
0 <y < -Im x}.

Therefore, we will reformulate (3). We have

k D
A , D s _ -1 x. 2k 2k+s
s DIP(x)y 12 —~———-——-—k'( )(2) Py

= 3 -——(—l)——— (~)2k50(x) (s+1, 2k)o'2k s

k k! (s+ k)

(- 1) (143 ,k)( k) D
=3 2 22 (5592k¢(x)ys
k k'(s+ , k) y

J
1‘

Dx 2 ) S
2 2D 2, (E'D—}:) )Y(x Yy .

We remark that

D

_ s 1.s 1 X, 2
QS(DX’ D}’) - F(l"*z': '2'+'2", S+§': ("i]‘)";) )

is a micro-differential operator defined on {(x, y ; (gdx + ndy) ) ;
In] > |£]}. Therefore, Qs(Dx’ Dyl?(x)ys has a meaning as micro-function.
In this way, we reach the final formulation. ‘
For an eigenfunction u(x, y), let ﬁ(x, y) be the hyperfunction solution
of | |
2 2

Yy + =) - s-D R, ¥) =
X y
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such that u=u on y>0 and u=0 on y <0, (&(x, y) makes, in the
situation (3), to be u+(x+iO, Y)Y(y) + u_ (x-i0, y)Y(y)), Then, there are

unique hyperfunctions ?Kx) and Y(x) such that

sp(@) = Qg(D,, DI (PGIY) + Q_ (D

1-
o DY),

We will call #(x), ¢(x) the boundary values of u(x, y).
r(1-s)
/TG - s)

Since the first boundary value of Pl_s(x, y) is §&(x),

T(1-s)
JFT(%-- s)
value Jd(x-x') (x")dx' = j”(x).

Pl_s(x-x', y)?(x')dx' is the eigenfunction with the first boundary

Since it will be shown that the two eigenfunctions with the same first
boundary value coincide using the theory of zonal spherical functions, we

have

__Eﬂllfl__.J‘p (x-x', y)P(x")dx'.
/Fr(%- sy J I8 y

4) u(x, y) =
Thus, the space of eigenfunction of A defined on the upper half plane
with the eigenvalue s(s-1) and the space of hyperfunctions on the boundary

are isomorphic by the map of taking the boundary value and by the Poisson

integral (4).



