Fuzzy-Fuzzyオートマトン

水本雅晴 田中幸吉 (大阪大学·基礎工学部·情報工学科)

1965年,L.A. Zadehによりあいまい 丁事柄 主表理する 手法として fuzzy 集合の概念が発表されて以来(1),オートマトン, 言語,制御,パターン認識,意志決定,論理などの分野に応用されている。 Eとえば, fuzzyオートマトンについては,Wee (2) によ,て学習オートマトンとして定式化されたのが最初で,その後 fuzzyオートマトンによる多峰 実探索,プラント制御,ランダム媒体との相互作用,ゲーム,fuzzyプログラム,GMDHアルゴリズム ひどに 応用されている。これらと並行に,fuzzyオートマトンそのものに対する 性質も調べられてがり。(3)(4)(5) また fuzzyオートマトンの変形または拡張として,マックス・積オートマトンのマックスオートマトン, L-fuzzyオートマトンはで種々のオートマトンが定式化されている。(6)(7)

本稿では、fuzzy集合の拡張であるfuzzy-fuzzy集合の性質を述べ、これを基にfuzzy-fuzzyオートマトンを新しく定義し、2、3の性質を導き出す。

1. Fuzzy-Fuzzy 集合

準備として通常のfuzzy集合にフリス簡単に述べておこう. 集合Xにおけるfuzzy集合Aとは

$$\mathcal{M}_{\Delta}: X \to [0,1] \tag{1}$$

$$A = \mu_A(x_1)/x_1 + \mu_A(x_2)/x_2 + \dots + \mu_A(x_n)/x_n$$

$$= \sum_i \mu_A(x_i)/x_i \qquad (2)$$

を採用する。ここで、十は論理和(max)を表わす.

fuzzy集合に関する演算としては

包含:
$$A \subseteq B \iff \mu_A(x) \leq \mu_B(x), \forall x \in X$$
. (3)

和: AUB ⇔
$$\mu_{AUB}(x) = \max[\mu_{A}(x), \mu_{B}(x)]$$
. (4)

正規fuzzy 集台,凸fuzzy 集台が以下の様に定義される.

正規fuzzy集合: fuzzy集合Aが正規であるとは

$$\max_{x \in X} \mu_A(x) = 1 \tag{7}$$

と満たす場合をいう.

 $\mu_{A}(x_{i}) \geq \min \left[\mu_{A}(x_{k}), \mu_{A}(x_{\ell}) \right]$ (7) t 満たす 場合を μ う、ここで, $K \leq i \leq \ell$ で まる。 (例) 次の f_{UZZY} 集合 $A \neq E$ 規凸 f_{UZZY} 集合で まる。 A = 0.3/1 + 0.6/2 + 1/3 + 0.9/4 + 0.2/5.

さて、上述のfuzzy集合においてはグレードは区向[0,1]内の値を取るものであったが(Eとえば、MA(Z)=0.8 など)、現実にはグレードそのものがはっきり定まらなくて、たとえば、グレードは"高い"、"中位い"、"非常に位い"、 の8 ぐらい"といったことがある. このようなことを説明するためにグレードが [0,1] 上のfuzzy 集合で表わされるようなfuzzy-fuzzy 集合(またはタイプの fuzzy集合)が Zadehにより提案された(8).

Fuzzy-Fuzzy集合:集合Xにおけるfuzzy-fuzzy集合Aとは

$$\mu_{A}: X \to [0,1]^{[0,1]} \tag{8}$$

To a fuzzy メンバーシップ 関数 MA によって特性づけられた fuzzy 集合で、値 MA (X) は fuzzy グレード と名付けられ、 [0,1] (またはその部分集合)における fuzzy 集合である. Fuzzy 集合の複算は拡張原理[†] を使用することにより以下の様に与えられる.

fuzzy T'L-F' MA(X), MB(X) E

$$\mu_{A}(x) = \sum_{i} di/ui, \quad \mu_{B}(x) = \sum_{i} \beta_{i}/\nu_{i} \qquad (9)$$

と表わす、ここで、 di、 βj はそれぞれ Ui、 $Uj \in [0,1]$ に対す 37" レードである、 $V = \max$ 、 $\Lambda = \min$ とみなすと

和: A \lor B \Leftrightarrow $\bigvee_{A \lor B} (x) = \bigvee_{A} (x) \bigvee_{A} \bigvee_{B} (x)$

$$= \left(\sum_{i} \frac{di}{ui} \right) \vee \left(\sum_{j} \frac{\beta_{i}}{v_{j}} \right)$$

$$= \sum_{i,j} \frac{di}{\beta_{i}} / (u_{i} \vee v_{j}). \tag{10}$$

$$= \sum_{i \neq j} (di \wedge \beta_i) / (ui \wedge v_j). \tag{11}$$

補集合: Ā ⇔ 从A(x)= T MA(x)

$$= \sum di/(1-ui). \tag{12}$$

$$A * B = \left(\sum_{i} \mu_{A}(xi)/x_{i} \right) * \left(\sum_{j} \mu_{B}(y_{j})/y_{j} \right)$$

$$= \sum_{i,j} \left(\mu_{A}(xi) \wedge \mu_{B}(y_{j}) \right) / (x_{i} * y_{j}), \quad \Lambda = \min.$$

(FI) $J = \{0, 0.1, 0.2, \dots, 0.9, 1\} \subseteq [0, 1] \ge L$ $\mu_A(x) = \underset{\longrightarrow}{\text{high}} = 0.4/0.7 + 0.7/0.8 + 0.9/0.9 + 1/1$ $\mu_B(x) = \underset{\longrightarrow}{\text{low}} = \frac{1}{6} + 0.9/0.1 + 0.7/0.2 + 0.4/0.3$ $\forall x \ge \xi, \quad \mu_A(x) \lor \mu_B(x) = (0.4/0.7 + 0.7/0.8 + 0.9/0.9 + 1/1) \lor (1/6 + 0.9/0.1 + 0.7/0.2 + 0.4/0.3)$ $= 0.4/0.7 + 0.7/0.8 + 0.9/0.9 + 1/1 = \underset{\longrightarrow}{\text{high}};$ $\mu_A(x) \land \mu_B(x) = \underset{\longrightarrow}{\text{low}}; \quad \mu_A(x) = 7 \underset{\longrightarrow}{\text{high}} = \underset{\longrightarrow}{\text{low}}.$

 $(1911) \quad \mu_{A}(x) = 0.9/0.1 + 0.2/0.2 + 0.1/0.3 + 0.8/0.4$ $\mu_{B}(x) = 0.4/0.1 + 0.5/0.2 + 0.6/0.3 + 0.3/0.4$ $\mu_{C}(x) = 0.2/0.1 + 0.3/0.2 + 0.6/0.3 + 0.8/0.4$

とすると

MA(x) N (MB(x) VMc(x))

= 0.6/0.1 + 0.3/0.2 + 0.6/0.3 + 0.6/0.4

(MA(X) N MB(X)) V (MA(X) N Mc(X))

= 0.6/0.1 + 0.5/0.2 + 0.6/0.3 + 0.6/0.4

となり分配律は成立していない。

(151) $\mu_{A}(0) = 0.7/0.1 + 0.5/0.2 + 0.8/0.3$

2 1 3 2

 $\mu_A(x) \vee 1 = 0.8/1 + 1/1 (=1),$

 $\mu_A(\alpha) \wedge O = 0.8/0 + 1/0 (=0),$

となり定数演算の法則(一部分)は成立していない。

(何) $\mu_A(x) = 0.8/0.1 + 1/0.2 + 0.5/0.3$

 $x \neq 3 \times , 7 \mu_A(x) = 0.8/0.9 + 1/0.8 + 0.5/0.7$

t t 3. μA(x) V(7μA(x)) = 0.8/0.9 + 1/0.8 + 0.5/0.7 + 1/(=1)

 $\mu_{A}(\alpha) \wedge (7 \mu_{A}(\alpha)) = 0.8/0.1 + 1/0.2 + 0.5/0.3 + 4/0 (=0)$

より相補律は不成立とTF3.

《定理Ⅰ》fuzzy ブレードに対する順序関係 f t

 $\mu_A(\alpha) \leq \mu_B(\alpha) \iff \mu_A(\alpha) \wedge \mu_B(\alpha) = \mu_A(\alpha)$

と定義すれば、今の下で牛順序集合もなす、同様に会も

 $\mu_{A}(x) \leq \mu_{B}(x) \iff \mu_{A}(x) \vee \mu_{B}(x) = \mu_{B}(x)$

と定義すれば、当の下で半順序集合をなす、一般に当中会、

[性慎え] MA(A), MB(A) を凸fuzzy グレードとすれば MA(A)VMB(A), MA(A) MB(A), TMA(A) も凸である。

[性質3] 凸 f_{UZZY} 7" レード =対 レては 分配律 が成立する \uparrow . $M_A(x)\Lambda(M_B(x)VM_C(x)) = (M_A(x)\Lambda M_B(x))V(M_A(x)\Lambda M_C(x)),$ $M_A(x)V(M_B(x))\Lambda(M_C(x)) = (M_A(x)VM_B(x))\Lambda(M_A(x)VM_C(x)).$

((定理ス)) 凸fuzzy グレード は V , A A 下で半環 (詳レくは 単位元 t もっ可換半環) E なす.

(証明) V, Λ に関して分配的であり、またV, Λ の下で単位元 E もっ 可換半群をなす、単位元は、Vの下ではV(=0)、 Λ の下ではV(=1) である. なず, Δ fuzzy \mathcal{T} レード Φ = \sum_{i} O/ui, U i \in [0,1], はV, Λ に対する零元となる。

[性質4] MA(x), MB(x) も正規 fuzzy グレードとすれば

MA(x) V MB(x), MA(x) MB(x), 7 MA(x) も正規である。

[性質5] 正規 fuzzy グレード に対しては定数 寝 り 法則の
他方, すなりち

 $\mathcal{U}_A(x)=V=1$, $\mathcal{U}_A(x) \land 0=0$ が成立する.

「性質6]正規凸fuzzy グレードに対しては昭収律が成立する。

[†] $\mu_A(\alpha)$ は凸でまる世界はあるが、 $\mu_B(\alpha)$, $\mu_C(\alpha)$ は以ずしも 凸で好くても分配律は成立する。

((定理3)) 正規凸 fuzzy グレードは V , Λ ø下で分配束もなす。ただし,最大元= 1 , 最小元= 1 のである (1列参照。).

(1911) $J = \{0, 0.5, 1\} = x + 3$ $f_{uzzy} / V - F$ E $A_i = a_1/o + a_2/o.5 + a_3/I, i = 1, z, ..., z$

とする. ただし a1, a2, a3 e { 0, 0.5, 1 } とする. 各 fuzzy グレード Ai (i=1, ~, 27) は表1 のように表わされて11 3 ものとし, また、このうち正規凸 fuzzy グレードをAi) と記すことにすると、正規凸 fuzzy グレード Ai) の全体は図1 のような分配束をすす。

表1. Fuzzy7"L-fi Ai=a/0+az/a5+a>/1

(@ は正規凸fuzzy グレード) fuzzy 7"L-t" a, az az 1.5.5 000 .500 .5 1.5 (A3)0 .5 0 Å4 ٥ .5.5 0 1.50 .5 AR 0.5.5 (A23) 1 1 1 Αз .5.5.5 A14

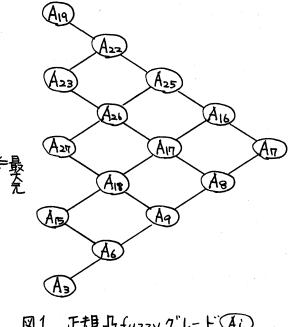


図1. 正規凸fuzzy 7"L-ド(AL) による分配束

各種のfuzzyでレード=対する名法則の成立,不成立をまとりてみると表えのようになる。ここで,〇は成立を表れし, メは一般=は不成立であることを示す。また,△は一部不成立であることを表れす(すけれち,定数演算の法則のうち ルA(a) VIキI,从A(x) Λ OキO となることを表れす)。なか 通常のfuzzy集合=対するグレード,かよび通常の集合=対する特性関数値(すなれち,又値グレード(0,1のみをとる))も対比のために付加しておく。

表 Z, 各種 $fuzzy 7^{r}L^{-1}$ (二寸する) 法則の成立, 不成立 (〇:成立, X:一般日は成立せず, Δ :一部成立)

グレード	巾等	安操	梵合	形収	分配	二重定	ド・モルかン	定教 演算	相神
任意のfuzzy グレード	0	0	0	X	X	0	0	D	X
正規fuzzy グレード	0	0	0	X	X	0	0	O T	X
Bfuzzy グレート"	0	0	0	X	0	0	0	Q	X
正規凸fuzzy 7"L-1"	Q	0	\circ	0	0	0	0	0	X
グレート" (連岸の fuzzy 集合=対码)	0	Ó	O	0	0	0	0	0	X
ス値か"レード" (通常の集合に対する)	>	0	0	0	0	0	0	0	Q

- (1) S は状態集合.
- (Z) So it 初期 fuzzy 状態 で'

 从So: S → [O, 1] [O, 1] (14)

するfuzzy×ンパーミップ関数 Aso で特性プロテルた状態集合Sにおけるfuzzy-fuzzy集合である。

(3) NA It fuzzy状能推移贸数で

 $\mathcal{M}_A(SiH/Si,ai) \in [0,1]^{[0,1]}, SiH, Si \in S, ai \in \mathbb{Z}$ (15) なる条件付 fuzzy メンバーラップ関数で表わされる これは状態 Si, 入力 ai が f えられ 下時に, 次の状態 SiH に対する fuzzy グレード も f える。

(4) FSSは最終状態の集合.

 $\mu_{B}(y) = V \left[\mu_{A}(x) \wedge \mu_{B}(y/x) \right].$

(参考) M_{So} , M_{A} が $\Box fuzzy$ グレードも取る場合, fuzzy-fuzzyオートマトンA は半環オートマトン $^{(7)}$ と取り, M_{So} , M_{A} が正規凸 fuzzy $7"レードも取る時, A は東オートマトン<math>^{(7)}$ となる. さらに M_{A} , M_{So} \in [0,1] の時, A は通常の fuzzyオートマトンとなる.

次日,fuzzy-fuzzyオートマトンAの状態才程式を求めょう。 今,初期fuzzy 状能がSoz",入力が $a_s \in \Sigma$ の時,次のfuzzy状態 S_1 はp.7の脚注の式より

 $MS_1(S_1) = V \left[MS_o(S_0) \wedge MA(S_1/S_0, a_0) \right]$ $S_0 \in S$ と与えられる。ここで演算 V, Λ は式(10),(11)で与えられる。

よって一般に、初期fuzzy 状態Soで、入力系列X=aoa1…an E Z* が与えられた時のfuzzy 状態Sntlは

$$\mu_{S_{n+1}}(s_{n+1}) = \tag{15}$$

V [μ_S(S₀)λμ_A(S₁/S₀, α₀)λμ_A(S₂/S₁, α₁)λ···λμ_A(S_{n+1}/S_n, α_n)]. s₀,S₁,ω, s_n∈S ε 5 ε 6 δ . ε 4 ξ η

MA (Sn+1/50, aoai --- an) €

V [MA(S1/S0,a0)MMA(S2/S1,a1)M…MMA(Sn+1/Sn,an)] (16). S1,;;,SneS と置き直すと,式(15)は簡単につぎのように表わせる。

 $M_{Snt1}(Snt1) = V [M_{S_0}(S_0) \wedge M_{A}(Snt1/S_{B_0}, a_0a_1...a_n)] \cdot (17)$ これより、 $f_{UZZ}y$ 状態 S_{Nt1} は初期 $f_{UZZ}y$ 状態 $S_0 \ge \Lambda \Lambda \chi = a_0a_1...a_n = 1$ 、 て表わされることから、式 (17) を

$$\mathsf{YP}_{\mathsf{A}}(s/S_0, \chi) = \bigvee_{s_0 \in S} \left[\mathsf{M}_{\mathsf{S}_0}(s_0) \wedge \mathsf{M}_{\mathsf{A}}(s/s_0, \chi) \right] \tag{19}$$

と表わす(心管を表わして 113).

これより入力条列 x E Z*が fuzzy-fuzzyオートマトンA = よて受理されるグレードも

$$f_A(x) = \bigvee_{s \in F} r p_A(s/s_o, x)$$
 (19)

と定義し、fA(X)によって特性プサラれた乙*エのfuzzy-fuzzy 集合もL(A)と記し、fuzzy-fuzzy 言語と名付ける。

次に、fuzzy-fuzzyオートマトン(簡単にffa)によって特性プロラれたfuzzy-fuzzy言語の閉包性も議論しよう。

《定理4》ffa A1, AzI=よるfuzzy-fuzzy言語をL(A1), L(A2) とすると

$$L(A) = L(A_1) U L(A_2)$$
 (20)

と は 3 ffa A が 存在 す 3.

(証明) $A_1 = (S^1, S_0^1, \mu_{A_1}, F^1), A_2 = (S^2, S_0^2, \mu_{A_2}, F^2) i = 対し$ $こ、 <math>A = (S, S_0, \mu_A, F)$ とする。ここで、 $S = S^1 \cup S^2$ 、 $F = F^1 \cup F^2$ とし、 μ_{S_0} 、 μ_{A_1} は以下の様 μ_{S_0} に与えられる。

$$\mu_{S_0}(s) = \begin{cases} \mu_{S_0^1}(s) & \dots & s \in S^1, \\ \mu_{S_0^2}(s) & \dots & s \in S^2. \end{cases}$$

$$\mu_{A_1}(s'/s, a) & \dots & s', s \in S^1, \\ \mu_{A_2}(s'/s, a) & \dots & s', s \in S^2, \\ \mu_{A_2}(s'/s, a) & \dots & s', s \in S^2, \\ \mu_{A_3}(s'/s, a) & \dots & s', s$$

((定理5)) L(A)=L(A1)n L(A2).

(z/)

(証明) S=S'xS2, F=F'xF2 とし,

MSp(S1,S2) = MS1 (S1) / MS2 (S2).

 $M_A((s_1',s_2')/(s_1,s_2),\alpha) = M_A(s_1'/s_1,\alpha) \wedge M_A(s_2'/s_2,\alpha).$

((定理 6)) L(A)=L(A1)*L(A2). (連接[†])

(管師)
$$S = S^{1} \cup S^{2}$$
, $F = F^{2}$, $\mu_{1} = V \mu_{S_{0}}(S)$, $i = 1, 2, i = 5$ $\mu_{S_{0}}(S) \wedge \mu_{2} - S \in S^{1}$, $\mu_{S_{0}}(S) \wedge \mu_{1} - S \in S^{2}$.

$$M_{A}(s'/s, a) = \begin{cases} M_{A_1}(s'/s, a) & ---s, s' \in S^1, \\ M_{A_2}(s'/s, a) & ---s, s' \in S^2, \\ M_{S_2}(s') & ---s \in S^1, \\$$

((定理7)) L(A) = L(A1)* (Kleene 闭包) (23)

(証明) S=S', F=F', So=Soであり

 $M_{A}(s'/s, a) = M_{A}(s'/s, a) \vee M_{C}(s').$

《定理8》ffaによるfuzzy-fuzzy 言语は補集合の下で用い ていなり.

(証明) L(A,λ)={×|μ_A(x)≥λ}と定義すると,もしλ,≦λ2 †4, Lzをfuzzy-fuzzy 言語とすると

連接: Li*L2 ⇔ 从Li*L2(X)= V[从L1(N) ∧从L2(ひ)], X=Nひ。

Kleen 闭包: L* = { E } U L U L*L U L*L U ---

ならば, $L(A,\lambda_1) \ge L(A,\lambda_2)$ となり, $L(A,\bullet)$ は非増加 関数となる。一方, $L(A,\cdot)$ は非滅サとなることより証明される。順序 関係 \ge は定理 Z 参照、 \ge にっけても 同様である。 ((定理 Q)) しきい値入をもっ言語を

 $xRy \Leftrightarrow \gamma \gamma_A(s/s_o, x) = \gamma \gamma_A(s/s_o, y)$ (25) と定義すると、Rは $\sum_{k=0}^{\infty} \eta$ 値関係とする、また、任意のZ6 $\sum_{k=0}^{\infty} \eta$ して

rpa (s/so, x2)

- = $V[rp_A(t/S_o,x) \wedge \mu_A(s/t, z)]$
- $= V \left[YP_A(t/S_0, y) \wedge \mu_A(s/t, z) \right]$
- = rpA(s/s., yz)

となり、Rは石合同関係となる。さらにRは有限個の同値類 をもっことよりいえる。

[参考] fuzzy-fuzzy オートマトンの言語学理能力は通常の決定性オートマトンと同じことから、fuzzy-fuzzy 集合の

概念をタイプ3の形式文法=適用しても同様はことがいえる. しかしながら,タイプスの文法=適用した場合=は言語生成能力は上が3、たとえば、fuzzyでロダフションが

(1) $S \xrightarrow{d} AB$, (2) $S \xrightarrow{\beta} CD$, (3) $A \xrightarrow{\delta} aAb$, (4) $A \xrightarrow{\Gamma} ab$

(5) $B \xrightarrow{r} cB$, (6) $B \xrightarrow{r} c$, (7) $C \xrightarrow{r} aC$, (8) $C \xrightarrow{r} a$

(9) D > 6 Dc, (10) D > &c.

ただし、 メ, B, Fはfuzzy グレードで、

d = 0.5/0 + 1/0.5 + 0.5/1

 $\beta = \sqrt{0.5}$

r = 1/0.5 + 0.5/1.

これより

 $L(G,r) = \{x \mid \mu_G(x) \ge r\} = \{a^ib^ic^i \mid i \ge 1\}$

となり、タイプ1言語が生成される.

(注)通常のタイプでZマスではタイプ1言語は生成できないことがらかっている(9).

参考文献

- (1) L.A. Zadeh: "Fuzzy sets", <u>Inform. Control</u>, <u>8</u>, 338-358, 1965.
- (2) W.G. Wee, K.S. Fu: "A formulation of fuzzy automata and its application as a model of learning systems", IEEE Trans. on SSC, 55C-5, 215-223, 1969.

- (3) L.A. Zadeh: "Toward a theory of fuzzy systems", in "Aspects of Network and System Theory" (ed. Kalman and Declaris), Holt, Rinehart and Winston, 1971.
- (4) E.S. Santos: "Maximin automata", <u>Inform. Control</u>, <u>13</u>, 363-377, 1968.
- (5) M. Mizumoto, J. Toyoda, K. Tanaka: "Some considerations on fuzzy automata", <u>J. CSS</u>, <u>3</u>, 409-422, 1969.
- (6) E.S. Santos and W.G. Wee: "General formulation of sequential machines", Inform. Control, 12,5-10, 1968.
- (7) M. Mizumoto, J. Toyoda, K. Tanaka: "Various kinds of automata with weights", J. CSS (in press).
- (8) L.A. Zadeh: "The concept of a linguistic variable and its application to approximate reasoning", <u>Inform</u>. Sci. (to appear).
- (9) M. Mizumoto, J. Toyoda, K. Tanaka: "N-fold fuzzy grammars", <u>Inform. Sci.</u>, 5, 25-43, 1973.