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The traces of Hecke operators in the space of

the 'Hilbert modular' type cusp forms of weight two.

By Hirofumi ISHIKAWA

Introduction.

The purpose of the present note is to calculate the
trace of Hecke operators acting in the space of the cusp forms"
of weight two belonging to a Hilbert modular group over a tot-
ally real algebraic number field. More generally, we carry it
out for a discontinuous groups acting on E%, which consists of
all z=(z“l———,énb with ZQEC, Im zd¥0. Namely, let G be the
product of n copies of GLZ(R)’ considering of G as a group of
transformations in Egnf Let ™ be a subgroup of G operating on
E;n discontinuously with a fundamental domain of finite volume.
Let G° be the connected component of the identity of G, and set
I‘Oz(*f\ G°. We denote by Z(G) the center of G and by 4 the

canonical homomorphism of G onto G/Z(G). It is assumed through
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out this paper that
(G.1) A(r°) is an irreducible subgroup of A(G°) such that
1(6°)/4(r°) is non-compact and of finite measure,
(G.2) 4 (r°) satisfies the assumption (F) in [8] .
We fix once for all an element a in G° such that — and ai"a"1
are commensurable, and denote by [T ' the subgroup of G generat-
ed by T and a. Let X be a linear character of I'. We assume
that X satisfies
(C.1) the kernel of [, of X in[ is of finite index in [T,
(C.2) X(e)=1 for £e 2(M) (="~ 2(G)).
Let k be‘an even integer. Let T=T("al) be the Hecke operator
acting on the space of cusp forms of weight k with respect to
[ and X; we denote above space by S(I",k,X). We calculate the
trace of T for the case k=2, n> 1. For the case of k> 2, the
trace of T has been explicitiy calculated in Shimizu [ 9]. Also
for the case of k=2, the trace has been calculated in our pre-
vious papers (4], [ 5] under the condition of n=1 or the condi-

tion that [~ has a compact fundamental domain in'ain.
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§1. A few facts from [5] .
Let H be the direct product of n complex upper half planes.

Let S(Fé)'be the set of all restrictions of the cusp forms in
S(r,2,%) to H. In this and next sections, from now on, we consi-
der that T is restricted to S(°). Let us recall a few facts
from C5]1. We fix once for all a fundamental domain D of 0 in
H. Let c1,—-~,Kh be all r?-inequivalent cusps belonging to D.
.gp denotes an element of G° such that gpooch. Set B=r‘°ar'°;
B‘;’={KGB; e =53, Y‘“‘;,)=irer°; K p=t,) and \‘;={xer§,“>; Y is a
parabolic}. Let H=Hx(R/2712)", D=D~(R/2nZ)® with elements (z,9)
*(¢=(¢m,———,¢m§) and we identify $D and ¢®+2n. Let G°=¢% (R/2n2)™
with elemepts (g,8), and it acts on the space (z,?) as

. A s ) PR AR Y
(g,B)(Z}P) = (gz,(4PL arg(cwéﬁ+d®}-év)). ép=(iﬁ,;ﬂ>'
C

Let Lg(ﬁ) be the space of measurable functions F(z,¢) on H tak-
ing values in € and satisfying the following conditions:
(1) F(¥(z,$))=X (¥) F(z,¢) for yer>,

) JO L .
(ii) SﬁF(z,cﬁ) F(z,f) dz d¢<Q, (dz=TTn1§—XE)%y— R d¢=ﬂnd4’w)y
i=1y i=1
(iii) “SRH/MPF(gp(Z’C#)) ax"-—-ax™0 (1=pg ),
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( ) q -1 1 i D -0
where Mp=§,%=(ﬂ y ===y )5 (gp Kgp) =z +f7, Xe ). Let kg be a

~

G°-invariant integral operator defined by a point pair inyari—
ant kernel: for s>0,

(1) glaiezt, o) =T {exn(-2/T1 6% ¢9)))

R L LA I i S A (yly ®y1+s/2 ]
L(iili'i)/Zf:7 J Kéi;i'd5/2{:7is 2+8 ((zi—z'w)/Zf:7?+§y

It is well known that the ring of all G°-invariant differential

operators is generated by

D9 >
s Ay e =
gymz Y a¢ﬂ

| > ~H_ @2, 3 3
(1.2) :;ai y &A=y (

y 22

(1<ig¢n).
Denote by M(m,)\) the subspace of Lg(ﬁ) consisting ofggsatisfy-
ing the following conditions
-é?—-wg); -f_—_1lm(j)87, 23‘”37:9“’5’ (1< i< n).

By the general theory, the eigenvalues of ks only depend on
(m,)); so we write the eigenvalue ol k, with hs(m,k). The foll-
owing proposition comes from {5, Proposition 1 & 2

PROPOSITION. 1 The eigenspace M(m,)) in which ks does
not vanish and its eigenvalue are in the following table.
The notations are defined as follows. In the series C, J is

denoted a proper subset of {1,n! and IV J =L1,ﬂ1;)}l)ranges
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Series m A ‘Isomorphlc Eigenvalue hs(m;D of |Trace
o o i to M(m,) ) | r'(1k:)2'r(1,){'(‘+5) of M
m°’ =2 iA"=0 s +3 : =)\n
B (1=isn) ' \! 5(7°) o |(8’r2 K 1+s) r(2+3) ) %o
) RS AN Rl
n-0,2 “ ; =)y T{( 82 c(s)/r(1+s))
c m(J>= 2 D =0 ‘M(p 2\3”)_}” }) r—-( )r- (S+? gd.)) t ’
(iEI) ' i 2 m')
(jed) | | ¢ Bﬂzsr(nﬁz?*(%)r(w)
: ; r(1+s)F(2+§)
p m=o0 [ ugl {_enoSLUE) T (R )yn|
(1<ign) | T(1+s) T (2+43) !
. w2, 9%  3°
over all eigenvalues of A = ( EQ ) satisfying M({ O, 2}

ay
{}?,QD#{O} expect A@Qo;j?:%?(@?—1). The series D appears only

) 1+S
if X is trivial. c(s)= % EF%ilE§:Zi .
2+%

We shall carry the action of T to M(2,0) by the isomorphism.
in the series B and extend it to Ls(ﬁ). We can expess T restri-
cted to M(m,)) by k_ in the following way;

(1.3) T(qu) =hs(mﬁ0_1j% Ks(z,¢,z',¢') F(z';¢') dz'dp?',
Kg(z,d,2',0 )= Z H’X(g) kg(z,d,8(2',4')).

But for s»0, the kefnel kg is of (a)-(b) type in the sense of

[7}, therefore KS is absolutely convergent and uniformly, if

(z,¢),(z',¢') are contained in some compact subregion of H.

But as the fundamental domain D is non-compact, the operator

KS is no}, generally, completely continuous.

-5-
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§ 2. An operator H,.
2.1. Now we shall define a series M. Put hs(g‘)=hs(2,&)
for simplicity. e=(eu1—--,ém) denotes a combination of em=0 or
2 (1§igh). For a complex number ¢ with Re(@)> 1, we set

2]

9oz h =20 T X (e)7] S (s)
Mp(zif 2t m=Cr) r\rog RSe(%”) Ra(s™) S

(2.1) xﬁ1{ b;@‘( (D 0) ;50 o 3) be (o B, By 88
i=
r«we(z,cp,z'.d;';a~)=Z:‘)(<¢,>‘1 SEz$) 24509,
‘where b(. @ u) exp(-{=1e (¢l+arg(cg3zd&du4)))(lm éﬂ 1 DJ)u
and that [ %ar°= \{Topu(disjoint union).

For simplicity, we may assume that (1=o§,g1=1, e=(O,-——,O)‘
in this‘and next paragrapg and treat M? mainly; we shall M,fﬂﬁ,
[ instead of M ,Y?OOX[“?. By a simple calculation, we get

M(z,2';500=22 4 'g<g> T (in 2% (In g2,5"),
8%\ i=1
where  a(y,y')=7] WiT=§O\yy"1)%+(Ayy"1)'%)(i\"(1+sz
and Nos = {(A®)=(a@ﬁdp1)} ge¢f2} . It follows from [8,No.1ﬂ
that a(y,y')< k, k being a constant independent of y,y' and s.
Thus, by the same way as in [8, Lemma 12], M converges absolu-
tely and is hclomorphic respect to 4 for Re(s)> 1. Further,

from the definition, it follows immediately that

-6~



M(gz,z';0)=X (g) M(z,z';0- ) for gei~ °.

2.2. In this paragraph, we shall obtain the analytic con-
tinuation of M to the domain Re(d)> %, minus the interval (%,]],
Now, we need some notations and propositions. We define Eisen-

stein series attached to the cusp tp by

}(g)_1% (In g ~1z)D0

(2.2)  E(z,M)=2. g L P

{816y \ I

By a simple calculation, the constant term of the Fourier expa-
‘nsion of Ep(z,a") is given

0 o B @1-gr
(2.3) Squli1y +_7Ty R (O

where Q@ (@)= ( L ““’““*’)nz; (Taet ¢ m/\c@l%) X(e)",
F(e) (megreneg(r’-rMe,/ & a8y

and gpq=1 or O according as p=q or not.

PROPOSITION 2. ‘qu(c’) may be continued holomorphically to
the domain Re(¢)> %, & (%,1].

This proof comes from {6, Theorem 3.1.1J with a little mod-
ification. Let F(z,5) be an analytic function of z,0~which is
automorphic with respect to rp, whose constant term of the

Fourier expansion at Cp(1sp_<_h) has the form :

c (U“)TT (Im g 12 P g (O“)T((Im & 1, D1-¢



86

For Y >0, we define the function F'(z,0) by

SF(Z ,)=(c (m)n(lm g5 2)" (v)ﬂglm g z)‘j’“‘,r
Y i=1 1= . :
L=
F(z,0) otherwise.

Then the Fourier expansion gives

LEMMA. If P ia a function as above, we have

(2.4) AN 2(EL(2,0), F (2,01))= 2 = Ll
— ~(401=1) 6+ c'-1 m(p— Gg-'
) i(@pq(O‘)dq(ﬁ“')Y . gpq(fr)c (o")Y

q=1. @ +7+ -1 e - 0

where d(Aq)= det(f?),)j,——fgh_1 being generators of Aq’ and
I%Llog)\%)(1gj<n),f§g1/n. Using above formula, we get thg foll=-
owing proposition by same arguments as in [ 6, Theorem 3.2.2,
4.2.1.-4.2.3,& 4.3.1.-4.3.5].

PROPOSITION 3. Ep(z,w') is holomorphic in the domain Re(o)
>% expect at point of finite number which are simple poles of
S’Pq('\r) on (%,1}, Moreover Ep and ?pq have a unique and finite
limit 0 tending to a point on the line Re(r)=4.

Now we come back to M(z,z';0~). The constant term of this

Fourier expansion at o is given by

2:5) T " atry0) +ﬁ’ "G, (9B vy o),

r(o- v \
P(y,y'; 0‘)—(—(—%%;(1'))11& ‘4(u +1) (((uéz INADD

+1)

—8—
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Using the Fourier expansion of M, we get

PROPOSITION 4. M(z,z';0~) can be continued holomorphically
to the domain Re(¢)> % minus points which are poles of 9 (%)
belongiﬂg to (%,1]. Moreover M(z,z';q) has a unique and finite
limit for any séquence{q~ﬂ) of complex numbers such that
Re(q)) > %, 1lim Re(07,)=3.

2.3, Now we shall construct an operator Hs' Let {#1,---4%3

be a basis of Mp and d(Mp): det(ﬂ?). The kernel of H  will be

defined by

e

(2.6) Hs<z,¢,z-.¢'>=<28—g,‘;ﬂl>§§ 00,7 (1)
xM'g(Z.q\.Z',&';%).

where e runs over all conbination of euLO or 2 (14i4n). By the
direct calculation, when z and 2! tend simulténeously towards
the cusp Kp’ the kernel Hs(z,¢,z',¢') is approximately equal
to 274y X(g) ks(z,@,g(z',:b')). It follows that

geBp

KX(z,¢ ,2',¢')= K (2,9,2",9") —Hs(z,?{z',¢')
is bounded for all (z,%), (z',0') €H; therefore an integral
operator K; turns to be completely continuous. Moreover, by

the same way as [4, 38 4.3-4.4), we see that, for FeLi(ﬁ) which

~9-
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~1) .
is an eigenfunction of 3—-.«)and A@, an eigenvalue of F for Kg

Y
is equal to that for Ks’ and that the image of K; is contained
in Ls(ﬁ). Considering the trace K¥ in Lg(ﬁ) with the same arg-
ument as [5,83%), we obtain
(2.7) tg= --(-1)nt1 + linhSMKg(z,Q,z,q) dz af.
syo D

Define the equivalence relation of elements of B by
(2.8) g~g' < g'=£¥ gy for yer®, e a(r®).
Let ( 8] denote an equivalence class in B containing g. Let
©(g) be the éroup of all ¥€® such that ¥ gg‘-1=8,g for some
£ez(™) and Fg (resp. Fg ;D*) a fundamental doﬁain of ™ °(g) in

© in fi*) (H* being a subregion of H

H (resp. r°(g) in H¥ ; [
obtained by substracting the neibourhood of each parabolic point

of I° from H, and A*=H*x(R/21Z2)"). We can rewrite

trf%*Ks(z,¢,z,¢)dzd¢=(2ﬁ)n21x (g)\ x_(z,0,2,0) dz.

(e),geB “F% °

For simplicity, we denote by A(g,s;H*) each term of the right

hand side of above formula.
&€3. An explicit formula for trace of T(lafl).

3.1. In this section, we shall calculate the trace of

-10-
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(" ar) in S([2,X). Firstly, we classify an element in B.
g B is of one of the following types; (i) ge Bn 2(G%), (ii) g
is elliptic, (iii) g is hyperbolic and no fixed point of g is a
parabolic point of ro, (iv) g is hyperbolic and one ofvthe fix~
ed points of g is a parabolic point, (v) g is parabolic, (vi) g
is mixed.

When g is of type (i),(ii),(iii) or (vi), A(g,s,H*) has
been calculated in [5, 5 4].

3.2, Case iv). We may assume that g leaves each of Q§ and
O fixed. For Y, Y's O, put F* {z (r exp((*ﬁﬁm)), log T -2:

for O(uj<1 (1§j<n),log(Y'"1% \sinéPD<u <log(¥ﬂlsin9ir1),0<§%at

9\'+1
-
A(g,s;H%)= (-8m2°)" X (g) !det(l )| 1og(yy'msinel‘r2w“ j(2+8)

JT""&“T? taneq {1+c(s)+(c(s) 1lﬂﬂtan29w
o “oi=1 (1+_§ an20Dy2+s/2 [ 24D ®

(1§i£n)§. Writing g (D @) Yﬂéb djyn s We have

(8(s)=s/(2+s)). Therefore, if nb1, A(g,s;H*) is vanishes.
3.3. Case v). Consider the contribution of the parabolic

classes in {Ta{” on . We ma aséu e = =1. i -
! 2%1 y me € =00 ,8,=1. In this para

graph, let us use the notations in [9,§3.4]. For Y> 0, we put

-11-
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. . . n 2 n .
F§={ 2=(xh Ty fD=211Vj}k(r%) for O§Vj<1,o<ﬂ 1Wﬂﬁ<Yj-
J= i=
Then we have

w= ), (2n)“‘)((g)§F* k (z,0,2,0) dz

SELP g , e ) szl
= 1lim (_41_[2‘2 )nz _d_ﬁ_g_)___ﬁ_g%an(r ( &) g 2 ))n +O(Y-1).
€0 ge Ll m(g) r(2+3)

By [9, Lemma 3.2}, the series has at most a pole of order 1 at
¢=0, By the assumption of n)>1,.it follows that w=0.
3.4. By a simple calculation, lim trB . HS(Z,Q,Z,Q)dz d#
820 D*
éO. Summing up the above results, we obtain
THEOREM 1. If n> 1, the trace of T(rar) in S(r,2,Y) is

given by the following formula :

(3.1) e 2(far) = §,(4m)7" v(M\F) X (g,)

D% (g) Lo (cyn —2ta
8 (r(g):2(M)) 2 (r : ™)

The notations used in this formula are defined as follows :

»

§|' 1 === if TalZ(G)#£$ g {1 === if X is trivial
'{O --- otherwise * 92710 --- otherwise '

g,6rarnz(a),

v(?“}n); the volume of a fundamental domain of F‘in'}n

relative to the invariant measure dgz,

Qg ; a complete system of inequiValent elliptic elements

in Maf with respect to the equivalence relation (2.8),

-12=~



d ; the number of right (" -cosets in [T al .

§4. The Hilbert modular groups.

bLet 5 be a totally real algebréic number field of degree
n over Q, and A=M2(§). We denote by 5}, E_, E; ,CV,CT and U the
ring of integers in 3, the group of units in 9, the subgroup
of EO containing of all totally positive units, a maximal order
in A, the idele group of A and the idéle x such that xyis a
'unit of O}for all finite prihe b, respectively. Writiné‘§@
(1<i<n) for the completion of §~with respect to the infinite
valuation.of § and A®=A%§SD, every xe¢ [ is made to act on E}n
by x(z)=(xm zq5,———,£nkén)) (f%ﬁA@ﬁ. Then | satisfies our
assumptions (G.i) and (G.2), and r‘“}n is not»cbmpact. Let UL
be ap integral two-sided ideal in (¥ of no¢m &, and f a linear
character of (G/UD*;;we consider ‘X as a character‘of V&(=€XE:];
xyeU# for all ?NLE> by means of a natural homomorphism of Vg
onto (0/y)*. Then § satisfies (C.1). We assume that X satisfies
(c.2). :j is a finite uﬁion of double cosets of U and A¥ in the

following way :

-1%=
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_n
J =\ 1 UxpA¥ (x)eVDL, h is the class number of ).
.’/‘\=
Put U3=x;1an and (=A% U, (1<A< h). Let S) be the space of all
cusp forms on an of type (I ,2,X) and S the direct produ t of
S4»===,8,. For an integral ideal® in%, wedenote by T(1) the
linear operator in S defined in (10,8 3.4]. Note that T(%)#0
only if 9 is a principal ideal and only if we can write 0\=q@~_
such that g is a totally positive element in &.
Combining Theorem 1 with [5,85.1 & 8,84], we obtain
THEOREM 2. Let 0 =q g~ be a principal ideal in ¢ with a
totally positive element g. The trace of T(") is given by
(4.1)  Tro2(1) =S () (2m)"%an 02/25 (2) Xa,)
- S(=1)"n 2"/ (E:ES)) T N(L) |
my
f(-1)P3 37 B o )

re W(r) a€J(t),o mod E,

The notations are as follows. h Do and 50 are the class

0!
number of E, the discriminant of 3 over Q and the zeta function
of §, respectively. g (07) =1 if UT=q(2)0,} for some queo,} and other-
wise $(1])=0. %2=1 if 7( is a trivial and otherwise §?=O. Tl runs

over all divisors ofd{. () is the set of all orders 0(taken up

isomorphism) in totally imaginary quadratic extensions of o .

_14_
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h( ) is‘the class number of ¢, and w({") is the index of Eo'in
the group of units in (. J(t) is the set of all ae(”such that

aé?! N(a)og‘=q .
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