<table>
<thead>
<tr>
<th>Title</th>
<th>Asymptotic Expansions for the Joint and Marginal Distributions of the Latent Roots of the Covariance Matrix (多変量統計解析)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>CHIKUSE, YASUKO</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1975, 231: 47-57</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1975-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/105450</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Asymptotic Expansions for the Joint and Marginal Distributions of the Latent Roots of the Covariance Matrix

Yale 大 筑 濑 靖 子

1. Introduction.

Let nS be an $m \times m$ matrix having the Wishart distribution $W_m(n, \Sigma)$. Let $\lambda_1 > \lambda_2 > \cdots > \lambda_m > 0$ and $\lambda_1 > \lambda_2 > \cdots > \lambda_m > 0$ denote the latent roots of S and Σ respectively. For large n and simple latent roots of Σ, it is known that the latent roots of S are asymptotically independently normal. We assume throughout this paper that all the roots of Σ are simple. In this paper an expansion, up to and including the term of order n^{-1}, is given for the joint density function of $\lambda_1, \ldots, \lambda_m$ in terms of normal density functions. Expansions for the marginal distributions of the roots are also given, valid when the corresponding roots of Σ are simple.

2. Expansions for the extreme root distributions.

We consider first the largest root λ_1. From the exact
expression for the distribution function of z_i by Sugiyama [15], [16], the distribution function of $X = (n/2) \sqrt{2(1/\lambda_i - 1)}$ can be written as

\begin{equation}
(2.1) \quad P(x_i < x) = \left[\frac{\gamma_m (p)}{\Gamma_n (n + p)} \right] \left(\det R \right)^{n/2} \mathcal{F}_1 \left(\frac{1}{2} n ; \frac{1}{2} n + p ; -R \right),
\end{equation}

where $p = \frac{1}{2} (m + 1)$, $\gamma_m (a) = \pi^{m(m-1)/4} \prod_{i=1}^{m} \Gamma (a - (i-1)/2)$, $R = \text{diag} \{ r_1, r_2, \ldots, r_m \}$ with $r_i = \left[n/2 + (n/2) \frac{y}{x} \right] z_i$, $z_i = \lambda_i / \lambda$, $i = 1, \ldots, m$ and \mathcal{F}_1 is a confluent hypergeometric function of matrix argument (see Herz [9], Constantine [5]). A system of partial differential equations (pde's) satisfied by the \mathcal{F}_1 function has been given by Muirhead [12]. Starting with this system it can be readily verified that $P = P(x < x)$ satisfies each of the m pde's

\begin{equation}
(2.2) \quad \frac{\partial^2 P}{\partial x^2} + x \frac{\partial P}{\partial x} + \left(\frac{2}{n} \right) \left[2x \frac{\partial P}{\partial x} + (1 + x^2 - \frac{1}{2} A) \frac{\partial P}{\partial x} - x \sum_{k=1}^{m} z_k \frac{\partial P}{\partial z_k} \right.

- 2 \sum_{k=1}^{m} z_k \frac{\partial P}{\partial x \partial z_k} \left. \right] + \frac{2}{n} \left[x^2 \frac{\partial P}{\partial x^2} + x (1 - \frac{1}{2} A) \frac{\partial P}{\partial x} \right.

+ \sum_{k=1}^{m} z_k \left(1 - \frac{1}{2} A - \frac{1}{2} (1 - 2A) \right) \frac{\partial P}{\partial z_k} - 2x \sum_{k=1}^{m} z_k \frac{\partial P}{\partial x \partial z_k}

\left. + \sum_{k=1}^{m} \sum_{j=1}^{m} z_k \frac{\partial P}{\partial z_k \partial z_j} \right] = 0
\end{equation}

and

\begin{equation}
(2.3) \quad \frac{\partial P}{\partial z_i} + \left(\frac{2}{n} \right) \left[\frac{1}{2(1 - z_i)} \frac{\partial P}{\partial x} + x \frac{\partial P}{\partial z_i} \right] + \frac{2}{n} \left[z_i \frac{\partial P}{\partial z_i} \right]

- 2
\end{equation}
\[+ \frac{x}{2(1 - z_i)} \frac{\partial^2 P}{\partial z_i^2} + (1 - \frac{1}{2} A_i) \frac{\partial P}{\partial z_i} - \frac{1}{2(1 - z_i)} \sum_{k=2}^{m} z_k \frac{\partial P}{\partial z_k} - \frac{1}{2} \sum_{j \neq i} \frac{z_j}{z_i - z_j} \frac{\partial P}{\partial z_j} = 0 \quad (i = 2, 3, \ldots, m), \]

where

\[A_i = \sum_{j \neq i} \frac{z_j}{z_i - z_j} \quad (i = 1, 2, \ldots, m). \]

We now look for a solution of these \(m \) p.d.e.'s (2.2) and (2.3) of the form

\[P = \Phi(x) + \sum_{k=1}^{\infty} (2/\pi)^{k/2} Q_k, \]

where the \(Q_k \) are functions of \(x, z_2, \ldots, z_m \). (That \(P \) possesses such an expansion follows from results in the next section.)

We substitute the series (2.5) into (2.2) and (2.3) and equate coefficients of powers of \((2/\pi)^{1/2}\) on the L.H.S. of to zero. Equating the coefficient of \((2/\pi)^{1/2}\) in (2.2) and (2.3) to zero and using the boundary conditions \(P(x, < \infty) = 1 \) and \(P(x, <- \infty) = 0 \), we have

\[Q = -\frac{1}{6} \Phi(x) \{ 2H_1(x) + A_1 H_0(x) \}, \]

where \(H_j(x) \) denotes the Hermite polynomial of degree \(j \) (see Kendall and Stuart [19], p. 155). Similarly, equating the coefficient of \(2/\pi^j \) in (2.2) and (2.3) to zero and solving
the resulting equations gives
\[Q_2 = -(1/\sqrt{2})g(x) \left[4h_2(x) + 18h_3(x) + 12A_1h_1(x) - 12h_5(x) + 9A_2^2h_3(x) \right], \]
where \(A_1 = \sum_{i=2}^{m} (z_i - 1)^{-2}, \quad B_1 = \sum_{i=2}^{m} (z_i - 1)^{-2}. \)

Coefficients of higher powers of \((2/\sqrt{n})Q_2\) in (2.5) may be obtained in a similar manner if required. The expansion is summarized in the following

Theorem 2.1. The distribution function of \(X = (2/\sqrt{n})Q_2 \) is \((1/\lambda, -1)\), when the latent roots of \(\Sigma \) are simple, can be expanded for large \(n \) as
\[P(x, x) = \Phi(x) + (2/\sqrt{n})Q_1 + (2/\sqrt{n})Q_2 + O(n^{-3/2}), \]
where \(Q_1 \) and \(Q_2 \) are given by (2.6) and (2.7) respectively.

Consider now the distribution of the smallest root \(\lambda_m \).

Since \(nS \sim W_m(n, \Sigma) \) we have
\[P(\lambda_m > y) = \left(\frac{1}{2\pi n} \right)^{\frac{m-1}{2}} \left(\frac{1}{\lambda_m (\lambda + n)} \right)^{\frac{1}{2}} \exp \left(-\frac{1}{2n} \text{tr} (\Sigma^2) \right) \text{det} \left(\frac{1}{\lambda_m (\lambda + n)} \right) \text{det} S \frac{d \lambda}{d \Sigma}, \]
Making the transformation \(T = \gamma^{-1} \Sigma - I \) it is easily seen that
(2.9) becomes
\[P(\lambda_m > y) = \left[\frac{1}{\lambda_m (\lambda + n)} \right] \text{det} \left(\frac{1}{2n} \Sigma \right) \exp \left(-\frac{1}{2n} \text{tr} \Sigma^2 \right) \cdot \Psi \left(\frac{1}{2} \lambda_m + \rho ; \frac{1}{2} n \Sigma \Sigma^2 \right), \]
where \(\Psi(a, c; R) \equiv \left[\frac{1}{
abla_n(a)} \right] \exp \left(-\lambda R S \right) \left(\det \frac{a-p}{\det (I+S)^{c-a-p}} \right) dS. \quad S>0 \)

The function \(\Psi \) is another confluent hypergeometric function of matrix argument (see Muirhead [13]).

Putting \(x_m = (n/2)^{1/2} (l_m/l_m - 1) \) and using the system of pde's satisfied by the \(\Psi \) function given by Muirhead [13] it can readily be shown that the distribution function of \(x_m \), \(P = P(x_m < x) \), satisfies each of the \(m \) pde's (2.2) and (2.3). The only difference here is that now \(z_i = \lambda_m / \lambda_{m-i+1} \) instead of \(\lambda_i / \lambda_1 \) as it was in the largest root distribution. Hence

Theorem 2.2. The distribution function of \(x_m = (n/2)^{1/2} (l_m/l_m - 1) \), when the latent roots of \(\Sigma \) are simple, can be expanded for large \(n \) as

\[
P(x_m < x) = \Phi(x) + (2/n)^{1/2} \Theta_1 + (2/n) \Theta_2 + O(n^{-3/2}),
\]

where \(z_i = \lambda_m / \lambda_{m-i+1} \) in \(\Theta_1 \) and \(\Theta_2 \) given by (2.6) and (2.7) respectively.

3. Expansion for the joint distribution.

The joint density function of \(l_1, \ldots, l_m \) can be
expressed in the form (see James [8])

\[
(3.1) \quad \mathcal{F}_{\frac{m}{2}}(\pm n)^{-\frac{m}{2}} \prod_{m} \frac{1}{\mathcal{F}_{\pm m} \mathcal{F}_{\pm m} \Gamma_{\frac{m}{2}}(l_{\pm m})} \Pi_{m} \left\{ \left(l_{\pm m} - \frac{m}{2} \right) \right\} \mathcal{F}_{\pm m}(-\frac{1}{2}mL, \Sigma^{-1})
\]

where \(p = \frac{1}{2}(m+1) \), \(L = \text{diag} (l_{1}, \ldots, l_{m}) \), \(\Sigma = \text{diag} (\lambda_{1}, \ldots, \lambda_{m}) \) and \(\mathcal{F}_{\pm m} \) is a hypergeometric function with two argument matrices. The function in (3.1) has been expanded for large \(n \) by G. Anderson [11] by expressing it as an integral over the orthogonal group. In [11] it is shown that the joint density function can be expressed as

\[
(3.2) \quad \mathcal{F}_{\frac{m}{2}} \prod_{i=1}^{m} \left[\lambda_{i}^{(m-n-1)/2} \frac{n}{2} \exp \left(-n\lambda_{i}^{2}/2 \right) \right] \prod_{i<j}^{m} \left[(\lambda_{i} - \lambda_{j}) / (\lambda_{i} - \lambda_{j}) \right]^{\frac{m}{2}} \mathcal{F}_{\pm m}
\]

where \(\lambda_{i} = (n/2) \frac{m}{2} - \frac{m(m-1)}{4} / \prod_{i=1}^{m} \left((n-i+1)/2 \right) \) and

\[
(3.3) \quad \mathcal{F} = 1 + (2n)^{-\frac{m}{2}} \sum_{i<j}^{m} \lambda_{i} \lambda_{j} (\lambda_{i} - \lambda_{j})^{*} (\lambda_{i} - \lambda_{j})^{*} + O(n^{-2})
\]

(Anderson did not show in general that the remainder term in (3.3) is of order \(n^{-2} \); this has been shown by the author in her Ph.D. thesis at Yale University in the more general case.) Now putting \(x_{i} = (n/2) \frac{m}{2} (\lambda_{i} - \lambda_{i})^{*} (\lambda_{i} - \lambda_{i})^{*} - 1 \)

\(i = 1, \ldots, m \), from (3.2) the joint density function of \(x_{1}, \ldots, x_{m} \) can be expressed as

\[
\cdots
\]
\[(3.4) \quad k_2 \left(\frac{1}{\pi} \right) \left[1 + \left(\frac{2n}{m} \right)^{m/2} \sum_{i \neq j} \frac{\lambda'_i \lambda'_j}{(\lambda'_i - \lambda'_j)^2} \right] + O \left(n^{-3/2} \right), \]

where

\[
k_2 = \left(\frac{n}{2} \right)^{\frac{m-1}{2} - \frac{m(m+1)}{4}} \exp \left(-\frac{mN}{2} \right) / \pi^{\frac{mN}{2}} \left(\frac{m}{2} + 1 \right) \frac{1}{\sqrt{2}},
\]

\[
F_1 = \prod_{i \neq j} \left[1 + \left(\frac{2n}{m} \right)^{\frac{m}{2}} \left(x_i \lambda_i - x_j \lambda_j \right) / (\lambda_i - \lambda_j) \right]^{\frac{1}{2}},
\]

and

\[
F_2 = \prod_{i \neq j} \left[1 + \left(\frac{2n}{m} \right)^{\frac{m}{2}} \left(x_i \lambda_i - x_j \lambda_j \right) / (\lambda_i - \lambda_j) \right]^{\frac{1}{2}}.
\]

It remains to expand \(k_2, F_1, \) and \(F_2\) in (3.4) for large \(n\). For example, by expanding the gamma functions for large \(n\) it follows that

\[
k_2 = (2\pi)^{-m/2} \left[1 - \left(\frac{2m}{n} \right) \frac{m}{2} \frac{2m+3m-1}{2m+3m-1} + O \left(n^{-2} \right) \right].
\]

The functions \(F_1\) and \(F_2\) can be easily expanded in terms of powers of \(n^{-1/2}\); however, these expansions, up to and including the terms of order \(n^{-1}\), are quite lengthy and are omitted here. Substituting these expansions in (3.4) gives an expansion of the joint density function of \(x_1, \ldots, x_m\).

The final result is summarized in the following Theorem 3.1. The joint density function of \(x_i = (n/2)^{1/2}(\lambda_i, \lambda_i - 1)\) \((i = 1, \ldots, m)\), where \(\lambda_1, \ldots, \lambda_m\) are simple roots of \(\Sigma\), may be expanded for large \(n\) as
\[(3.5)\quad \prod_{i=1}^{m} g(x_i) \cdot \left\{ 1 + \left(\frac{2}{n}\right)^{\frac{1}{2}} \sum_{j=1}^{m} P_{1i}(x_i) + \left(\frac{2}{n}\right) \left(\sum_{i,j} \lambda_{ij} \right) \right\} \]
\[+ \sum_{i,j} \lambda_{ij} P_{ij}(x_i) P_{ij}(x_j) + \frac{1}{2} \sum_{i,j} \lambda_{ij} A_i A_j \right\} + O\left(n^{-3/2}\right) \}
\]

where

\[(3.6)\quad P_{1i}(x) = (1/6) \left\{ 2 H_3(x) + 3 A_i H_1(x) \right\},
\]
\[(3.7)\quad P_{2i}(x) = (1/12) \left\{ 4 H_4(x) + 4 H_2(x) + 12 A_i H_2(x) - 18 A_i H_2(x) + 9 A_i^2 H_2(x) \right\},
\]

\(H_j(x)\) is the Hermite polynomial of degree \(j\), and

\[(3.8)\quad A_i = \sum_{j \neq i} \lambda_{ji} / (\lambda_i - \lambda_j), \quad B_i = \sum_{j \neq i} \lambda_{ij} / (\lambda_i - \lambda_j)^2.
\]

Note that \(A_i\) is the same as in (2.4).

By integrating out the other variables in (3.5) an expansion of the marginal density function of \(X_i\) can be obtained.

Corollary. The marginal density function of \(X_i = (n/2) \left(1; A_i^2 \right)\),

where \(A_i\) is a simple root of \(Z_i\), may be expanded for large \(n\) as

\[(3.9)\quad g(x_i) \cdot \left\{ 1 + \left(\frac{2}{n}\right)^{\frac{1}{2}} P_{1i}(x_i) + \left(\frac{2}{n}\right) P_{2i}(x_i) + O\left(n^{-3/2}\right) \right\},
\]

where \(P_{1i}(x_i)\) and \(P_{2i}(x_i)\) are given by (3.6) and (3.7) respectively.
The expansion (3.9), in the cases $i=1$ and m, agrees with the expansions for the extreme root distributions given in the previous section. Sugiyura [14] has also obtained (3.9) using another method.

Asymptotic moments of l_i can be obtained from (3.9); we obtain

\[E(l_i) = \lambda_i + A_i \lambda_i / n + O(n^{-2}), \]

\[\text{Var}(l_i) = 2\lambda_i^2 / n - 2\lambda_i B_i / n^2 + O(n^{-3}), \]

\[\kappa_3(l_i) = 8 \lambda_i^3 / n^2 + O(n^{-3}), \quad \kappa_4(l_i) = 48 \lambda_i^4 / n^3 + O(n^{-4}), \]

where $\kappa_3(l_i)$ and $\kappa_4(l_i)$ denote the third and fourth cumulants of l_i and λ_i, B_i are given by (3.8).

From (3.5) we obtain

\[\text{Cov}(l_i, l_j) = 2 \left(\lambda_i \lambda_j / (\lambda_i - \lambda_j) \right)^2 / n^2 + O(n^{-3}). \]

These expansions agree with results obtained by Lawley [11] without using the asymptotic normality.

Acknowledgment: This is a portion of the author's Ph. D. thesis written at Yale University and supervised by Professor Robb J. Muirhead.
REFERENCES

