可換環上のある Galois object について

岡山大 理 中島 惇

§1. 序.

ここでは、[1] K かいて定義された可模環上の Galois object E ある条件のもとで構成し、まら K Galois objectの Frobenius 性について差之る(定理2,5)。

はじめにここで使われる定義について述べる。

定義 1. SER-algebra とする. Som left H-module algebra であるとは, Som left H-module であり, 次の条件を満足するときをいう.

(i) $h(xy) = \overline{\Sigma}_{(A)}(h_{u},x)(h_{w}y), \quad (h \in H; x,y \in S).$

(ii) $k \cdot 1 = \varepsilon(k) \cdot 1$.

定義2. SER-algebra とす3. Stirright H-comodule algebra とは、R-algebra homomorphism α : $S \longrightarrow S \otimes H$ で次の条件をみたすものが存在すると意をいう.

- (i) $(\alpha \otimes 1) \alpha = (1 \otimes \Delta) \alpha$.
- (ii) $(1 \otimes \varepsilon) \alpha = 1$.

S & Galois H-object T & 3 & II. S & right H-comodule algebra T & V, ± 5 K

- (iii) S 1 faithfully flat R-module.
- (iv) $S \otimes S \ni x \otimes y \mapsto (x \otimes 1) \otimes (y) \in S \otimes H \quad f''' R$ algebra isomorphism $T'' \not T_3 \not X \not T_6 \vee j$.

Hをf.g. projective R-module かっ antipode 入をもっとしよう (このような Hopf R-algebra を finite Hopf R-algebra と呼ぶことにする)。 このとま R-module Sに対して次の自然な同型がある。

 $I+om_R(S,S\otimes H^*)\cong I+om_R(S,I+om_R(H,S)\cong I+om_R(H\otimes S,S)$ ただし $H^*=I+om_R(H,R)$ とする。 この同型により次のことは容易にわかる。

S: right H^* -como-dule algebra, $d(x) = \sum_{(x)} \chi_{(1)} \otimes \chi_{(2)} \in S \otimes H^*$

 \Rightarrow S: left H-module algebra, $h \cdot x = \overline{\Sigma}_{(x)} x_{u}, \otimes h x_{o},$ $(X \in S, h \in H).$

S: left H-module algebra \Rightarrow S: right H*-comodule algebra, $d(x) = \overline{\Sigma}_{i=1}^{m} h_{i} x \otimes h_{i}^{*}$, \vdots : $\Gamma \{h_{i}, h_{i}^{*}\}_{i=1}^{m} IJ$ H \circ R-projective coordinate system

以下において、night H*- comodule algebra E left H-module algebra とみる場合、又は逆に left H-module algebra E right H*- comodule algebra とみる場合は上記の見方で考えるものとする。

定義3. Galois H* object S o left H-module と L T H と同型であるとま、S E Galois H-algebra という。

§ 2. Galois H-object 9 構成.

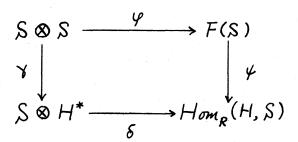
とする。

 $\varphi: S \otimes S \longrightarrow F(S)$

補題1. HE finite Hopf R-algebra, SE faithfully flat R-module とする。このと至次は同値である。

- (i) SII Galois H*-object 7" Is 3.
- (ii) Sは上で定義したタが同型を与えるようなH-module algebra である。

意正8月. SEH-module algebraとし次の国式を考える.



と & が ieomorphism であることとは同値、よって前に注意 した right H=comodule と left H-module の見すから、 補題は成立する。

まてHopf R-algebra H に対して次のような条件を考える。

(F) H is finite, commutative, cocommutative Hopf algebra 7" 5", $HH \cong HH^{\sharp}$ 5" $K \stackrel{?}{=} \stackrel$

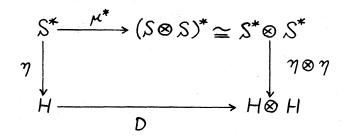
S E Galois H-algebra と すれば、 $HS \cong HH \cong HH^*$ より H-module isomorphism $\eta: S^* = Hom_R(S,R) \longrightarrow H$ が 存在する。 従って次の H-module homomorphism を得る:

$$D: H \xrightarrow{\eta^{-1}} S^* \xrightarrow{\mu^*} (S \otimes S)^* \cong S^* \otimes S^* \xrightarrow{\eta \otimes \eta} H \otimes H$$

 $(f \cdot g)(x) = (f \otimes g) \Delta(x) D(1)$ $(f,g \in H(D), x \in H)$. さらに次が改立する

定理2. Hは条件(F)を満足するものとする. SがGalois H-algebra ならば、Galois H*-objectとしてS≅H(D)である.

証明. Dの定義から,次の図式は可換である.



従って $\eta^* D^* = \mu(\eta^* \otimes \eta^*)$. $H(D) の 乗 法 は D によって きまり, <math>\eta$ は H-module isomorphism た"から, η^* : H(D) S は H-module isomorphism かっ R-algebra isomorphism である. よって定理は証明 ェル た.

定理2ではHE finite, commutative, cocommutative

Hopf R-algebra とし、HH = HH*のもとで、Galois Halgebra E構成した。 そこで HH= HH* なる Hopf algebra

ニッツて巻之てみる。 Larson-Sweedler [3] によって
(一般65には Endo [2]、 Pareigis [5])次のことか知られて

∨ 3.

H E finite Hopf R-algebra とすると、left H-module として H* \cong H \otimes P, P II projective rank 1 \circ R-module. 従って Pic(R)=0 ならば、left H-module として H* \cong H である. 同様にして H* * H* \cong H* H(ここで H \cong H * とみて H*-module structure $E \wedge H \otimes I$). Pic(R) \neq O で あっても次のような具体的な例がある。

- (1) G E 有限 P ベル群, RG E その group sing と t 3. このとき RG は自然 5 構造で、finite、commutative、cocommutative Hopf R-algebra と t 3. ころに RGmodule として $(RG)^* \cong RG$ で t 3.
- (2) R E GF(P) ($p \neq 0$, 素数) 上 n algebra $n \in H = Rd_0 \oplus Rd_1 \oplus \cdots \oplus Rd_{p-1}$, $\{d_0 = 1, d_1, \cdots, d_{p-1}\}$ if R—free basis, $n \in S$ $n \in$

$$d_{i} d_{j} = {i+j \choose i} d_{i+j},$$

$$\Delta(d_{n}) = \overline{\sum}_{i=0}^{n} d_{i} \otimes d_{n-i},$$

$$\mathcal{E}(d_{i}) = \delta_{i,0},$$

$$\lambda(d_{i}) = (-1)^{i} d_{i}.$$

 $d_{*}^{*} \mathcal{E} d_{*} \mathcal{O}$ dual basis $\mathcal{E} \mathcal{T} \mathcal{S} \mathcal{E} \mathcal{T}$, $H^{*} = R d_{*}^{*} \oplus R d_{*}^{*} \oplus \cdots \oplus R d_{p-1}^{*}$ 13 finite, commutative, co-commutative Hopf R-algebra

である。 $f = \sum_{i=1}^{p-1} d_k^*$ とかくと、f は H^* の H-module としての free basis になる。 実際 $k_i = \sum_{j=1}^{p-1} r_{ij} d_j$ $(r_{ij} \in R)$ とかき、 $k_i f = d_i^*$ となるんにもれめることができればよいが、これは r_{ij} についての連立方程式とみたとき、その係数の行列式がGF(P) の non-zero element であることよりわかる。 従って $HH \cong H^*$ である。

LT" \$ i 3 th k Hopf R-algebra k > w 7, 7 9 Galois object 1]

(1) の場后. S or commutative Galois (RG)*-object.

S は Galois group はをもっ Rのからア杉はた.

(Chase-Sweedler[1]).

(2) 0 \$5. S or commutative H-algebra. $\Leftrightarrow S \cong R[X]/(X^p-\alpha) \ (a \in R).$

 $(y^p \in R).$

§ 3. Galois object a Frobenius 4.

多2にかいて考立た別にあいては、H*H*=HH+式立している。 H mantipode をもてば、H* も antipodeをもら、徒ってH*I Galoio H*-object となる。 このことより Galoio H*-object が Rのどんな なんであるか を調べるには "H* が Rのどんな なたであるかを調べるには "H* が Rのどんな なたであるか?" ということが一つの目安になるものと見かれる。 例えば

HE finite co-commutative Hopf R-algebra, SE

commutative Galois H*-object & 73. 29 & # H* 5"

reparable R-algebra 7" to th 15", S 13 separable R-algebra

7" to 3. - 12 K Galois object 5" separable R-algebra 7" to

7 to 7 to 7 to 7 to 7 to 7 to 7.

1311. GE位数nの有限群, nがRの unit element である とする. このとも group ring RG は sleparable R-algebra であるが、Rのガロア松大 たならないことがある.

すなめち、R-module z17 S# $H = S \otimes H$ (S#HのえをA#Aとかくことにする。), S#Hにかける積を

 $(x \# g)(y \# k) = \sum_{(g)} x(g_{ij}) \# g_{ij}k$ $(x, y \in S; g, k \in H)$ と定義すれば、S# H は R-algebra である. また S は $(s \# k)(x) = s(kx) (s, x \in S; k \in H) によって left S# H$ module である.

定理3 (Chase-Sweedler [1]). H E finite co-commutative Hopf R-algebra, S E commutative R-algebra とす3. ニのとき次月同値である。

- (i) S it Galois H*-object 7" \$ 3.
- (ii) S it left H-module algebra 7" to 9 $S \# H \Rightarrow s \# h \longmapsto (x \longmapsto s (hx)) \in Hom_R(S, S)$ 0" R-algebra isomorphism 7" to 3.

定理4. Stommutative R-algebra で、R-module として f.g. projective faithful であるとする。このとまたな同値である。

- (i) SIR , Frobenius that " Is 3.
- (ii) S* = Hom, (S, R) II free S-module 7" to 3.
- (iii) Homa (S. S) It free S&S-module 7- 53. ::

 $Y: S \otimes S \Rightarrow s \otimes t \longmapsto \sum_{i=1}^{n} s(h_i t) \otimes h_i^* \in S \otimes H^* \quad (s, t \in S)$ $t \in U \text{ his, } h_i^* \text{ in } H \cap R \text{-projective coordinate system.}$ $L \cap V \in S \rightarrow S \otimes H \cap S \otimes S \text{-module } L \cap S \rightarrow S \in H$

 $7: S \otimes H \longrightarrow Itom_{R}(S, S)$

はSOS-module homomorphism である。 これらのこと より次の定理を得る。

定程5. S E commutative R-algebra, H E finite, co-commutative Hopf R-algebra 7° , H*H \cong H*H* 7° あるとする. 292386 Galois H*-object ならば、SIRの Frobenius that 7° ある.

References

- [1] S. U. Chase and M. E. Sweedler; Hopf algebras and Galois theory, Springer Lecture Notes 97, 1969.
- [2] S. Endo; Hopf algebra の構造について、数理解析研究所 講究録 94, "Derivations & W Algebra の Cohomology 研究を 報告集(1970), 76-92.
- [3] R. G. Larson and M. E. Sweedler; An associative orthogonal bilinear form for Hopf algebras, Amer. J. Math. 91 (1969), 75-94.
- [4] A. Nakajima; On generalized Harrison cohomology and Galois object, Okayama Math. J. to appear.
- [5] B. Pareigis; When Hopf algebras are Frobenius algebras, J. Alg. 18(1971), 588-596.
- [6] M. E. Sweedler; Hopf algebras, Benjamin, New York, 1969.
- [7] K. Yokogawa; On S $_{
 m R}$ S-module structures of S/R-Azumaya algebras, to appear.