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Correctness of Co-operating Sequential Progfams
Nobuo 'Saito
( Electrotechnical Laboratory )
1. Introduction
A modern computer system is usually operated in a multi;programm-
ing or a multi-proceséing environment, In such a system, a number
of sequential programs are concurrently executed, either as a user
program or as a control program of an operating system. Some of
these sequential programs éonstitute one group for the purpose of
carrying on a given task or a job., Exchanging control and information
data, %hey co-operate with each other to accomplish their purpose.

Programs of this group are called co-operating sequential programs[1].

Since there are many independent control flows in this kind of programs,
it is very difficult to write correct programs. |

Various methods for proving correctness of a given program have
been developed. It originates with Floyd[2], and most of these methods
aim to prove assertions about programs with single control flow.

This paper proposes one approach to extend these methods so that
assertions about co-operating sequential programs can be proved., We
will‘introduce an execution graph which 1s constructed as a direct
product of given sequential programs., Each node of an execution graph
is considered to represent a state of given co-operating sequential
programs, and each arc is considered to represent a state transition
which occurs in one computation of given programs. We place some

assertions at each node of an execution graph. Assume that, for any

arc in an execution graph, assertions, which are placed at its start
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node with the function of the corresponding state transition, implies
assertions placed at its end node. Then, we can conclude that
assertlions placed at any node will be satisfied provided that a come
putation gets to this node.

There are many problems to be considered when using an execution
graph. These problems arise because of multiple control flows in
co-operating sequentiai programs.,

Usually se#eral kinds of synchronizing primitives are used in
order to synchronize the flows of control among several sequentiél
programs, Various kinds of synchronizing primitives have been proposed,
and we should choose such kinds of primitives that are suitable for/
a formal treatment.

Since an execution graph is mechanically constructed as a direct
product of the member of given sequential prﬁgrams, some of its nodes
and arcs may not be realized in any computation because of the logical
combination of execution conditions. Therefore, we should determine
the realizability of nodes and arcs so that we can neglect all the
unrealizable nodes and arcs in the proving process,

Two kinds of anomallies of the dynamic behavior may appear in
the execution of co-operating sequential programs. One is a deadlock,
and the other is an effective deadlock. They will be defined by
using an execution graph. Both of them are caused by the loglcal
structure of given sequential programs, and we should carefully

construct programs so that neither deadlocks nor effective deadlocks

exist.
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This paper will discuss several aspects of the above mentioned
problems with relation to the use of an execution graph in the verifi-

cation of given co-operating sequential progpams.

2, Execution Graph

Consider a set of sequential programs each of which is represented
by a flow chart. Given a flow chart FC , 1ts flow graph is trans-
formed from F, by assigning a node to each branch of F, and connect-
ing two nodes with an arc provided that there is a common box between
the corresponding two branches in FC . An example of a flow gravh

1s shown in Figure 1.

flow chart flow graph
start
C :3 ny
n
1
4]
f no
ns
ny
p(y) ny |
F 1
T
n3 n3
y := g(y) Y
1 n5 :
z := h(y) L————————~
n
\ 5
end

FIG. 1 flow chart and flow graph
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Let

S.= ( P1, P2, ««e5 Py ) be a set which consists of M

sequential programs. Each Py (1S 1 &M ) has its flow graph

with the following elements.
ny: node set ( including uy nodes ),
aj: arc set ( including vy ares ).
Voleai,o(:\)——»V’ (V,Y’Gni)

where ) 1is called a start node of o , -

and Y “1s called an end node of ol .

Definition 2.1 ( execution graph )

Fof a given set S of sequential programs, its execution graph ES

is defined as a directed graph which has the following elements.

N:

M
node set ( including T u; nodes )

i=4
Each element of N is labeled by an M-tuple <\M,Ve..,,1)H>>,
where for all 1 (1 = 1 & M) }); belongs to ny.
arc set

Each element of A should satisfy the following two conditions,

Condition 1

!

VaeA, a: <V.L,\J;,"'1VM> 4 <V.L,,V1’) ._.}VM>

<= o Sk Q1 FTkEM
Vi X \);
Yy = Vg’ (1 & §€M except k )

!
<YiVa,..., Vuris called a start node of a, and <Vy,Vi, .-+, VH >

is called an end node of a.

Condition 2

7 ) . . /
YacA, a:<Vi V2, o+, Vu>—> <YV, Vi, , Vu >

P if Ye ¥ Vi, then

I d € a, o i Ve—>Vr o ( Ve ,\)k’é n )
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Definition 2.2

s

A flow graph of each Py of S has an initial node iie ny

and a set of terminal nodes t;€n; . For an execution graph Eg of S,

its initial node:and terminal nodes are defined as follows.

&Y Vs,---,Vu> € N is an initial node of Eqé> Wk (lsksM) Vi= 1,

V() YaDEN 1s a terminal node of Eg<> V k (1¢ksM) V¢t

Some control programs of an operating system may continue its
execution indefinitely, and fhey haﬁe neither initial node nor terminal
node, In this case, an initial node and a terminal node are not
defined in an execution graph. An example of an execution graph

is given in Figure 2,

E
S= (P, P, ) S
1 2 4
P14 Py 1 initial = e ) 1 ‘6
node ) —
Y A \
2 ) 2 2 3 >
3 | 3 3 .
/\ u | * , \ T
5 6 5 ¥ 5
terminal
node

FIG. 2 Example of an execution graph
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Let's consider the meaning of an execution graph ES of co-operating
sequential programs S = ( P1s Pps «e. Py ). Assume that the execution

of each statement in S should be an indivisible operation. Since

an execution of a statement is assumed nol to be disturbed by other
statements executed concurrently, it 1s guaranteed that the semantics
of a statement in co-operating sequential programs is just the same
as the semantics defined in a single sequential program. Given this
assumption, a node of Eg represents an instance of the combinations
of the intermediate execution locations of all the sequential programs
of S, 1.e. it represents one execution state for a computation. The
node set N of E5 contains all the possible combinations. An arc of
ES represents a single execution of a statement in one of the se-
quential programs of S, and a directed path between an initial and

a terminal node defines a linear representation of an execution se-
quence for one possible computation in S.

Proposition 2.1 ( Verification Theorem )

Consider an execution graph E_ of given co-operating sequential

S
programs S, For each node n € N, assign a key assertion Qn .
Each arc a<¢A is given its semantics Sa according to the cor-
responding single statement. _
If for ahy arc a: j—->k (aeA), the verification condition
9 AS, D a
is provedibthe key assertion Qn assigned to a node n€ N will be
satisfied provided that there exists a computation which gets to

this node,
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The verification theorem 1s an extension of Floyd's method,
and we should consider the special features of co-operating se-

quential programs when applying this theorem.

3. Synchronizing Primitives

In co-operating sequential progréms, several kinds of "primitives"™
are usually used sO as to synchronize timing of the execution of
specific statements. The word "primitive" is a synonym of an executive
macro statement or‘éf a supervisor mééro statement. Thevoperating /
system implements functions of primitives withbﬁt disturbing users'
behaviors; and so primitives'can:be‘uséd és ofdinary statéments.
In the formal treatment of such a ﬁrihitive,‘we consider only'its
function, without taking account of its implementation method.

In this paper, the semaphore system proposed by Dijkstré[l] is
selected to use as a synchronizing primiti&e. JOﬁe féasoh’is that
the function of the semaphore system covers most of the functibhévy
of other synchronizing primitives, and the other reasoh ié thatzﬁﬁéh
semaphore system is suitable for the formal analysis.

In the semaphore system, wé can define aﬁy ﬁumber of special

purpose integer variables called semaphore variables. Two primitives,

P-operation and V-operation are prepared as operations to semaphore
variables. Each of these primitives takes a semaphore variable s
as its argument. Their function is as follows.

P-operation : P(s)

(1) Decrease s by one,
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(2) If s 1s non-negative, continue the computation,
(3) If s 1is negative, hang-up the computation and lie down
in‘the queue of the variable s.

V-operation : V(s)

(1) 1Increase s by one.
(2) If s 1is non-positive, pick up one waiting program in
the queue and activate it. .

Since they are primitive operations, their executions are

indivisible, After an initial value is given to a semaphore variable s,

a user is allowed to access s only through P(s) and V(s) statements.

An example of co-operating sequential programs with P- and

V-operations is given in the following.

Example 3.1

.o

]
-

-

begin semaphore sS; s

parbegin
programl: begin
labell: P(s) ;

critical section 1 ;

V(s) ;
remainder of programl ;

go to labell

-8



program2: begin
label2: P(s) ;
eritical section 2 ;
V(s) ;
remainder of program2 ;

go to label?2

end
garend
end ;

ar————

In the above example, a semaphore variable s 1s used so that
the executions of critical sections exclude each other in time.

Habermann proved that the following relation always holds for
the semaphore system [3].

Theorem 3.1

The effect of executing P(s) and V(s) is equivalent to the rule
that the relation

ne(s) = min [ np(s), C(s) + nv(s) ] (1)
is invariant for execution of P(s) and V(s),
where

np(s): how many times P(sj was executed;

nv(s): how many times V(s) was executed;

ne(s): how many times P(s) was passed,;:, i.e. how many timeé

a program was enabled to continue its computation;

C(s): an initial value of a semaphore variable s.
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L, Realizable and Unrealizable Nodes and Arcs
4-1 For Co-operating Sequential Programs with P- and V-operations

When co-operating sequential programs are written by using
P- and V-operations, the relation (1) given in Theorem 3.1 can be
applied to determine the'realizability of nodes and arcs. In order
to know if the relation (1) holds, we need to count np(s), nv(s)
and ne(s) in given programs.

When each of the sequential programs 1s a straight line program
(i.e. a program without any conditional branch), it is easy to determine
the above mentioned values,

Example 4,1

(1) flow graph (2) execution graph
program 1 program 2 . c1P(S)ep 03V(§)cu cs
by . : :
1 P(S)
B(3) P(S) s
b2 021
b
Y \ 3
b c
’ 3 V(s)
V(s) V(S) by
by ey
bg /
b5 (251

FIG. 3 Unrealizable nodes and arcs of an execution graph

for a mutual exclusion problem
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Consider the program given in Example 3.1. The flow graphs
for programl and program?2 are shown in Figure 3-(1), and its execution
graph 1s shown in Figure 3-(2).

Consider a node < b,,c, > in the execution graph. Assume that

programl executed its loop n times and program2, m times. Then,

C(s) =1 ;

np(s)‘= n+m+ 2 3
nv(s) = n +m ;‘
ne(s) = n + ﬁ'+>2’;

hold. Since’

ne(s) % min [ np(s), C(s) + nv(s) ],
the relation (1) does not hold, and the node <{b,, c,> 1s not realiz-
able,

Applying the same method to the other nodes, we will easily -
come to the conclusion that the nodes and arcs in an interior part
of a shaded square in Figure 3-(2) cannot be realized in any computation.
(Note that the nodes and arcs on the edges of the tquire are realiz-
able.)

When a sequentiai program includes several conditional ‘branches,
it is rather difficult to determine the values of np(s), nv(s) and
ne(s). In this kind of program, the case analysis may be useful

for calculating such values,

-11l-



4-2 For Co-operating Sequential Programs without P- and V-operations

Consider co-operating sequential programs which do not have any
P- and V-operation. Each of the sequential programs may have several
conditional branches, and each branch exit is associated with an
execution condition. Since the conjunction of the execution conditions
for branch exits of the sequential programs is not always true, there
may be some unrealizable nodes and arcs in its execution graph.

Values of variables which appear in a predicate of a conditional
branch of a sequential program may be varied by any other sequential
program. Therefore, an execution condition for a branch exit must
carefully be determined.

In order to describe such an execution condition, we will intro-
duce the following modality [4].
Definition 4.1

(1) modal operator [J:

Op: it 1s always true that p.
(2) modal operator :

O p : it was true some time in the past that p.

Now let's consider the following example, and use the above
modal operators to determine the realizability of nodes and ares.

Example 4,3

The co-operating sequential programs shown in Figure 4 are
a solution to the mutual exclusion problem. (Strictly speaking,
it 1s not a correct solution.) They do not use any P- and V-operation.
The value of cl is varied only in Pl, and the value of c¢2 is varied

only in P2, For each branch, its execution condition with modal

-1l2-



Pl:

FIG.l

by ¢ OQ(cl=1)

D (e1=0)
b3A{ (c2=0)

c2=0/?

Fb L [Q(c1=0) cl =1
4 Ao (e2=1) [ b7

Dgcl=13
Critical Section 1| [AQ(c2=0

bs ¢+ O(el=0)
A 0(c2=l)

|cl = ]

bg ¢ T(el=1)
| AO (e2=1)

€

dy QO(e2=1)

Q(c2=0)

4

vo) c2 :=1

dy AO(cl=1) >d7
O(e2=1)
Critical Section 2 A (el=0)
ds‘ D(02=O)
AO(el=1)
c2 1= 1
d6 ¢ D(02=1)
AO(cl=1)

Mutual exclusion problem

~
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operators is assigned by the following rules.
Rule 1

() -operator is associated with a predicate on a variable whose
value is varied only in my program.
Rule 2

<> -operator is associated with a predicate on a variable whose
value is varied in your program.

In fact, an execution condition is a conjunction of predicates
on several variables. When several branches Jjoin, an execution .
condition after the junction point is given by a disjunctioh of the
execution conditions before the junction point. Since <>pVC»Vp =
O (pV~p) = &OT holds, the execution condition for by isTl(el=1),
and that for dy is {0 (e2=1).

A node in the execution graph of this co-operating sequential
programs is given by < bisdj>>. In order to determine the realiz-

ability of a node ( bi:dj>’ we should investigate>if the conjunction
of both execution conditions for bi and‘ dj caﬁ be satisfied. When
determining the realizability of a’node, we concurrently determine
the realizability of arcs incident to or from this node. The follow-
ing steps are applied to this example.
Step 1

Replace ([OpaOp) by Op.
Step 2

A node with (OpAdq) can be realized if and only if

p,q h% False .

-1f-



An\arc incident to this node can be realized if and only if
a node of the other end‘ie realizable,
Step 3 |

A node with (OpA < ~p)allda can be realized if and only if
the following conditions hold. | w v

1) p,q H- False ;

2) Assume that b is associated with [T p. Then there is

i
at least one branch b with 3 ~p, and from b, to b

k k i
there is a path which hes no intermediate branch either
with 3 ~g or <>quo | | o

An arc 1ncident to a node which 1s determined to be realizéble
in this step can be realized 1f and only if a statement corresponding
. to this arc can be executed without contradicting to [q.

Step 4

If both bi and dJ are)conditional braoch.exits, a node with
(O pal~p) A(OaAO~q) cannot be realized. Ah» arc incident to or |
from this node cannot be realized either.

If»both of them are not conditional branch exits, take the nearest
conditional branch’exits on the backward path from‘them, and investigate
the realizability for these branch exits,

The followings are the results of the application of the above
steps to several nodes., ;

(by»d,>: unrealizable (by the first part of Step 4)
< b3,d3‘>: realizable (by Step 1 and Step 2)
< b3,du>: realizable (by Step 1 and Step 3. You will find a

path b]f’bz"b3')

-15-
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< b7,d7 >t realizable (by the last part of Step 4. Instead of

¢ b7,d7 >, you may consider a pair<b3’d3 > )

5. Deadlocks and Effective Deadlocks

Two kinds of anomalies, deadlocks and effective deadlocks, may
exist in the dynamic behavior of co-operating sequential programs.
These anomalies have much to do with a resource allocation problem
in an operating system. This section will briefly discuss them with
relation to an execution graoh.
5-1 Deadlocks

It is easily understood that there is no deadlock danger in
co-operating sequential programs without P; and V-operations, Since
the pass of a P-operaﬁion in a program mayvbe delayved until another
program activates it through a V-operafion, it is possible that some
delayed P-operations will never be activated.

A deadlock is defined by using an execution granh as follows,

Definition 5.1 (deadlocks)

For given co-operating sequential programs S, a node n of

its execution graph E, is in a deadlock if and only 1if

S
(1) n is realizable ;

(2) there is at least one subset S'C S, and in an execution

graph E of S' the node which correSponds to n has

sl
no realizable arc starting from it.

Example 5.1

Consider the following co-operating sequential programs,

=16



begin
semaphore A,B ;
A := B = 1;
parbegin
Pl: begin
P(A)

we

P(B)

e

critical section 1 ;

V(B)

we

v(a)

remainder bf Pl

end ;

P2: Dbegin

P(B) ;
P(A) ;
critical section 2 ;
V(Aa) ;
V(B) ;
remainder of P2

EQQ'

parend
end ;
The execution graph of this example isbshown in Figure 5. The
interior of the shaded part of this execution graph cannot be realized,
Although a node ( b2,c2)-is realizable, it has no arc starting from it,

Then, { b,,c,)»1s in a deadlock situation,

-17-
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deadlock
cl(i(B)ch(A)C3 cyV(A)esV(B)e6 c7

b1 \\\\
P(A)

b2

o
g

P(B),///i////// , ,
b3 [ S
A
by ::;//:/‘ 7)/1;//' ]
V(B) ). ',,{,/3//1:;frj/fj: RS
bs ey
ot R e e {r

9
E
~

FIG. 5 An example of deadlock

5-2 Effective Deadlocks

Even if there is no danger of deadlocks, it is not assured that
a computation will be done successfully., In an»execution graph, it
is possible that there is an infinite loop in ﬁhich the objectives
of some programs will never be finished. |

Definition 5.2 ( effective deadlocks )

Assume that each piof co-operating sequential programs
S = PysP5s «+» 5Py ) has its objective nodes. Assume also that
there is no program whose progress 1s indefinitely delayed for lack

of processors.
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A directed cycle consistéd of realizable nodes and arcs in
an execution graph ES is in an effective deadlock if and only if
(1) the execution along this cycle continues indefinitely;
(2) there is at least.one program pJ whose objective‘node oJ
will not appear as j-th element of the nodes on this cycle;
(3) this cycle has at least one node from which an arc starts

to a node with o, as its j-th element.

J
Example 5,2

Consider programs of Example 4.2, and slightly modify them as
is shown in Figure 6, Its execution graph with realizable nodes

and arcs 1is given in Fifure 7.

Pl: { begin ) p2s ( begin )

kritical Section 2|

cl := 1

2 = 1
o [z =1 ]
end d5 Y

FIG. 6 Mutual exclusion problem

=19~
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bl >

y
by
b} Y. . Y
bl{ . (3 hd
b5 —>h e . 13

FIG. 7 Execution graph of FIG.6

The objective node of P1 is b3, and that of P2 is d In this

3‘

execution graph, there 1s a directed cycle given as follows,
(bl,dl) — (bl,d2> ....,(bz,d2> — < b2,du> —
(Pysdyy = (Pysdy ) — (P109y)

In this cycle, d does not appear, although there is a realizable

3
arc between <b1’d2 > and (bl,d3> + Therefore, this cycle is

considered to be in an effective deadlock.

20



b. Verification Steps Revised
The verification of correctness of given co-operating sequential

programs S by using its execution graph is given by the following
steps.

Step 1

Construct a direct product of the flow graphs ofgiven programs S,

Step 2

Remove all the unrealizable nodes and arcs from the direct product

constructed in Step 1, and let 1t be called ES.

Step 3
Check whether there is a danger of deadlocks or effective deadlocks
in ES' If there is a deadlock or an effective éeadlock, S is

not correct.

Step 4
Apply the verification theorem to ES‘

-21
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7. Concluding Remarks

An_exeqution graph was proposed to be used in the verification
of given co-opefating sequential programs, >It is constructed as a
direct ' : product of given sequential programs, and the number of its
nodes and arcs tends to become large; The construction algorithm
of an execution graph, however, is so simple that it can easily be

mechanized on a computer,

. An execution graph is defined for co-operating sequential programs

with fixed number of control flows. This can also be defined for

a more general parallel programs with variable number of control flows.

Modal operators were introduced in Section 4 in order to determine

the realizability of nodes and arcs in an execution graph. It should
be investigated whether these operators can directly be applied to

key assertions used in the verification theorem,
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