124

Proving correctness of Algol-like programs in a formal system

Hiroakira ONO*

O. Introduction

In this paper, we shall introduce a formal system \mathcal{S} , in which we can prove the (partial) correctness of Algol-like programs. The method used to construct the system \mathcal{S} is essentially based on Hoare [2]. But in our system we can give a proof of the correctness of programs in a completely formal manner. Our system is a version of that in [4]. We shall compare the system \mathcal{S} with the inductive assertion method (see e.g. [3]), by using the infinitary language. We intend to construct \mathcal{S} rather for its formal properties than for its practical usefulness.

1. Formal system

Before introducing &, we shall define the class of programs, called Algol-like programs.

Definition 1. Statements are defined inductively as follows.

- 1) An expression $y:=f(x_1,...,x_m)$ is a statement, where $x_1,...,x_m$ and y are variables and f is an m-ary function symbol.
- 2) If S_1 and S_2 are statements and P is an n-ary predicate symbol, then $\underline{if} P(x_1, \dots, x_n) \underline{then} S_1 \underline{else} S_2$ is a statement.
- 3) If S is a statement and P is an n-ary predicate symbol, then while $P(x_1,...,x_n)$ do S is a statement.
- 4) If S_1, \dots, S_n (n > 0) are statements, then begin S_1 ; S_2 ; ...; S_n end is a statement.

^{*} Tsuda College

Any statement of the form of 4) is called an Algol-like program. Formulas of the system $\[\]$ are the same as those of the first order predicate calculus. We use $\[\]$, $\[\]$, $\[\]$, $\[\]$, $\[\]$, $\[\]$, $\[\]$ as logical connectives. A formula $\[\]$ A $\[\]$ B is considered as an abbreviation of the formula $\[\]$ AVB. $\[\]$ A_x[y] denotes the formula obtained from A by replacing each free occurrence of x in A by y. We assume that function symbols and predicate symbols appearing in the definition of statements are contained in the language of $\[\]$.

The system & is a Gentzen-type one. We use the letters Γ , Γ' , \triangle , \triangle , \oplus , Π etc. to denote finite sets of formulas. $\Gamma_{\mathbf{x}}[t]$ denotes the set of formulas which is obtained from \(\Gamma\) by replacing each free occurrence of x in every formula in T by a term t. Now, let S be a $\Gamma \xrightarrow{S} \triangle$ statement or empty and \triangle is a nonempty set. Then is a sequent of ${\mathscr L}$. Informally, this expression means that if every formula in \lceil nolds, then every formula in \triangle holds after the execution of the statement S terminates. Thus the above sequent is equivalent to the expression $A_1 \land \cdots \land A_m \{ S \}$ $B_1 \land \cdots \land B_n$ in Hoare [2], where $\Gamma = \{A_1, \dots, A_m\}$ and $\Delta = \{B_1, \dots, B_n\}$. In particular, when S is empty, the above sequent has the same $\vdash \longrightarrow B_1 \land \cdots \land B_n$ in Gentzen's meaning as the sequent IK [1]. Sometimes we write sets of formulas of the form $T \cup \{A\}$ TUT' as Γ , A and Γ , Γ ', respectively.

Any sequent of the form $\uparrow \rightarrow \uparrow$ is a beginning sequent of &. Rules of inference of & are as follows, where S is a statement or empty.

126

1)
$$\Gamma \xrightarrow{S} \Delta$$

 $\Gamma, \Gamma' \xrightarrow{S} \Delta$
2a) $\Gamma \xrightarrow{S} \Delta \Delta \xrightarrow{G} 2^{b}$ $\Gamma \xrightarrow{S} \Delta \Delta \xrightarrow{S} \Theta$
 $\Gamma \xrightarrow{S} \Theta$ $\Gamma \xrightarrow{S} \Theta$ $\Gamma \xrightarrow{S} \Theta$
3) $\Gamma \xrightarrow{A} A, \Delta \xrightarrow{A} \xrightarrow{A} \xrightarrow{A} \xrightarrow{S} \Phi$
 $\neg A, \Gamma \xrightarrow{O} \Theta$ $\Gamma \xrightarrow{A} A \vee B$
 $\neg A, \Gamma \xrightarrow{S} \Delta \xrightarrow{S} \Delta \xrightarrow{A} \xrightarrow{A} \xrightarrow{S} \Delta$
 $A \wedge B, \Gamma \xrightarrow{S} \Delta \xrightarrow{S} \Delta$
 $A \wedge B, \Gamma \xrightarrow{S} \Delta, A \wedge B$
 $\Gamma \xrightarrow{S} \Delta, A \wedge B$
 $\Gamma \xrightarrow{S} \Delta, A \wedge B$
 $\Gamma \xrightarrow{S} \Delta, A \vee B$ $\Gamma \xrightarrow{S} \Delta, A \vee B$
8) $A, \Gamma \xrightarrow{S} \Delta \xrightarrow{S} \Delta$ $B, \Gamma \xrightarrow{S} \Delta$

10)
$$T$$
, $A_x[t] \xrightarrow{S} \triangle$

$$T$$
, $\forall xA \xrightarrow{S} \triangle$

neither x nor y appear in S.

where t is a term.

where y is a variable not appearing free in Γ , $\exists xA$ and \triangle , and y is a variable not appearing in S.

where x is a variable not appearing in S and t is a term.

where A is of the form $P(x_1,...,x_n)$.

where A is of the form $P(x_1, ..., x_n)$.

16)
$$\Gamma_0 \xrightarrow{S_1} \Gamma_1 \qquad \Gamma_1 \xrightarrow{S_2} \Gamma_2 \qquad \cdots \qquad \Gamma_{n-1} \xrightarrow{S_n} \Gamma_n$$

$$\Gamma_0 \xrightarrow{\text{begin } S_1; S_2; \cdots; S_n \text{ end}} \qquad \Gamma_n$$

The notion of provability in $\mathcal S$ is defined in the same way as LK. Remark 2. Following two rules can be derived in $\mathcal S$.

i.
$$\Gamma \xrightarrow{S} \Delta$$
 $\Gamma \xrightarrow{S} \Delta'$

$$\Gamma \xrightarrow{S} \Delta, \Delta'$$
ii. $\Gamma \xrightarrow{} \Delta, \Pi$ $\Pi, \Gamma' \xrightarrow{} \Delta'$

$$\Gamma, \Gamma' \xrightarrow{} \Delta, \Delta'$$

Theorem 3. If the sequent $\ \ \, \longrightarrow \ \ \, A_1 \ , \ldots \ , \ \, A_m$ is provable in LK, then the sequent $\ \ \, \longrightarrow \ \ \, A_1 \ \lor \ldots \ \lor \ \, A_m$ is provable in $\ \ \, \& \ \,$ (When m = C, i.e, $\ \ \, \bigcap \ \ \, \longrightarrow \ \,$ is provable in LK, $\ \ \, \bigcap \ \ \, B$ is provable in $\ \ \, \& \ \,$ for any formula B.) Conversely, if $\ \ \, \bigcap \ \ \, A_1 \ , \ldots \ , \ \, A_m$ is provable in LK.

In order to deal with a program on a particular domain, e.g. a program on natural numbers, we need to define a theory on \mathscr{A} . A theory T on LK is defined as a system obtained by adding some sequents of the form \longrightarrow A to LK as beginning sequents. In this case, such a formula A is called an axiom of T. A theory $T(\mathscr{A})$ on \mathscr{A} is a system obtained from \mathscr{A} by adding a beginning sequent \longrightarrow A for every axiom of a theory T (on LK). Theorem 3 holds also for T and $T(\mathscr{A})$.

Now, let LK* and \mathcal{S}^* be the formal systems obtained from LK and \mathcal{S} , respectively, by changing the rules of inference concerned with conjunction and disjunction as follows. (For LK*, S is empty in the following.)

1a)
$$\begin{array}{c}
A_{1}, & \Gamma & \longrightarrow \Delta & \text{for some } i \in I \\
& & & & & & \\
\downarrow^{A_{1}}, & \Gamma & \longrightarrow \Delta \\
\downarrow^{S}, & & & & \\
\downarrow^{S}, & & & & \\
\downarrow^{S}, & & & \\
\downarrow^{S}, & & & \\
\downarrow^{S}, & & & & \\
\downarrow^{S}, & & & \\
\downarrow^{S}, & & & \\
\downarrow^{S}, & &$$

We can prove also that Theorem 3 holds for LK* and \mathcal{L}^* .

2. Interpretation of & in LK*

In this section, we shall define an interpretation Φ of each sequent of \mathcal{S} . For each sequent $\Gamma \xrightarrow{S} \Delta$ of \mathcal{S} , a sequent $\Phi(\Gamma \xrightarrow{S} \Delta)$ of LK* is defined so that $\Phi(\Gamma \xrightarrow{S} \Delta)$ is provable in LK* if $\Gamma \xrightarrow{S} \Delta$ is provable in \mathcal{S} . Thus, we can say that every sequent provable in \mathcal{S} is 'true'. As shown in the following,

(3)

our interpretation has a close relation with the verification condition of the inductive assertion method.

Let S be a statement or empty. We define a formula $\mathcal{G}_S(A)$ of LK* for each formula A of $\mathcal S$ as follows.

- 1) $\mathcal{Y}_{S}(A) \equiv A$ if S is empty.
- 2) $\mathcal{G}_{S}(A) \equiv A_{y}[f(x_{1},...,x_{m})]$ if S is $y:=f(x_{1},...,x_{m})$.
- 3) $\mathcal{G}_{S}(A) \equiv (F(x_1, \dots, x_n) \wedge \mathcal{G}_{S_1}(A)) \vee (\neg P(x_1, \dots, x_n) \wedge \mathcal{G}_{S_2}(A))$ S is $\underline{if} F(x_1, \dots, x_n) \underline{then} S_1 \underline{else} S_2.$
- if S is $\underline{\text{if }} F(x_1, \dots, x_n) \ \underline{\text{then}} \ S_1 \ \underline{\text{else}} \ S_2.$ $4) \quad \mathcal{G}_S(A) \equiv \bigwedge_{n=0}^{\infty} \sigma_n(A) \quad \text{if S is} \quad \underline{\text{while }} F(x_1, \dots, x_n) \ \underline{\text{do }} S_1,$ where $\sigma_n(A)$ is defined by

$$\begin{cases} \sigma_0(A) \equiv \neg P(x_1, \dots, x_n) \supset A \\ \sigma_{n+1}(A) \equiv P(x_1, \dots, x_n) \supset \mathcal{G}_{S_1}(\sigma_n(A)). \end{cases}$$

5)
$$\mathcal{G}_{S}(A) \equiv \mathcal{G}_{S_{1}}(\mathcal{G}_{S_{2}}(\dots(\mathcal{G}_{S_{n}}(A))\dots))$$
 if S is

begin S_1 ; S_2 ; ...; S_n end.

Next, define 👤 by

$$\underline{\Phi}(\Gamma \xrightarrow{S} A_1, \ldots, A_m) \equiv \Gamma \longrightarrow \bigwedge_{i=1}^m \mathcal{G}_S(A_i).$$

Theorem 4. If a sequent $\Gamma \xrightarrow{S} \triangle$ is provable in \mathscr{L} , then $\Phi(\Gamma \xrightarrow{S} \triangle)$ is provable in LK*.

We don't know whether the converse of Theorem 4 holds. We can only show that when the statement S contains no while ... do ... statements the converse holds, by using the cut-elimination theorem of LK*. On the other hand, we have the following theorem.

Theorem 5. $\Phi(\Gamma \xrightarrow{S} \triangle)$ is provable in LK* iff $\Gamma \xrightarrow{S} \triangle$ is provable in \mathcal{S}^* , where Γ and \triangle are sets of formulas of IK*.

The above theorem means that the system &* is 'complete'.

References

- [1] G. Gentzen, Untersuchungen über das Logische Schliessen, Math. Zeitschrift 39 (1934/35) 176 210, 405 431.
- [2] C. A. R. Hoare, An axiomatic basis of computer programming, CAGM 12 (1969) 576 580, 583.
- [3] Z. Manna, Mathematical theory of computation, 1974, McGraw-Hill.
- [4] H. Ono, 7°口7°ラムの基礎理論 (Introduction to mathematical theory of computation, in Japanese), Seminar note on mathematics, No.2, Tsuda College, 1974.

(Revised February 1975)