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8§1. Inﬁroduction and informal discussions.

When we discuss 3-valued logics, we find that some different
semantics are introduced. Iﬁ%his paper we shall.digcuss three logics
among them:wﬁich have much interest related to the theory of computation.

The first one is Kleege's‘logic introduced in [1]. Ié is

- ’

determined by the following four truth tables for propositional

connectives.
AVB "AAB ASB 1A
A\B twf . AB tw f A\B twf A -
t -ttt t twf t twf t £
[ twwy w ww f w tww wow
f twuwf f fff f ttt £ t

Here t,f or W means 'true'; 'false' or 'undefined' respectively.
Tiukasievicz's logic is also described in [1], which differs

from Kleene's by the definition of the conditional. It is given by

o)
A> B
A\B t w f
t twf
4 ttow
f ttt

That is, A:iA is always true in the logic, while it may be undefined
in that.

The last one is McCafthy's 1ogic introduced in [2]}. It has
the same table for the negation as the former, and has the following
tables for the other connectives. It is convenient ;o use the symbols

+ (or ) and . ( and ) instead of VM and AM.
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A+B A.B : ADB
M

A\B twf A\B ta A\B tw f
t ttt t tewef @t twf
w w wWow o woww w w W
f twf f fff £f ttt

Here deciding the value of e.g. A+B, we calculate B if nécessary, after

terminating the calculation of A. Thus if A is undefined, So is A+B

e~

Yregardless of the. value of B. While in Kleene's we calculate in pararell,

£
s

and so when B 'is trué} so is AVB even if A is undefined.
. o B W3

The following equalities are’easily verified, where = means

that the left and the right hand sides always have the same truth value.

1A = A .
AVA = A , AAA = A -
(the absorptivity in Kleene's).
A+tA = A N A.A=A
(the absorptivity in McCafthy‘s).
AV(BVC) = (AVBWC , AA(BAC) = (AABIAC
(the associativity in‘Kleene's).
A+ (B+C) = (A+B)+C , A.(B.C) = (A.B).C
(the associativity in McCarthy's).
1(AVB) = TIAATB , T(AAB) = TAVIB
(dé Morgan's property in Kleene's).
1(A+B) = 7A.B , ) “HA.B) = "A+B |

(de Morgan's property in McCarthy's)
ADB = JAVB ,
ADB = A+B ,
while A:ZDLB # -1AVB .
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The commutativity in Kleene's holds, i.e.
AVB = BVA , ANB = BAA ,
while that in McCarthy's does not hold, i.e.
V A+B # B+A , A.B # B.A .
The distributivity in Kleene's and the left distributivity in

McCarthy's hold, i.e.

‘.

AV(BAC) = (AVE)A(AVC) AAB/C) = (ABIV@RAC)
(AABVE = (AVC)N(BVC) , (B/BIAG = (ACIV(RAC)
and A+(B.C) = (A+B). B+C) , L B:(BeC) =‘a-B)+@a.0)

while the right-distributivity in McCarthy's does not hold, i.e.
(A.B)+C # (A+C). (B+C) , (A+B) .C # (A.C)+(B.C) .
McCarthy's éonnectives can be interpreted in Kleene's by the

following equalities.

A+B = (AVIA)A (AVB)
= AV (1AAB) p
A.B = (AATA)V (AAB)

AA(TAYB) .

Formulas are constructed in the usual manner. A prime formula
is a formula which contains no logical symbol, and a literal is a prime
formula or its negation. W%%all_a pair of prime formula and its
negation a pair of duals. We use A,B,C, etc. with or without subscript
to designate formulas. A seduent is an ordered pair of finite sets of

formulas. We use the notation Al,...,Am > Bl,...,Bn for a sequent

<t Al,...,Am},{Bl,...,Bn§>> . The order of formulas in each side is

immaterial. The part A ,...,Am is called the antecedent and means the

1

A...AAm , and the part B

conjunction Al

;...,Bn is called the sccedent

! w
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and means the disjunction Biv..jgn , where we ragard the empty conjunction
as true and the empty disjunctig; as false. We use Greek capital
letterS'r,A,B, etc. to designaté setslof'formulaﬂ. An assignment

t, £ or W to all prime formulqs is extended to all formulas in the ordinal
way according to the truth tables. Such assignment is said té satisfy

a sequent if ohe-of the following conditions is fulfilled: i).iE'aésigns

f to some formula in the éntecedent,bii) it assigns t to some formula

in the succedeﬁt; ér iii) there are some formuias‘infboth sides to

which it assigns W .. In other words the value assigned to the antecedent
is less than or equals to the one to the succedent with respect to the
order f{w<t. A sequent is said to be valid if it is satisfied by all

assignments.
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§2, The formal system for Kleene's 3-valued logic and its plausibility.

In this section we shall describe a formal system, and show

its plausibility, that every provable sequent is wvalid in Kleene's

sense.

As axioms we admit the sequents of the form
r,n= a,A ,

as well as those of the form
.2 A= »,8,1B .

Among the rules of inferences in the propositional calculus

of Gentzen's LK, those for conjunction and for disjunction are admitted

in our system, while those for negation are refused.

A ) . I',A,B = &

4 ,A [ % »~,B
(= AN) C > 2.5 ’
rasa T,BaA
V=) . T ,AVB 2> A !
ans (V) I %72

= A,AVB -

And the rules for conditional are replaced by the rules

: F,TA > A ',B=> a
6= [.,.25B=> A
and 55) s A,A "2 AB

= o&,A5B :
Furthermore instead of the rules for negation, we have the

rules for double negations and those for combinations of negations and

each other symbols whic& correspond to de Morgan's property.

T, A= A
(%) [, > A ’

- > AA
=7 & a,77A !

ans ) FJJA =2 a4 B3 A
n I 1(BAB) = A ’




' AA,1B

W) T3 A T mae)
vy LaBaRse
W L %frni A,'):AjB)AnB !
how) LA
and (393 L2 2 STl

= &, 1(A=B)

The formula in‘the lower sequent of & rule, in which the

logical symbol'is introduced, is’called-the principal formula of the

rule.
The following rules are useful although it shall be clarified

later that they ar%%ngessential.

> a,A 0,A > AL
VAN

(CUt) r N} 4 ’ /\_

NELG

. T Ja)
(weakn;ng) | o) A
where [ C ‘@ and A < Al |

A seguent is provable if it is an axiom or the result of
applying a rule of inference to sequenté which are already known to be
provable. A sequent is strictly provable if it is provable without
using (cut) nor (weakning).

In order to observe that these rules keep fhe validity, we
musf examine it for each ru}e. Here we shall show it only for the rule
(= 7>), for other cases it can be easily shown in the similar way.

Suppose that the lower sequént of the rule (3 7>) were not

satisfied by an assignment, and it will be shown that one of the upper

sequents is to be not satisfied by the assignment. Since T1{&>B) is in
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the succedent it takes the value f or w. When it takes

takes f or B takes t. So thé.first or the second upper

f, either A

sequent is’

not satisfied respectively. When 71(2>B) takes W, I’ must take t, to

be exact every formula in r_takes't. So the first or the second

upper sequent is not satisfied according to either A or B takes W .

Thus the following theorem holds.

PLAUSIBILITY THEOREM. Eyery provable sequent is valid.

We shall show the formal proof of the equivalence of

(ADB)A(B>A) and (AAB)V(TAATIB) as an example.

B
B,1B % A,27A B,1& > B,7A
TAB S AAB,7A B,1B = AAB,IA

A DB, 1B & AAB,1A A>B, 1B = AAB,T1B

ADB, 1B 3= AAB,TA 7B

. A\A,A > B,1A —iA,A > B,IB

TA,A = B,TIAANTB

B,A & B,7AATIB

ADB,A = A,TAATB ADB,A & B,T7AATB

L I A S RN IR

ADB,A > AAB, A IB

ADB , BoA = AAB ,AATB

A>B , BDA = (AAB)v (7AATB)

(A>B)A(BDA) = (AAB)V (1AATR)

A,B 3> 4A,B A,B 3 1B,A <A,9B & -1A,B

JA,1B » 7B,A

A,B > ADB A,B > %DA M1A,1B = ADB

TTA,7B = BDA

A\B 3 ADB ANB & BDA TAATB 5> ADB

TJAATIB = BDA

ArRB 3 (A>B)A (B> A) TAATB = (ADBI)A(BDA)

{(AAB)V(T1BATIB) = (AD> B)A(BD A)



&3. The completeness of the previous system.

We shall show in this sectisn that the sYstem defined in the
previous section is complete.

Given a sequent we make the so—cailed deéomposition of it.
That is, we construct strinég of sequents such that i; the first
sequent of thg_ﬁﬁring is the‘given sequent, ii) when eithei:tpe n-th v
sequent és an axiom or it Fontains 6n1y literals,’it is the end of
the string, éﬂg iiigi&héﬁ the‘ﬁ-th sequent is ot an axiom and it
contains a fofmula other thén literals, the (nri)—ét sequent is one
of the upper‘ééquents of the r;le whose lower seque;t isn-th sequent

_ : TR
and whose principal formula is such a formula mentioned above. It
is clear thét every string is finite and that if every string ends
in an axiom, the given sequent is strictly provable .

Thus making the decomposition of the given sequeﬁt, if it
is not strictly pro§able, there is a striné containing no axiom. Let
I" or A be the set of all formulas which appear in the antecedents or
in the succedents of the sequents. in the string’reééectively. Siﬁce
a literal appearing in a sequent of the string also‘appears in the
same side of every following sequents, i) [ and A have no literal in
common, and ii) it.is impqssible that both [T and A have a pair of
duals. We may assume th#t[& has no pair of duals. Now we take an
assignment, i) which assig;s t to prime formulas whose negations:are
in A, ii) which assigns f to those which are inA ,and iii) which
“assigns W to all other prime formulas.

It is shown by the induction on the number of symbols that

the extension of this assignment assigns t ort) to formulas in [
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and f to those in & . We shall show the cases of A DB. If ADB is
in A ,both1A and B are in A too. Therefore by the induction
hypothesis A ‘takes t and B takes f, so ADB takes f. If ADB is in

I, either |A or B is in [ . The .former implies that A takes f or w

"and ADB takes t or © . The latter implies that B takes t or (4 and

so is AD B.

Hence the given sequent is not valid. .
Y : - .
o N :

The following example will clarify this method.

Suppose that the sequentb(éiDB)A(TA:SC) = (AAB)Y (UAAC) is
given. We can find the string:

(A>B)A(TA>C) 3 (AAB)V (1AAC) ’
(A>B)A(WADC) AAB , TTAAC ’

EN
ADB , IADC = AAB , TTAAC ,

qa  , 1A C ANB , TAAC P

YA, A =  AAB, TIAAC ,
A, A = B P-YX I
1A , A = B , C .

So I consists of A and 7A and A consists of B and C. Then an assignment
which assigns 1) to A and £ to B and C fails to satisfy the given
sequent.

This showed the following theorem.
COMPLETENESS THEOREM. Every valid sequent is strictly provable.

COROLLARY. Every provable sequent is strictly provable;
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§4. The formal system for the extended Kleepe's 3-valued logic.
We shall give the interpretation of the quantifiers and
infinitary connectives in the 3-valued logic.
(Ox)A(x) is true iff A(t) is true for some term t, it is

false iff A(t) is false for every term t, and it is undefined iff

- .

none of A(t)'s.are true and some A(t) is undefined. A(Al'AZ,'-"")

is true iffrev'e‘ry An is true, it is false iff some An’ is false, and
- . /. . .

it is undefined iff none of A'n‘s‘,are false and some An is undefined.
. L i

,-..) are i:nterpi‘eted likewise.

Wx)A(x) and V@l ,A2

Ve

‘The following equalities hold.

1ENAK) = ¥x)A(X) , AYRAK) = @A),

. /"1\\ /—-‘\\

‘1\/(1\1,1\2,'---) = ACIA A o) TTAB B ) = VAR TR, - -0)
@x)A(x)VB = (@x) (A(x)VB) , (PX)A(X)AB = (¥x) (A(x)AB) ,
Ex)A(x)AB = @x) (A(x)AB) , ¥x)A(x)VB = (¥x) (A(x)VB) ,
V(Al'Azr-v--)vB = \/(BIA A y..e) ’

12

. /\(Al.AZ....)AB = /\(B,Al,AZ‘,...) .

)

V(Al,Az,.. AB V(Al,\B,A AB,...) ,

2

/\(Al'AZ' .-..)VB

i

2vB,.A. J) .

/\(Alvis,A
Rules for those symbols are those in LK with slight modification.

r.a@ 3 A
 @x)A(x) > A

G )

where a is a free variable not appearing in the lower sequent. Such

a is called an eigen-variable.
r = A,A(tl) ,A(tz) ro-o ,A(tn) , Ex)A(x) for some n

(=3) = 4,8x)a(x) ' !
A=) r,Al,Az,...,An,/\(Al,Az,...) = A for some n
FABLA ) 2 A
. r=4,a for all n
and (ZA\) {" 2 /\r(!A = 3 .
7 LNk 1: 2:—--

10
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In addition we have also rules for combinations of negayions and each

of these symbols. o o .
r,a(e),A),..., At ), TEX)A(X) = A for some n
Q3=) 1. 2 n

m 1&@x)ax) 3 aA

C = A,7a)
[ = a,Ex)a(x)

(=713)

where a -is an. eigen-variable.

.

T e - r'jAn =% A for alln
N> FEAE A s A
s . 2 . ," .
> = AnAl!mAz,..‘. 7B INB B, ) for some n
, T 5 AANB A ,...) )

1’72
The other rules (=), (=Y¥),¥V=),=V), 6> ),(=>"1V).h\/=’)). and (=>7V)

-are given likewise.

The plausibility of the extended system will be shown by the
induction on the number of rules of inferences applied in the proof of
the given sequent which is provable and should be shown to be wvalid.

Suppose that the lower sequent of the rﬁle (= 3) were not
satisfied by an ascignment. Then (3x)A(x) takes the value f or w,and‘

A(tl.) ,A(tz) 4-.-, and A(tn) take also f or ) . ﬂoreover some of §
them take i only if (Ex)A(x) takes w and then I” takes t by the assumption.
The upper sequent fails to be satisfied by the assignment.

Suppose that thg lower sequent of the rule (3% ) were not
satisfied, (Ex)A(x) takes t or W. When it takes t, A(t) takes t for
some term t. Then the se;;uent which is obtained from the upper
sequent by replacement the eigen-variable a with the term t. is not
satisfied. This contradicts the induction hypothesis. When (@x)A(x)
takes ) it is quite similar. |

It is shown for the other cases in the similar way.

11
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The completeness of the extended system will be shown using
the similar method of decompo.swition as that of the original. system.
Howevér there is a little diff;iculty , and v.:e must devise a means .

| Consider an griﬁzneration 'tl,tz,... of al/l terms and an
enumeration of all formulas other than literals.

We'; é‘oﬁstructrstrings as follows: i) The‘first sequent of the
string is the ‘;;'iven s_equ_en't, ii) Whén the n-th s‘e‘qz.:ent is an axiom,
it is the end of the string. - iif) When_ the :1.r1-jt1'3 sequent is not an
axiom, let i, j be such integers that': n=2i'1(2-j-i)‘. iii-i) If it
does not contain the i-th formula, the (n+l)-st seciuent is the n-th
sequent again. iii-ii) If it contains the i~th formula, the (n+l)-st
sequent is one of the upper sequents of the rule whose iowér sequent
is the n-th sequent and whose principal formula is the i~th formula.
Moreover when the rule is (% 3) with the lower sequent | & A ,-(‘,—‘yx)A(x) .
the (n+l)-st sequent must be chosen I A ,A(tl) re o ',A(tj) , @Ex)A(x)
that is, all first j terms are substituted to x . When the rule l§
A\ ) with the lower sequent r,/\(él,vAz,...) > A , the (n+1)-st

sequent must be T‘,Al,...,Aj,/\(A A_,...) A . The similar

12
restrictions are alsc; necessary when the rule is (132), V=), (=Y,
(=), (3V), or OVS) . |
If the given sequent is not strictly.provable , there is a
string which does not end iol anv axiom and so is infinite. LetI” or

A be sets of formulas in the antecedents or the succedents of the

_sequents in the string . also ™ and A have no literal in common ,

-12 -
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and eithr [ or A has no pair of duals. We assume again that AA has no

pair of duals.

Take an assignmeht i) which assigns t to prime’formulas
whose negations are in A , 1i) which assigns f to prime formulas in A ,
"and iii) which assigns W to‘.all'othér prime formulas. It ;ﬂill be

shown by the induction on the number of symbols that every formula in
[ takes t or 4y and every formula in A takes f. . For example , if
. VA . - . B
. P .

@x)A(x) is in A’ ’ then A(t) is in A for every term t by means of the

construction of the string . So evéry A(t) takes f and BEx)A(x)
takes f too. ’

Therefore the assignment fails to satisfy the given sequent.

13



£5. The forﬁlal system for the extended Tukasievicz's 3-valued logic.
In..this section we shall extend Kleene's iogic by adding new

symbol > ,called strong conditional, which just reflects the concept of

sequents;.' .Eu.kasievicz's logic is then _interpretable in the extended one.
‘I'hc; truth table for étrong conditional is as followé:

£>B

It‘ is easily seen that A-»B has always the definit value but w ,

and thatB>7A has the same value as it. It is also seen that

5 i id i if > B.V...\B
Al""’Am 2 Bl""’Bn is valid if and only if = AlA...AAm Bl/ Bn
is wvalid .
Aukasievicz's conditional is then interpreted by the following
equality:
A9B = (A=B)(A>B) .
Rules for strong conditional are-
(> =) FJA> o0,A T2AA0B T,AB 3A B = 4,78
T rLA>B = & >
F,A=> AB [.,IB =4 ,7A
=) F= a,h>8 ’
'bAA,B B = 2,04
RN > 3 s o 5
O ) r(A>B) 3 a >
and (5 95) FOAD AA T 3 AATB LAB >4 T B aB
- r = a,9(A>B) -
The rule
A> B
3 A>B

is not necessary since it is covered by the special case of the rule (> ->)

that ["and A are empty, and by the fact:

14
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LEMMA., 1A &7B 1is provable if and only if B = A 1is provable.

—

lThe proof is so easy as omitted.
The plausibilities of these rules are shown by using the table

as under, where the rule (® = ) is taken as an example. The rows of the

‘table are divided corresponding to assignments which do not satisfy the

lower Sequent‘of the rule. The last columm indicatea'the uppei sequents
which fail to be satisfied by the respective aSéignments. For exaﬁple

. £, o - ) '; .
the first row asserts that if [~ takes t, N takes 3 , A takes f, and

B takes some value by an assignment, it.does not §étiéfy the first

upper sequent. .’

F_I:_i“fi_;éf?§~;mﬁ . B upper sequent .
i : i_fNN;":_>"“mfirst ~;
¢ ‘@' t - % “sccona |
S , w  w  fourth :
| , | £ . - | first :
t | f t i~ .t , second ;
bW o w o fourth
3 : I S first
w ‘ 5 - . ‘
O S T t  second
o L ow third

‘We can prove the completeness of.this system in the similar
way as in Kleene's.
We can regard AZB as an sbbreviation of (A2 B} (A>B) and

we can construct rules for it:

T, A2 TB>A ' aA7B

(:%f>) r',A;iB N >

("73L) LA ?_,:f,z,xggrs 2 A,JAB ,

() DAB2Sa TR 2 as
and (> —':i) '3 A,?___},L-—:ﬁagg) FOAB=24

15
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£6. The int%rpretation of the extended McCarthy's 3-valued logic in Kleene's.
Iﬁ McCarthy's logic the concept of guantifiers cannot be

introduced, Vhile infinitary’conﬁectives are allowed as extensions of

binary conneetives, that ie} the value is determined by the serial

calculation from the left to fﬁe fighf We userthe notations.

ZXAl A2,...) andTT(A1 A2"’°) for the infinite disjunction A1+A +...

and the 1nf1n1te congunctlon A1 A ..., respectlvely.

Fomulas in 'bhlS extended McCarthy's loglc are 1nterpreted

in Kleene's as follows:

A+B =" (AVIA)A(AVB)
= AV(TAAB) .
A.B = (AATA)V(AAB)

AA(-1AVB) s
Z(Al,AQ,...) =/\(V(A1,A ,...),Al\nAl AVAV7A2,...)

. | = V(Al,“[Ai\Ag,'\Ai\ TALAL,- . ,
and T(a .4 seee) =VIA(A 4,500 0) APTALANAATIA,, L)
—/\(Al,'}AvA AV TIAY A sees) .

We examine the last equalities. °
MR ,A_,...) is t = all A 's are t
1" 2 n

=3 ]\(Al,Az,...) is t

== V‘-’\(Al'Az"")'Al’“Al'Af‘Az”Az“”) is t ,

se-e,and A are t

WA A ,...) 1sw for some n A_,A
. 1 n-1l

1 2 2

and A is w
n
=3 Al/\ . .AAn/\‘iAn is W and other components
are f orw

= V(/\(Al,A ---),AIﬂAl,Af\AzﬂAz,...) is w,

2!

16



104

]T(Al,Az,...) is f = for some n Al Az,...,and An—l are t

and A is f
n

=2 all components are f

-== \/(A(A ,A2,...),Al/\’1 /‘\AjﬂAz,...) is £,
TT(A ,A ,...) is t =% all An's are t
=5 *e o '
> all “lAi/ V'!An_lvAn s are t
= A 17 TRV A, ,'IAAV‘"!AZ\'/A:{,...) is t ,
T"(A ,A ,...) isw —=> for .some n A A ,.“,.,and A are t

1

and'A is w
n

n-1

=3 WA]Y.- .\I’TAn_]y An is W) and other components
are t or W
=3 A(Alr“lAl\/Az,“lAl\/‘\Aé(A3,...) is w ,

and T((AI,AZ,...) is »f =3 for some n Al Az,...,and A .y are t

and A_ is §

=% TAM.-.VA VA s £

n-1

=3 /\(A JTA VAZ,']AV‘xA VA_,...) is £ .

3
The rule for McCarthy's sgmbols are obtained in the following

manner. At first we replace the principal formula in the lower
sequent by the suitable form of the above equalities. Then we

apply rules for Kleene's symbols in succession. For example, since

I'1a.B 3 A

T/AA [ MAAB = A
T /AV(IAAB) = A
[,a+B > A

r.a=>A A, A
F,aB > A

SO

(+=2)

17
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and since = AaA0A r 24,A,B
T A/AVA r = o,AVB
" = 4, (AVIR)A(AVB)
= 4, AB

S A,a0A r a,A,B
T % 4,58 .

so (> +)

aAnd by the de Morgan's property
F.a13a = 4 F,J02,1B & A
T (a+B) & 4

r >4 ,'1A T > AMBB
: r Ij(A+B)

>y

and (éﬁ_'ﬂ‘ ’

Rules for lnflnltary dlsjunctlon are )
S r,‘IA ,‘[A ,...,‘rA ,A > A for all n
r.5G) ,A,...) =>A !

U An 08, e T > AAjr-eedh TR

I 24 7(A ,A PR I Al,...,A for some n

(=)
T ")A.'j_‘(Al' 2,---)
Feoma A .0 T/ ,...,‘IAn NPT S P
. >® ,Az,...),“]Al,...,"'rl*.n =5 A for some n
=% ) » A =
’ 1’ 27" )
and r'7AA,A,...,A 1718 for all n
(=12 .
I %’AFQZ(AI,AZ..-.)

The rule (33) has the undefinite number of upper sequents. We
i .
can avoid it if we leave V(Al'AZ"") in the succedent of an upper

sequent. However we choose this form to exclude the symbol V.

18
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The following examples prove the equivalence of A. (B+C)
and (A.B)+(A.C)

A,B=3A A,B>7A,B AMB3AAA  A,7B »TA, 1B

A,B 3 A.B . 2,7B > ~1(A.B)
A,B > A.B,1(A.B). A,B,C =A.B,71(A.B)
A,7A = A.B,71(A.B) » A,B+C 3 A.B,"1(A.B)
A. (B+C) = A.B, (A.B) ‘
R - : e e
AJA$A AJASA,B A,BSAB "A,C % A.C
" AMA =A.B " “A,B>A.B,A.C A,1B,C > A.B;A.C
. A 1A > A.B,A.C - A,B+C % A.B,A.C

A. (B+C) = A.B,A.C

A.(B+C) = (A.B)+(A.C)

AMA>A,B A,B>7A,B B3>B,B B 3B,C
A/7TA$A A,B>A A.B & 1A,B B 3 BiC
A.B > A A.B = TA,B+C
A.B > A. (B+C)

{cuwt)

o

9A $TA, 1B ASIB ZTAB @
@ J(A.B) =717, B A.C 57A,C

A.C A “A.B) ,A.C = JA,BB A.B),A.C 3 12,B,C

(A.B) ,A.C 3> A : “(A.B),A.C > A, (B+C)
J(A.B) ,A.C = A. (B+C)
(A.B)+{(A.C) = A. (B+C)

e 000 000 te s 0

In the proof we omitt the upper séquents of some sequents ,

which are marked @ . They are easily fulfilled since the same or similar

sequents occur before with the upper sequents.
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§7. Correlation between the present formulation and Takahashi's.

As above we formulate the system by using the instrument

‘sequent' , by the wéy Takahashi used 'matrix' in his general method

to formulate many valued logics.

Now we shall apply his method to Kleene's logic and compare

jt with ours.

A mat;ik is an ordered triple of finite ‘sets of formulas, -

for which we use the notation {A ;.. ,Alg P .\Lgm}wu te e b -

The part A

1

C ""'Cn

1,...,Al is called the f-part,Bln...,Bé the W-part, and
the t-part.

An assignment satisfies a matrix iff it assigns £ to some

formula in the f-part, W to some in thew -part, or t to some in the

t-part.

and

and

The rule

Axioms are matrices of the form'U”,Agfui®,A3uJU¥LAgt .

Rules for the negation are

{rjeulefvinal
ag) {rSfA{ oz L sdtl !
{ kf ‘_ijU\_A't .
" trieul®dy ulah ,
{rif"w’“}w“{"ft '
1A u{ @Yl
qe) £ w " .

.it‘S £ U{@&wb’{lfl Ajt

Rules for the conjunction are

ofat
{F I,AIB}}'fU{.e fw uéJt

(n£) ir,anBg £V Y LA}t g

) trizule.a,B}, ulsf {I’}fu{ﬁ,A};} {A,A}t {rgfu{e,s}wu{;;,sgt
{rjgut® By v {af

"o rigutsh viaal {re ulegula,et ‘

{r}fU{@}wU{.A'A B_Ijt

(Af) , say, originally consists of five schmata and they
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are condensed to one schema descrived above.

Rules for the existential quantifier are
{roa@) vteh, v

. Gxax) gf-u{ejgu; Uia
where a is an eigen-variable,
ra@ivleara@l,vlsl,  Tiol@awi, vlaf
a «,
?r}fu{ﬂ, (Ix)A(x) SU)U {b-&t

@BE) T
.'t .

Qw)

Qhere a is an eigen—variable and t is a term,
trigu] B} ular A () l]t
{rygwlel ufa A5

and LQEY
where t is a term.

Rules for other symbols, (VE), (vw), {(vt), ©f), Gw), (t),
(V£), (Vw), and (Vt), are omitted.

The following rules are not essential but useful.

{r.af vieku {A&t {rjfu (6,8}, v{s Al

(cut) - - ’ -,
. {rfevi ®f viak |
. ATHpuledal, ulay, Ar.ap utelusal
(cut) ‘ _ - ,
iNgule], viay
irigof®fuis,al T .af u{0,af, vis)
(CUt) {ﬁfulsf"“(};A}t | N ’
) iNegu{otulsh
and (weakning) ~ S
' trigvlof, visk

. where FCFI,BC @’, and AC'A'.’

The following theorem states the correlation between his
system and ours.
THEOREM. A sequent [ = A is provable in ours if and only if the
matrices {[‘Sfu{r}wu{{si and {r} fuiéjwo {af ~are béth provablé in his.
Cdrfvérsely a matrix {r}fu{_@}wp{é‘% is provabl\e in his if and only if
the sequerits r,K,@, > 5?, are provable in ours, equivalently' the

sequents @,y% F,A,?é% are provable in ours, for all mapping ¥ from
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® to {0,13 . where G).,L {or 57,) is the set of formulas A's such that

4(8)=0 (or ¥/(A)=1 ) and of JA's.such that (a)=1 (or 4#(A)=0 ), and

T or A consists of thé negat‘ions'_of formulas in [~ or A respectively .
Since both systems are complete, it is sufficient to

prove the theorem semanticall;;

It Jds eésily sees that an assignment satisfies I 3'A
: R -

iff it satisfies - -{Hfutr};’-uu‘i; and'; mfu{zsgw U{A_(: . In fact

they are both étiuivaléﬁt to the statement : the assignment assigns
. L. Iy W3 .- .

f to some formula in[ , t to some in A, or wto some in [ and to some
in A . | |

| It is also easily see_: that an assignment which satisfies
) fu{e}wu{oj;c also satisfies [ 'Z'&F’:}; 5,){, and @V,-—} F,A.-é.y, for
all ‘)L . Conversely suppose that an assignment satisfies
r.5, @,;L = {:37’ for all «/ . If it assigns A to some formula in O ’
it clearly satisfies J{r}fu.{@}wu{c‘jt too. Otherwise take the
mapping o such that fy’ () is 0 or 1 according as A takes the value
t or £, then we find that some formula in 'I“UE must. take f. Therefore
i uleh,ulal  is satisfied.

We note that an axiom A > .A in ours corresponds to

{n} fU{A‘;mu {Ajt which' is also an axiom in his, and that an axiom
ASA 3 B,7B correspon‘.ds to. {A,ﬁA}fU{A,“IAS-wU{B,’}BS‘t and
aay fU{B,'lB}wu {B,‘[B}t whicI; are provable in his as followsi

tay vianag, via,s,a8y,
{A,‘IA}fU{A,‘IﬂwU {B,TB}t

{a78,B) U{B, 7B} v {B},

and {aTa T oiE 8], v BBy
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