ooooobpooooo
236 0 19750 21-30

3%

Dynamics of System Program

-- Progressive Induction =-

Katsuhiko KAKEHI (University of Tokyo)¥

Takakazu SIMAUTI (Rikkyo University)

from 1974, Rikkyo University

24
0. Introduction

Theoretical tonls have been developed for thse corract-
ness proofs of programs, which =2re of 'singls contrnl'. To

prove correctness of '

cooperating programs', thoese tools
are, of course, essential. PRut, 2dding to them, there should
be some other tools to cope with the cooperating mechanism.
As to the single control program, the termination of
it is a key point to prove its'correctness. On the other
hsnd, the correctness of the cooperating programs includes
termination-free, or 'dead-lock-free', property.
Tﬁe correctness of a set of programs which, as a3 whole,

take care of PTR (Paper Tape Reader) input will be proved

with a mechsniem called 'progressive induction'.
1. Programs to be proved

Fig.1l shows the PTR-input routines in the system called
8PS, which are resident in a conventional wini-computer
HITAC-1C. On the machine, they are coded in an assembly
language. Put in Fig.l they are written in a haigher-level
language for the sake of readability.

They perform thelr own jobs with the interruption
mechanism of the machine. Program A is a interruption
handling routine and program B a input routine. When =2
character from PTR is re~uested, the charactesr 1s passed to
a user program by 2 c¢311l of B. Program C ig an initiation

routine and called by 2 user program on its firet step.

—1

«Q

Al: begin
A2: T[t3 « read ptr ;
A3: t « t+l mod m ;
a4: o ¢ false ;
AS: f ¢ (h=t) ;
A6: if -f then start ptr
A7: end
A8

Bl: if e then go to Bl ;
B2: ch « Trh3y :

B33 begin
B4: if f then start ptr ;
B5: h ¢ h+l mod m ;
B6: f <« false ;
B7: e « (t=h)
B8: end

B9:

€l: t« 0 ; h« O ;

C2: f « false ; e « true j
C3: start ptr

Che

Fig. 1

PTR is driven by =n istruction stert ptr. ”henbthe
next character on the»paper tape ie read into the hardware
buffef, PTR will =top 2and an intervrruption +ill be caused.

By the interruption, the control is transferred to A 2t
once, except when the control is in 2n intérruptionwinhibited
part of programs, in which case the transfer of control

will be postponed until it goes out of the part.

After the completion of A, the control will be returned
to the position where the interruption was caused. In A
the character read is taken out by an instruction read ptr
from the buffer.

In Fig.1l, interruption-inhibited parts are enclosed
with begin and end. To make thelmatter clear, we assume
that the statement 1in the language consists with an in-
separable action and any interruption may occur only at
the end of statement.

Programs A,B and C have their own variables:

T : a round-robin buffer of characters, whose size is'm,
h : a pointer to the first character in T.
t ¢ a . pointer to the first empty cell in T.
f : a flag indiCating'whether T is full or not.
e : a flag indicating whether T i1e eupty or not.
User programs csnnot access to those wvarlables. For

communication between the routines and user programs, 2

variable ch 1s used which will contain the resulting characher.

—d

2. Proof of the termination~free property

At first, we put the definition of the corrsctness of

the routines.

Assumption:
(al) A user program ca2lls C at its first step.

(a2) On PTR, a paper tape is set on which a secuence

of characters c,,¢,,¢,, ... 1s punched.

Correctness: (with (al) and (a2))
On the i-th call(120) of B,

(cl) B completes its job, 2and

(c2) ch contalns the character c; .

Now, let's begin to prove (cl). It is easy to see
that A and C are 1oop—free-and B has only one 1loop, which
is controled by the variable e. To show (cl), therefore, it
is necessary to handle with the properties of the variables,
which may well be a part of (c2). (c2), at the same time,
ig depend on the property (cl).

Let's change the view point.

Hypothesis:
(hl) After the competion of B, B will be called again

in a finlte period of time.

26

let t; and tf'be the time of the i-th entry to and tne i-th

exit from A. Then we will prove:

(pl) with (hl), if t; exists, there exists tgy.

proof
(1) A has no loops, the existence of t. is evident when tg
exists. On t;, e is set to false and if f is set to
false, PTR is driven. So if f=false, by the hardware
mechanism, tg exists.
(2) Now, consider the case f=true on t;. We will complete
the proof by case analysls where the control is returned
to on tz.
(case 1) to Bl:
e=false and the loop is by-passed into (case 2).
(case 2) to B2 or B3:
The begin -- end part is performed and f=irue makes
PTR driven. Thus the existence of t;4 1s proved,
(case 3) to B9 or to a point in the user program:

With (hl), this case is treated as if (case 1). R

The existence of t, is evident from (al) because PTR

is driven by C. Thus wé have:

(p2) Under the assumptions (al) and (hBl), there exists

the time t; for every i=0, or‘eauivalently, the

routines are termination-free.

The proof given above is based on an induction which
we call 'progressive induction'. The idea is summerized

as follows:

Progregsive Induction : 4[
Let By be a program polnt with the assertion Agon it. |
I

(1) Assume that at the time t, the control is on P, and

A, holds. Then, the existence of " (4'>t) when

the control 1s again on Py is proved and Ag holds
5 on t .
(2) The existence of‘such t with A, 1s derived from the
initial conditions of the programs.
With (1) and (2), we claim that the programs are termina-

tion~free.

e e e

i o vt e £ e b+ oS s e - —

3. Proof of the correctness

Having been proved the terminstion-free property,
let's prove (c2) with an application of the assertion
method to it.

Before going to prove 1it, we slightly modify the
programe into thelr equivalent form, which 1is shown in
Fig.2. 1In Fig.g, it 1s easy to see that on the i-th entry
to B, hh has the value 1, and that on the 1-th entry to
A, or on the interruption for the i-th character, t
has the value 1.

We put assertions to the programs as ceen in Fig.2.
The proof should be completed with:

(1) to verify that in each program, the assertions
attached satisfy the verification conditions;

(2) to show that the assertion on C4 implies one on
Bl, one on B9 impliegs one on Bl, and that each one
on B1,B2,B3 and B9 implies bne on Al, a2nd that
one on A8 implies each one on B1,B2,B3 and B9.

Those are easily verified and we can now deduce from

them that ch=c; holds at the i-th exit from B.

-

Al: {P¥2, G} begin

A2: T[t mod m] ¢ read ptr ;
A3t L+l

Ah: e « false

AS: e (tm=t) ;

A€: if -f then start ptr ;

A7: {PYR, G} end
A8: {PYR, G}

B
Bl:{PYQYR,G} if e then go to Bl ;
B2:{ PYR, G} ch <« T[h mod m] ;
B3: { PYR, C} begin
B4: if f then start ptr ;
B5: n < h+l ;
B6: f <« false ;
B7: e <« (t=h) ;
B8: { PvQ, G} end
B9: { PYQVR, G}
c
Cl: {true} t<« C; h < O
Ce: f « false ; e < true ;
C5: start ptr
c4: {q, Gt
where
P : nlt<h+m, of, -e
Q : h=t, ~f, e
R : t=h+m, [, -e
b1
¢ : AT mod ml= o
‘t=h
Fig. 2

30

4. Conclusion

We have introduced a new tool 'progressive induction',
and correctness of the example programs, which is a
part of an actual system, is proved with it.

Application to various examples and construction
of a formal system based on the idea would follow.
Anyhow, the progressive induction, we believe, will
perform the essential role on proofs about cooperating

programs.

ACKNOWLEDGEMENT: We wish to thank Professor S. Igarashi

for his kind advices.

——-/0 -

