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DEGENERACY OF HOLOMORPHIC MAPS OMITTING HYPERSURFACES

Fumio Sakai

Let W be a projective algebraic manifold of dimension n
and D a hypersurface on W. Let fxtn—-——e W-D be a holomorphic
map. We say that f is degenerate if the Jacobian of f vanishes
identically. 1In this note, we shall deal with the influence of

the singularity of D on degeneracy theorems of f.

1. Notations

A hypersurface D on W is said to have simple normal cross-

ings if each irreducible component of D is non-singular and D
has normal crossings, i.e., D is locally given by wl~--wj=0,
where (wl,...,wn) are local coordinates of W.

Let L be a line bundle on W. Let h'(n)=dim ®(w,®(1)).

The L-dimension «(L,W) of W is roughly the polynomial order of

ho(nﬁ,) as a function of positive integers m. Note that K(L,W)
takes one of the values -«,0,1,...,n. Here we need the follow~:
ing fact: k(L,W)=n if and only if

limsup m—nho(nﬁl)>0.
m—>+o

If cl(L)>0, then ¢ (L,W)=n. For a divisor D, we denote by [D]

the associated line bundle. We write k(D,W)=x([D],W).

2. Degeneracy theorem

Picard’s theorem states that any holomorphic map f:G——-{Pl
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omitting three points is a constant map. We begin with the

following generalization of this theorem.

Theorem 1 ([15], see also [2],[10]). Let W be a projective
algebraic manifold of dimension n and D a hypersurface on W.
Suppose that

(1) K(KW+D,W)=n, where KW is the canonical bundle of W,

(ii) D has simple normal crossings.

Then any holomorphic map f:mn——-—$ W-D is degenerate.

Remark. In case W=:Pn and D= a hypersurface of degree 4,

the hypothesis (i) is satisfied if and only if d>n+2.

The following example shows that we cannot remove the hy=-

pothesis (ii).

da-1

Example 1. Let W=, and D={w0 w -w%=0} , Where [wO:w W

2 1 2]
By the above remark, if d>4,

2
are homogeneous coordinates of ZPz.
the hypothesis (i) is satisfied. D has only o6ne singularity at
[0:0:1] . Define a holomorphic map f:¢2=(zl,zz)———~—~%1P2 by

z
:zd+e 2]. Then £ omits D and the Jacobian of f is

f(zl,22)=[l:zl 1

.In what follows, we shall consider the questioni what hap=-
pens when D has worse singularities than simple normal crossings

in Theorem 17?

3. Resolution of sigularities

Let W be a projective algebraic manifold of dimension n and
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D a hypersurface on W. If D does not satisfy the hypothesis (ii)
in Theorem 1, by desingularizing D, we can find W* and D* satis-

fying the following conditions:

(i) TiW* ——> W is a composite of monoidal transformations,
(ii) 7m:W*-D*— W-D is biholomorphic,
(iii) D*= the support of m*D,

(iv) D has simple normal crossings.

From Theorem 1, it follows

Theorem 2. If K(KW*+D*'W*)=n' then any holomorphic map

f:mn—————éw—D is degenerate.

It suffices to consider f as a holomorphic map to

Proof.
W*-D*, qg.e.d. / Wk =D*
vog
£ia” W-D

To calculate K(KW*+D*,W*), we study the process of the
desingularization, in which we have a sequence of monoidal trans-

formations ﬂi:Wi+l————$ Wi with non-singular centers Ci such that

(i) WO=W, W£=W*, w*:p\;;}2 D ?Z=D*
. = * L] Ld
(ii) D,= the support of m* _1Ps-17 : -
(iii) D,=D*, which has simple normal f v
¢ W, > Dy
. T, ¥ Yo
crossings. 0 0
W= 0 D] D0=D

Define
D,=the strict transform of D, by m, .,
i i-1 i-1
E,=the exceptional locus of Tiqr L.e ﬂi-l(ci-l)’

§.=the codimension of C. in W,,
i i i
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vi=the multiplicity of the singular locus of Di at Ci'

Then we have

5 -5 = ® -

Di—Di+Ei, ﬂf-lDi-l_Di+vi—lEi’ KWi_ﬂi—lKWi_1+[(si-l l)Ei],
(1)

Ky ¥0g1=ms 1 (K +IDy 1 DHIG; _4=vy 7)E;T -

i i-1
Example 2. We examine the cusp D= {y =x }

D

v0=2 vl=2 v2=3

ProEsitiop 1. K(Kw*+D*,W*)iK(KW+D,W);

This follws from properties (1), and further if D has simple
normal crossings, the equality holds. Moreover we have the

following

Proposition 2. Let f£:V'—— V be a birational morphism,

where V~,V are projective algebraic manifolds. Let D be a hyper -
surface on V and put D’ =the support of f*D. Then

K (KV- +D”,V" )<k (KV+D,V) .

Remark. K(KW£+D*,W*) is independent of the desingulari-
ztion W*,D*. 1In fact let Wl'Dl be another desingularization of
D. There exists a desingularization W#%#* ,D**, which is obtained
by a sequence of monoidal transformations of W*, with centers
over D#*, such that there is a birational morphism ¢:W**-—>Wl.

The assertion follows from the above propositions.
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Definition. We say that D has quasi-negligible singulari-

ties if viéai holds for i=0,...,1-1.

Proposition 3 ([15). If D has quasi-negligible singulari-

ties, then K(KW*+D*,W*)=K(KW+D,W).

Proof. By (1), we have
i - i-1 i-1

Hence we have K(KW*+ D*,W*) > K(KW-+D /W), which proves Proposi-

tion 3.

Thus the hypothesis (ii) in Theorem 1 can be weakened as:

(ii) * D has quasi-negligible singularities.

Examples of quasi-negligible singularities

(i) normal crossing is quasi-negligible,
(ii) a curve has quasi-negligible singularities if and
only if itsisingularities are ordinary double points,
(iii) the isolated singularity wg+---+wg=0 is quasi-negli-
gible if dZn(this type appeared in ‘Carlson [11)
2, 2 k+1

(iv) on surfaces the singularity defined by wl+w2+w3 =0

(type Ak) is quasi-negligible.

Proposition 4([15]). If the Kodaira dimension K(W)=K(KW,W)

20, then we have K(Kw*+D*,W*)=K(KW+D,W).

Therefore in case «(W)>0, the hypothesis (ii) can be

removed. This leads us to study the case k(W)<O0. Note that

k (W)<0 if and only if ho(mKW)=0, for every positive integer m.
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In case n=2, a surface S with k(S)<0 is birationally equiva-

lent to ]PlXC, where C is a curve (ruled surface). We have

Proposition 5. Let S be an aldgebraic surface and D a curve

2 2 2 =
on S. If (KS+D) = (vg=2) ----—(\,Q_l 2)”> 0, then «x(Kg+ D ,S)=2

implies K(KS* + D% ,S%) =2,

Proof. By (1), putting Si=2, we get

2_, % 2
(KS.+Di) _(ﬂi—l(KS. + D

)+ (2-v, _
i i-1 1

i-1 1) E;)

2 2

Hence we oObtain

' 2

Q-1 2)">0.
2

Let 1“=KS+[D‘]‘, I‘*=KS*+[D*] . Using this notations we have I'x">0.

2 2 2

(Kg D% ) “=(Kg+ D ) "= (v)=2) "=--- (v
We infer from the Riemann-Roch theorem that

0 2 1

h” (mI'*)+h" (mr* )i-z-mr* (mI‘*—KS*) +pa(S#).
Note that hz(mI‘*)=h0 (Ks*—ml“#) <_,ho (-(m-1)T*). Thus the above
inequality shows that eithe? h® (mr*)>0, or h®(-(m-1)r*)>0, for
large m. By (1), Ix =1T*,(I“)v’-[€] , £ is an exceptional divisor of
m. If h0(-(m-1)T%)>0, then h° (-~ (m=1) (T* +1e19=h% (- (m-1) 1) >0,

2_2

which is a contradiction. Hence h0 (mI’*);:—zl (r*) “m“+..., which

proves x(I'#,S*)=2, g.e.d.

Example 3. Let S=1P, and D= a hypersurface of degree d.

2
The hypothesis in the above proposition is

2 2 - oy 2
(d-3) —(\)0-2) - (\)Q,—l 2)" > 0.

Let k%x=¢(I'*,S*). We give some examples:



(i) four lines meeting at one point,

F_’“’zzv—l, K*:n-—°°,

(ii) a conic and two lines meeting at one point,

1—-*2___ 0, K.*=l,

(iii) a quintic with two cusps,

rel=p, «x=2,

(iv) the curve in Example 1,

]_"*2<0, KE= =00 'O

Remark. Let V',V be projective algebraic manifold of
dimension n and let f: V——>V be a finite morphism. For a
hypersurface D on V, let D’ =the support of f£*D. Then it is éasily
seen that K(KV,+D’,V');K(KV+D,V). Let V *,D"#* and V*,D* be
desingularizations of V,D” and V,D, respectively. Is it true that

K (K xtD7 %, V7% )2 k (K, +D%,V*) 2

4. Concluding Remarks

Let M be a complex manifold of dimension n. We define the

following properties of M.

(ED)k Every holomorphic map f:CEkXDn_k-———:oM is degen-
erate, where D is the unit disk {z] 1z <1},
(HD)k Every holomorphic map f:(L‘k-————>M is degenerate in

the sense that the rank of the Jacobian matrix of f is not maximal

anywhere.
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(AD)k Every holomorphic map f:ka-~?M is algebraically
degenerate, i.e., the image f(@k) is contained in a proper sub-

variety of M.

Obviously we have the following relations:

(HD), ——— (ED),

Q.l l>/ (HD)n=(ED)n

(HD)k+l~—————5(ED)k+l

The proof of Theorem 1 ([15]) implies the following strong-

er form of Theorem 1. ( The conclusion of Theorem 1 is (ED)n.)

Theorem 4. Under the same assumptions on W and D as in

Theorem 1, M=W-D satisfies property (ED)l.

Proof%) Let ZDrﬁ{z|\z|<r}. Replacing B[r] in [15] by ZD?,

we have the following Schottky-Landau theorem.

‘Theorem ([15]). Assume the same assumptions on W and D as in
Theorem 1. Let'f:IDg ~———> W-D be a holomorphic map with Jf(O)#O.
Then rzn'<C !Jf(0)|_2; where C is a constant depending cnly on

£(0) .-

We proceed to the proof of Theorem 4. Assume that there
exists a non-degenerate holomorphic map;f:mx]Dn-l————~9 W-D.

By a translation of coordinates, we may assume that there exists

. n-1 .
a holomorphic map f:G?CDr ———> W-D, with r0<1, Jf(0)¢0. Define
a holomorphic map w=1ﬁ§—————% Ex;DE—l by
0

* ) This type of argument is due to I.Nakamura.



10,

r z, T r
q):(zlr---lzn)_"—__?((;o)n 151,2022,...'Eozn)'
where a=[J.(0)|. Let g=foy . Since ng(Oj=|Jf(¢(0))llJ¢(0ﬂ =1,

we obtain a holomorphic map g:ZDg————>W=D, with pJg(O)i=l for

arbitrary r, which contradicts the above theorem, g.e.d.
Several degeneracy theorems are known.

Theorem(Fujimoto [4] , Green [6]). Let Hl""’Hn be hy-

+k

perplanes in general position 1nﬁPn. Let M=2Pn— HfJ..JJHn+k.
Then any holomorphic map ¢'— M is contained in-a linear sub-

space of dimension [E].

Corollary. If k>n+l, then M satisfies property (HD)l.
Corllary(Green [6]). Let Hl""'Hd be hyperplanes in ZPnin
arbitrary position. Then M=]Pn- HfJ..AJHd satisfies properties

(AD)‘l and (ED) if d>n+2.

Corollary(Green [6] , p.39). Let W be a complex manifold of
dimension n and let Dl""’Dk be hypersurfaces on W such that
each DiE|Ll, for a‘fixéd line bundle L. Let s, be the séction
defining Di. If the algebraic dimensionaaof(sl,...,sk)§=k—2,

M=W- .o i i i
then DiJ &JDk satisfies propertles (AD)l and (ED)n—a+l‘

Theorem (Green [6], cf.Fujimoto [5] ). Let D be a Fermat
variety wg+--~ +wd=o, in]Pn, where [w :...:wn] are homogeneous
n
coordinates ofIPn. If d>n(n+l), thenﬁPn-D satisfies properties

(AD)l and (ED)l( (ED)1 is a consequence of Theorem 4).
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Theorem(Green[8]). Let D be a non-singular curve of degree
d iniPz. Let D* be the dual curve of D in the dual projective
spaceiPz. If 423, thenﬁP;—D* satisfies property (HD)l.

Theorem( [15]). Let A be an abelian variety of dimension n
and D an arbitrary hypersurface on A. Then A-D satisfies prop-
erty (ED)n.

a
Example 4. Let Xa={zl

then En—Xa satisfies property (ED)2.

a
n_ : n nl
+ +z =0} in €. If Zi=lai< 1,

1

a a
Proof. Let Ua={zll+...+znn=l}. Then Cx U, is an unramified

. n . . . .
covering of €'-X . By the assumption,- U, satisfies property (ED),

(see [lS])L So mea and mn-xa satisfy property gED)Z.
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