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On the propagation of support of solutions

to general systems of partial differential equations

by

Shigetake MATSUURA

§1. Introduction.

The purpose of'the‘pfesent article is to generalize a theorem
of F. John [5] to general (overdetermined) systems of partial
diffe;ential operators(Theorem 3.3). At the same time, we refine
the resﬁlts by giving rather precise estimates for the support of
solutions‘toisuch systems of equations in terms of convex hulls
which are new even for single equations (Theorems 3.4 and 3.5).
These estimates lead us immediately to a characterization criterion.
for systems of equations to have solutions with suppdrts in a
certain kind of prescribed subsets of the euclidean'spaée (Theorem
4.1). Our criterion theorem contains, as very special cases, the

results of D.K.Cohoon [2] and of K.Horie [3].
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§2 Notations .

Let us fix some notations. Let X = RR be the f-dimen-

sional euclidean space and E(= BQ) be its dual. When we choose

a coordinate wystem X = (xl,...,xl) in X, the coordinates

[11

£ = (gl,...,gz) in should be "so chosen that the duality
bilinear form be written as <x,&> = xl£l+...+x£££. Let
C[D>,...,D2] (or simply C€[D]) be the polynomial ring of &
indeterminates D = (Dl""’Dz) with complex coefficients.

D =‘(Dl,...,D£) will operate in the space X as the imaginary
gradient, i.e. Dy = —i—? (3 = 1,...,%; 1 = /-I). Thus, each
polynomial P(D)e ©[D] 1is a partial differential operator with

constant coefficients.

Now, 1et8é(£n be an mxn matrix of partial differential

operaters
B ?11(D)...Pln(D)
Lo ...
Pmi(D)"'Pmn(D)

and consider the_followihg system of equations
(2.2) &)(D)U =0

wheré U = uy is a column vector of unknown functions (or

u
n

~generalized functions). For simplicity we consider mainly c®-

functions defined in an open (or on a regular closed) subset
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of X.
In discussing the equation (2.2), we may alway assume
that

(2.3) m2>2n

by. augmenting , if necessary, the number of rows in (2.1) by

addition of zero entries. Then, let

(2.4) {Ay,...,A}
be the totality of nxn minors of the matrix (2.1).- Properties
‘of the operator (2.1) can often be requced to those of the set

(2.4) or to those of the ideal
(2.5) I = (Aseeeshy)

of €[D] generated by the sef of polynomials (2.4).

For two éubséts A,-B of ml, their vector‘éum (reép.
their vector difference) will be denoted by A+B (resp. by
A-B). Their set differenge will be denoted Dby ANB. The convex
hull (resp. the closed convex hull) of a set A will be dénbted
by ch A (resp. by EH.A).

Given a vector ¢ E\{0}, a subset df X 1is called a

J-slab if it can be written in the form
QB3;1) = {xeX ; <x,}>e 1}
for an interval I on the real line [R. We use also the simplified
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notations
Q@) = a($; (0,=)),
Q(-3) = Q(y; (-=,0)).
Taking théir closures, we get the closed half spaces

Q) = a(y;[0,°)),
a(-$) = 9(5;(f°°,03). .

As for hyperplanes, we use the notation
H(&,Q) = {x ; V<x,§‘> = ¢}

for a given cegR and the sinplified notation

H(Y) = {x ; <x,5? = 0}

The cones in X (or in 2) that we consider in this article
are always convex cones with their verﬁices at the origin 0.
Thus a subéet I' of X 1is called a cone if, for every xeT
and for every t > 0, tx€T. A closed convex cone T in X
is called a $-proper cone if it is contained in (%) and if
its intersection with the hyberplane H(S). is reduced to the

one point set {0}. (i.e. TNH(®) = {0}). The last condition
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is clearly equivalent to say that Pr\I-f(ﬁ*,c) is always compact

for any celR.



73

3. Quasihyperbolicity, Main theorems.

For a polynomial Pe€ C[D], we denote by pd

its principal

bart (i.e. its homogeneous part of the highest degree). Given a

Jdez\ {0}, we shall shortly say that a polynomial P is 4 -

hyperbolic if P is hyperbolic with respect to /. A polynomial

P- is called weakly #-hyperbolic if its principal part PO is
WW

J-hyperbolic (c.f. [1],[4]). We define the dual cone T(P,P

and the propagarion cone T¥(P,4) by the identifications ’

r(p,9 = r(e%,9),

1

r#(p,$) = r*(p’,4) >

when P is weakly -hyperbolic (even though P might not be
’ﬁ—hyperbolic).- We note hére that the propagatidn of a weakiy
éLhyperbolic polynomial is alwaysaﬁ~prober~closed convex cone.
If P is weakly .#-hyperbolic and if u 1is a C -solution to

the equation

(3.1) ~ P(D)u = 0

in the closed half space Q(J3fc,»)), then for the support of

u we have the inclusion relation
(3.2) supp u € K + T*(P,#)

where K denotes a closed convex set containing the support
of Cauchy data of u on H(#,c). (Since p0(d) # 0, the
support of Cauchy data of u concides H(ﬂ,c%r\supp u.)

‘Now we introduce the following concept.
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Definition 3.1. A system dﬁ of .operators (2.1) is called
/ﬂ—quasihyperbolic if there exists a non-constant® weakly /-
hyperbolic polynomial P which divides all the elements of

the ideal I(f) defined by (2.5).

Remark 3.2. We say that a system d5 is degenerate if
I(fP) = {0}, i.e. if the rank of the matrix P is < n-1.
Degenerate systems are always;ﬂ—quasihypefbolic for any

de {0} .

When { is non-degenerate, it is ¢/ -quasihyperbolic
if and only if the greatest common diviéor G of the elements
of the ideal is anﬂ—quasihyperbolic polynomial (i.e. G 1is
divisible by a non-constant weakly'ﬂ—hyperbolic polynomial).

Thus G can be factored in the form
G(D) = P(D)R(D)

" where P 1is a non-constant weakly #-hyperbélic polynomial
and R 1is a polynomial having no irreducible weakly
#/-hyperbolic factor in ¢€[D]. We denote this factor P(D)

by x(@). x(f) and its factorization into irreducible

components
r 'r
(3.3) X(@) = Py (D) teop (D)FP

will play a central role in our present work. FEach irreducible
factor Pj is of course weakly -hyperbolic.

Now we state our main results.
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Theorem 3.3. Given a slab domain Q = QQJ;(cl,cz)), the
equation (2.2) has a non-trivial solution U € D@'(Q)}n such
that the closed set HCﬂ,c)f]supp U has a compact connected
componént for some ¢ G(cl,c2), then the system fi is o -

quasihyperbolic.

Theorem 3.4. Suppose that a system of operators 49 is

W—quasihyperbolic and non-degenerate. Pl,n-,Ps be the
collection of all the distinct irreducible components in

the factorizetion 6f x(é). Tﬁén, for any non-empty subset

A of {1,2,---,8}, for any c€R and for any compact convex
subset K of H(ﬁ;c) with non-empty interior (in H(#,c)),
there exists a solution IJE[Cw(Q)]n to the equation (2.2)

such that the following simultaneous set equalities hold:

(3.4) Ch(R(d;lc,=)) nsupp U) = K + ] T*(P,,¥) ,
: AEA

(3.5) Ch(R(I;(~=,c])N supp U) = K _)\XA r#(P,,#).

' <

In particular, since propagation cohesana#—proper, H(Jﬁc')n

supp U 1s compact for all c'eR.

Theorem 3.5. Suppose p be a non;degenerate system.

1) If the équation (2.2) in a(J;la,«)) admits a
non-trivial solution T elc™(;[a,2))1" such that H(f,e)N
supp U 1s compact for all ¢ > a, fhen the'systenld& is -
quasihyperbolic and the set equality (3.4) holds for some
non-emply subset A of {1,2,"';8} and for all ¢ > a

with K = ch(H(W,c);qsupp U){
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2) If the equation (2.2) in RY admits a non-trivial
solution Lle[Cm(Rz)ln such that H(¥,e)\supp U is compact
for all <:éfh then the system @ is 9§ -quasihyperbolic and
the simultaneous set equalities (3.4) and (3.5) hold for some

non-empty A and for all c¢R with K = ch(H(J4,e)n supp U).
As for degenerate systems, we have

Theorem 3.6. The equation (2.2) admits a non-trivial

solution U(EEQ'(RQ)]? with compact support if and only if
the system &5 is degenerate. More preciéely,~if db is
degenerate, then for aﬁy bpén set w and for any € > O,

there exists a solution U'e[Cw({Rl)]n such that

w € supp U Q.we

where o 5’{xEﬂR2; d(x,w) < e} (d “being a metric on Bz).



§4 Application,

We say that a pair T=(T(+),T(—)) of closed convex

subsets of RY is J-proper, if it satisfies the conditionsg

1 M can, ¢ a-d;
‘ii) T(+)11 H(qy), T(—)(\H(qﬂ) are both compact;

iii) T(+)K\T(—) has non-empty interior in H(¥).

For a ¢f-proper pair of closed.convex sets T=(T(+),
T(“)), we put |T|=T(+)L)T(_) ‘and define the direction cone

P(T) of T by putting
(h.1) remy = r(r™)ya-rrl-)y).

Here, in the right hand Side;v I' stands for the usual direction-
cones. It is clear that T(T) is always a qﬁ—proper closed
convex cone.

2

We say that a subset 3 of R is a o-proper set

if there exist two o -proper pairs  Tj=(T§+),T§—)), j=1,2

with common direction cone P(T1)=P(T2) and a vector ‘xgeﬁz

such that the inclusion relations
(4.2) | lTll g S+ x5 & |T, |

hold. For such a set S, we define its direction cone T(S)

by putting

(4.3) r(s) = I(T;) = I(T,).
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It is easy to see that T(S) does not depend on the choice

of Tj (j=1,2) and Xy

Now we can state

Theorem 4.1. Given a non-degenerate system of operators

45 and a ,f—proper subset S of BQ. For the system of
equations (2.2) to have a non-trivial solution UereT( IRQ)Jrg
with supp UE& S, it is necessary and sufficient that x(di)

has an irreducible factor P such that

A

(4.4) T*(Py, ) ST(S).

If dim T'(S)=k then it is easy to see that, for a suitable
coordinéte system and for a number b > 0, we have ¢9=(l,0,...,0)
=X

and T(S)C{x; x; >0, [le < bxy, J=2,.0., Ky X =0}

k1l "R
since T(S) is a ¢f-proper cone. Then, the principal part
Pg (E£) of the polynomial PA(E) satisfying (4.4) depends only
on ,gl,...,gk and all the solutions (El,...,gk)eiRk of the
algebraic equation Pg(ﬁ) = 0 should satisfy the inequality

|£l[ < b(g§+...+gi). With these remarks in mind, we get directly

from the abowe theorem 4.1 the results in [2] by putting m=n,

k=1 and those in [3] by putting m=n=1, k=2.
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