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On the local surjectivity of analytic partial differential

operators in the space of distributions

with given wave front sets

Kimimasa NISHIWADA

In this note we shall state some characterizations of C°
and analytic wave front sets for distributions introduced in
Hormander [6], [7] and as an application, an existence theorem
of solutions of partial differential equations with analytic
coefficientsi In so doing our viewpoinf is that distributions
(and hyperfunctions in general) can be decomposed into sums of
boundary values of analytic functions. It will be shown that a
decomposition of analytic wave front set for a distribution £
i1s equivalent to a decomposition of f into sum of boundary
values of analytic functions. This result must be related to
the notion of micro-analyticity for hyperfunctions (Sato tll]),
however the corresponding argument is omitted here.

I am grateful to Prof. S: Matsuura for valuable advice and
kind  interest. I also wish to thank Dr. N. Iwasaki whose ideas

inspired me to the proof of Lemma 4.2 .

1. Boundary values of analytic functions.

We identify ¢ with the hermitian product <z,r>=) z.z. and
: izi

2n

R with the scalar product Re<z,z>. For Q,F(:&n, we denote

by (O(Q) the space of germs of analytic functions in a neibor-

hood of £ and by T(I') the tube domain R™il in ¢?. TFor given
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two cones Fl and F2 s, the notation Fl cC F2 means Pl is
generated by a relatively‘compact set in F2

Definition 1.1, Let w®w be an open set in Rn, Q
a complex neighborhood of w and ‘I' an open convex cone in Rn.
For a function f € H{aQNT(T)), we shall say that f admits a
boundary value in w if the 1limit liﬁ f(x + 1y) exists in &
for every subcone I CC T. gig’
The 1imit is an element in & (w) and denoted by f(x + iT0).

Now we shall recall one of the fundamental results in

Martineay [10].

Lemma 1.1. . f € (HQ2nT(r)) admits a boundary value
f(x + iT0) &€ Q' (w). if and only if for every compact set K in

w and every subcone ''CC T, there are constants C and M

such that

(1.1) Sup |f(x + 1iy) < CIYI-M
xek .

if y e I'' and |y| is sufficiently small. »
It is sufficient for the proof of the if part of the lemma

to assume (1.1) only for a half line I, in virture of Prop.

11.6 in Komatsu [8]. Note that if (1.1) is valid fof a function§

. i
f e HQNT(r)), one has ]
|

(1.2) sup |DSf(x + iy)| g ciclaylel |y -lol,
xek
for every a and sufficiently small y € T'. Moreover since

f(x + iT0) € o '(w), the functional

<f(x + 1T0), > = 1im »Jf(x + iy) ¥ (x)dx, yecg(w),
y¢0

-2 =
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is defind. Let ¥ (x+iy) be a C extension of @P(x)
into the complex domain such that supp P(x+iy)CQ and

that

]
=
-
N
»
-

(1.3) 39x + 1) | < cylyN, W
Then it follows that with 6 €T

(1.4) <f(x+il0), ¥> = 21 ” f(x+it0)<P(x+ito),6>dxdt.
t>0 '

This integral is absolutely convergent by (1.1) and (1.3).
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2. Real analyticity.

We first reproduce the definition of analytic wave front

set for a distribution.

Definition 2.1. (H6rmander [7]). Let w Dbe an open set

in RY, (xo, EO)E'T*(m)\O and u € &' (w). Then we shall say

that (XO,EO)QVWA(u) if and only if there is an open neighbor-
hood U of Xy, an open conic neighborhood V of EO and
a bounded sequence uNE 8‘(w) which is equal to u in U

and satisfies the estimates
~ N _
(2.1) |9 (8)] < clen/fe)™, N =1, 2, ...,

when &€V for some constant C.

One may put uN=¢Nu in the above definition where ¢N’
N=1,2,..., 1s a sequence of functions in Cg(w) which is
equal to 1 on U, vanishes at all points with distance

larger than r from U and satisfies

A

(2.2) D" Boy] < car"“l(CN/r)|B| ie |8

Here C depends only on n and Ca depends only on n
and o. For the existence of such functions, c.f. Lemma 2.2
in [7]. We need to extend e into the complex domain and

more precise estimates than (1.3).

Lemma 2.1. For any M>0, there 1is an extension



x+iy) € CE(Q) of ¢ which satisfies the estimate

¢ox¢ oN?

= . Mtk
(2.3) D830, (x + 19)] < CMCNNIB'IyI ,

if |B|+k<N, for some constants Cy and C boﬁh independent
of N and y. | .

In view of (1.2) and (2.3), one can easily estimate the
Fourier transform of ¢2Nf(x+ir‘0) i.e. one has

—i<X,£>

(2.4)  |<f(x + 1r0), > < cconv/jgp

%on°
N=1,2,..., when £¢V'={n;<ym>__>_0 for all yeT'} the
dual cone of T'CCT. With a converse study, one can prove

the following

Theorem 2.1. Let {Va} be a finite family of open convex

proper cones in R" and {Fa} a family of dual cones of Va.'
Then the following statements are equivalent for a distribution
f defined near xOEIRn.
(1) The fibre WF,(f);. 1is contained in UV..
A x, oo
(ii) There is a neighborhood ‘W of Xqs its complex
neighborhood & and are functions f,€ G /\T(I‘&))

for some open cones I‘&)) I’a such that

(2.5) £=7f,(x+ ir,0) in .
o

The decomposition (2.5) is carried out in the space of c”

-5 -
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functions, provided that f dis C

3. Smoothness .

In [6], WF(f) for a distribution f is defined as the
set of points in the cotangent space which musﬁ be character-
istic for every pseudo-differential operator P such that
Prec”. It is clear that WF(f)C:WFA(f). By means of the
results in the preceding section, another characterization

of WF(f) is obtained.

Theorem 3.1. Let w be an open set in R", (XO,EO)€

T™*(w)\0 and f € & (w). Then (xo,go)lfwh‘(f) if and only
1f there exists a finitelfamily {Fa} of open convex cones
in ﬁn, a complex neighborhood & of X 'and a decomposi-
tion of f  near Xqs
f = g fu(x‘+ irao),

with £ € C(QNT(T)) such that £ (x+iF 0) €C” near x,
for every a with PaC:{y; <YsEp> 2 0}.

Finally we remark that a necessary and sufficient condi-
tion for the boundary value f(x+iT0) of a function £ €
HKQNT(T)) to be C€° on. w=2NR", is the following;
there exists a non-empty subcone TI''CCI' such that for évery'

compact set K in w and multi-index «a, D;f(x+iy) is

bounded on (K+iT')NQ when |y| is sufficiently small.



4., An existence theorem |

In this section we shall give an application of Theorem
2.1. Let P=P(x,D) be a linear partial differential operator
with analytic coefficients in an open set XCR"™ and with

principal part Pm(x,D).

Theorem 4.1. Let X, € X and f(EJQ'(X). Assume that

Pm(xO,E)ZO as a polynomial of £ and that
(4.1) P (x4, &) # 0 for all gGWFA(f)|XO
Then the system of equations,

(4.2) P(x, D)u(x) = f(x) ,

(4.3) WF(u) = WF(E)

admits a soiution u 649' in a neighborhood of X Such
solutions are uniquely determined except for analytic sclutions of
Pu = 0 near x, and ¢” if so is f.

We first.remark that the condition (4.1) is always
satisfied if either f is énalytic or P 1is elliptic.
Thus our theorem partly extends the Cauchy-Kowalevsky
fheorem. It is also mentioned that it haé a closé connection
with the fundamental theorem of Sato in hyperfunction theory.
(Sato [111, Bony-Schapira [1]) |

The last statement follows from the regularity theorem

of Hérmander [6], [7]. In construction of a distribution
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solution u Tfor given f, we shall need the Cauchy-Kowalevsky
theorem "with estimates". Let B(zo, r) be the open ball in

n

) of centre Zq and radius r,

D(zy, ) = D*(zy, r) = B(zy, ¥) N {z 5 <z - 7, &> = 0}

n I
for ¢ € € \0 and Ns’afzo, r) = Ns,d(ZO’ r) be the

edr - neighborhood of DC(Z (1 - e)r) in B(zo, r). (0<e<l)

O’
Lemma 4.1. Assume that Pm(zo, Z) # 0. Then there exists a
neighborhood V of £, and a constant d&¢1 -such that for every

ball B(zl, r) in 'V, any germ on D(z13 r) of solution of

(4.4) Pu=f, £ € O(Blzy, r))
can be prolonged to the soclution u € C}(Bizl, Sv)).
Moreover all such solutions satisfy the estimates,

(4.5) Sup |u(z)| < C. 6(rmsuplf(z)| + suplu(z)])
B(zl,dr) ’ B(zl,r) Ne;a(zl,r)

where 0 < e €1, m = deg P and the constant C€ s is independent
b4

of u; £, z and r.

1
The proof of Lemma 4.1 has a good 1inkage with Theorem

5.1.1 in [4]. The next lemma is crucial for our theorem. We

set r.= {z ; Re<z,z> <-¢]|zl|}, Xy = 0 without loss of generality

and H(z, a) = {z ; Re<z,z> = al. Denote ¥ - slab domains by



Q(z 3 a, b) = {z; a< Re <z,s> <b}

. Lemma 4.2, Let Pm(O, ) # 0. Then there exists € > 0
so that for any neighborhood V of 0 there is a neighborhood

W of 0 such that for any cone T 3) FE , the equation.
(4.6) P(z, Du(z) = f(z), f & O(I N V)
admits a solution u €'C3(w N Pe) which satisfies

(4.7) suplu(z)| < ct™™(sup|f(z)| + suplu(z)])
Féﬁﬂ(c;—a,—tT rnQ(c;-a,-bt) Fgﬂﬂ(c;-a,—ab)

Here 0 <t < a and the positive constants C, M, a, b (<1)

depend only on €, V, I and 6§ in Lemma 4.1,

As for the existence of u in 'e N W, our assertion is a
speclal case of more gerneral result by Zerner,Bony-Schapira.

([1]1, [12], see Lemma 3.2 in [1].)

Proof of Theorem L4.l. We assume Xg = 0 and set
I-= WFA(f)IO‘ Since each point -1i&, £ € I, is non-characteristic
with respect to P, ong finds the cqnstants Gg and Eg
corresponding to -if in Lemma 4.1 and 4.2. To each & & I;
choose asmallnealconiqal neighborhood VE of & with 1ts dual
cone T so that

3

. ={ye R® 5 <y, £> 2 eglyl} CC T,

-9 -
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Then

j,Itfl 1T, ) {z.=x + 1y ; <y, £ 2z e z[}
= {z ; Re <z, -1&> < —eglzl}

Since I 1is compactly generated, a finite family {Va} of such
neighborhoods covers I. Denoting the interiors of dual cones of
Va by Pa and decomposing

£f=2f,(x +1r0), £ € O w n T(T ),
for a neighborhood V of 0, we conéider each equation
(4.8) P(z, D) u,=f, in VN T(Fa)
Let V, =V, with £ € I and €= g . There exists a
sufficiently small real neighborhood w of 0, a complex one
W and a > 0 such that from Lemma 4.2 (4.8) has a solution
u, in (x + PE)(] W for every xé€ w with initial data
0 on the complex hyperplane <z, -if> = -3, Hence we obtaln an
analytic solution wu  of (4.8) defined in (w + iCE) N W.
Since fa(x + iy) 1is locally uniformly temperate with respect to
y, (4.7) implies

lu (x + 1y) | cley, &>

A

-M
Cleyl

?

A

- 10 -



when y & Cg
ua(x + 1050)6

and then that

29

is sufficiently small. This means
t ‘ : ,
Q1 WFA(uos>|x C dual cone of Cg for xe w

WFA(u)|v is contained in a small neighborhood of

I on which Pm(x, £) # 0. Here we have define

i ) .

u(x) = Zua(x + iCEO), a distribution solution of the equation.

(4.2). Applying the regularity theorem of Hormander [7], we

conclude that

WFA(u)lx = WFA(I‘)IX, X € w.

- 11 -
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