234

Exceptional sets of algebraic varieties of hyperbolic type

Shigeru Iitaka
(University of Tokyo)

- 1. Let V be a projective n-manifold (i.e., non-singular projective algebraic variety of dimension n) of hyperbolic type. Assume that the m-canonical system |mK(V)| has no base point for large m. We then have a morphism $f = \oint_m : V \to W$ $\subset \mathbb{P}^N$ where $N_m = P_m(V) 1$. Choose m so large that f is birational and that W is normal. Let $\sum = \{w \in W; \dim \overline{f}^1(w) > 0\}$, which is a Zariski closed subset of W. \sum is a union of irreducible components \sum_1, \ldots, \sum_r . Our purpose here is to prove that each \sum_j is an algebraic variety of elliptic type. We call \sum the total exceptional set and \sum_j an exceptional subvariety of V.
- 2. We prove this by induction on $\dim f(\sum_j)$. If $\dim f(\sum_j) > 0$, then consider a general hyperplane section W_1 of $W \subset \mathbb{P}^{N_m}$. $V_1 = \overline{f}^1 W_1$ is an (n-1)-submanifold of V, which is linearly equivalent to mK(V) as a divisor i.e., $V_1 \sim mK(V)$. By the symbol $\mathcal{O}(E)$ we indicate the sheaf of germs of holomorphic sections of the vector bundle or the divisor E. Considering the exact sequence

 $0 \to \mathcal{O}(eK(V)) \to \mathcal{O}((m+e)K(V)) \to \mathcal{O}((m+e)K(V)|V_1) \to 0$ with the fact that $K(V_1) \sim (K(V) + V_1) \mid V_1 \sim (1+m)K(V) \mid V_1$, we obtain the exact sequence:

 $\text{H}^0(V, \mathfrak{G}(\text{me}_1) \text{K}(V)) \to \text{H}^0(V_1, \mathfrak{G}(\text{me}_1(V_1))) \to \text{H}^1(V, \mathfrak{G}(\text{e}_1(\text{m-}1) \text{K}(V)))$ where $e = \text{m}(e_1 - 1)$. By a generalization of Kodaira's vanishing theorem, $\text{H}^p(\text{-mK}(V)) = 0$ for any m > 0 and p < n. Hence, the Serre duality implies $\text{H}^1((m+1) \text{K}(V)) = 0$. Therefore, $\text{Tr}_{V_1} \mid e_1 \text{mK}(V) \mid \text{ is complete, so } \Phi_{e_1 \text{mK}(V)} \mid V_1 = \Phi_{e_1 \text{K}(V)}.$ Hence, $\sum_j \cap V_1$ is exceptional for $\Phi_{e_1 \text{K}(V_1)}$. By induction hypothesis, it follows that $\kappa(\sum_j \cap V_1) = -\omega$, which induces $\kappa(\sum_j) = -\omega$. Thus we can assume that $f(\sum_j)$ is a point p and write $E = \sum_j \text{ which is a subvariety of codimension } r$.

3. If r = 1, by the generalized adjunction formula, we have $\kappa(E) \le \kappa(\{K(V) + E\}) / E$, $E = \kappa(E | E, E)$.

A general hyperplane section W_1 does not contain p and $|W_1|_p$ has a member W'. Then

$$f*W' = r_1E + G \sim f*(W_1),$$

where each component of G differs from E and $r_1 > 0$. Hence $f^*(W_1) \mid E = r_1 E \mid E + G \mid E_1 \sim f^*(W_1 \mid p) = 0,$ which implies $\varkappa(E \mid E, E) = -\omega$. Thus $\varkappa(E) = -\omega$.

4. In the case of r > 1, we first resolve the singularity of E following the method of Hironaka. Let $\mu_1:V_1\to V$ be a monoidal transformation with non-singular center C C sing(E), the singular locus of E. Let E_1 be the strict

transform and L_1 the exceptional divisor for μ_1 . Then $K(V_1) = \mu^*K(V) + (v_1-1)L_1$ and $K(V_1) \mid E_1 = \mu^*(K(V) \mid E) + (v_1-1)L_1 \mid E$ where v_1 = codim. of C in V. If C is a divisor on E, then $v_1 - 1 = r$ and if not, $L_1 \mid E_1$ is exceptional for $\mu_1 \mid E_1 : E_1 \rightarrow E$. If E_1 is still singular, we have to perform another monoidal transformation $\mu_2 : V_2 \rightarrow V_1$. Repeating this process, we have a sequence of monoidal transformations $V_\ell \xrightarrow{\mu_\ell} V_{\ell-1} \rightarrow \cdots \rightarrow V_1 \xrightarrow{\mu_1} V$ and a non-singular E_ℓ , being the strict transform of $E_{\ell-1}$. Let $\psi_j = \mu_j \circ \cdots \circ \mu_\ell : V_\ell \rightarrow V_{j-1}$. Then we have $K(V_\ell) = \psi_1^*K(V) + \sum (v_j-1) \psi_j^*L_{j-1}$. Moreover by an exact sequence

In order to compute the divisor [det $N_{V_{\ell}/E_{\ell}}$] we blow V_{ℓ} up with center E_{ℓ} . Then we have a monoidal transformation ψ : $V^* \longrightarrow V_{\ell}$, whose exceptional divisor L^* is isomorphic to $\mathbb{P}(N_{N_{\ell}/E_{\ell}})$. $\mathbb{O}(L^*) \mid L^*$ is the dual of the fundamental sheaf $\mathbb{O}_{\mathbb{P}}(1)$ of $\mathbb{P} = \mathbb{P}(N_{V_{\ell}/E_{\ell}})$. Consider a general hyperplane section \mathbb{D}^* of V^* and write $\mathbb{D} = f_{\ell}(\mathbb{D}^*)$, which is a prime divisor passing through \mathbb{P} . Write $f^*\mathbb{D} = \mathbb{D}_0 + \cdots$, \mathbb{D}_0 being the proper transform of \mathbb{D} . Then since $\mathbb{P}(N_{\ell}/E_{\ell})$

 D_0 contains E. Letting \mathcal{E}_1 be the order of D_0 at the generic point of C, we have $\mathcal{M}_1^*D_0 = D_1 + \mathcal{E}_1L_1$, where D_1 is the strict transform of D. Considering in the same way as a above, we have

$$\begin{split} \varphi_1^{*} D_0 &= D_{\ell} + \ \mathcal{E}_1 \ \varphi_1^{*} L_1 + \ \mathcal{E}_2 \ \varphi_2^{*} L_2 + \cdots + \ \mathcal{E}_{\ell} \ L_{\ell}, \\ \psi_1^{*} D &= \ \psi^{*} \varphi_1^{*} D_0 = D^{*} + \ \mathcal{E}_1 \psi_1^{*} L_1 + \ \mathcal{E}_2 \psi_2^{*} L_2 + \cdots + \ \mathcal{E}_{\ell} \ \varphi^{*} L_{\ell} + \ \mathcal{E} \ L^{*} \\ \text{where} \quad \psi_j &= \ \varphi_j \circ \psi, \quad \text{and} \quad \mathcal{E} \quad \text{is the order of} \quad D \quad \text{at the general} \\ \text{point of} \quad E_{\ell}. \quad \text{Hence} \quad \mathcal{E}_j &\geq \mathcal{E}. \quad \text{Since} \quad \mathcal{O}(\ \mathcal{E} \ L^{*}) \ \big| \ L^{*} \cong \ \mathcal{O}_{\mathbb{P}}(-\ \mathcal{E}), \\ \text{we have} \quad \pi_*(\ \mathcal{O}(-\ \mathcal{E} \ L^{*}) \ \big| \ L^{*}) \cong S^{\mathcal{E}}(\ \mathcal{O} \ N_{V_{\ell}/E_{\ell}}), \quad \text{where} \\ \pi : \ L^{*} &= \ \mathbb{P}(N_{V_{\ell}/E_{\ell}}) \longrightarrow E_{\ell} \quad \text{is the natural projection.} \quad \text{Moreover}, \\ \psi_1^{*} D \ \big| \ L^{*} &= \ D^{*} \ \big| \ L^{*} + \pi^{*} \ \overline{\varphi}_1^{*} (\ \mathcal{E}_1 L_1 \ \big| \ E_1) + \cdots \end{split}$$

 $+\pi^* \widetilde{\varphi}_{\ell-1}^* (\epsilon_{\ell-1} L_{\ell-1} | E_{\ell-1}) + \pi^* (\epsilon_{\ell} L_{\ell} | E_{\ell}) + \epsilon L^* | L^*,$ where $\widetilde{\varphi}_j = \varphi_j | E_{\ell}$. On the other hand, in view of $\psi_1^*(D) | L^*$ = $\psi_1^*(D | p) \sim 0$, it follows that

 $- \varepsilon L^* \mid L^* \sim D^* \mid L^* + \pi^* \overline{\varphi}_1^* (\varepsilon_1 L_1 \mid E_1) + \cdots + \pi^* (\varepsilon_{\ell} L_{\ell} \mid E_{\ell}).$ Hence, $S^{\epsilon}(\mathfrak{O}(N_{V_{\ell}/E_{\ell}})) \cong \mathcal{O}(D^* \mid L^*) \otimes \pi^* \mathcal{O}(\overline{\varphi}_1^* (\varepsilon_1 L_1 \mid E_1) \otimes \cdots \otimes \pi^* \mathcal{O}(\varepsilon_{\ell} L_{\ell} \mid E_{\ell}).$ Moreover,

 $\det S^{\varepsilon}(\mathcal{O}(N_{V_{\ell}/E_{\ell}})) = \mathcal{O}(\binom{\varepsilon-1+r}{\varepsilon-1})[\det N_{V_{\ell}/E_{\ell}}])$

and

 $\det\left\{\pi_{*}\mathcal{O}(\mathsf{D}^{*}\mid\mathsf{L}^{*})\otimes\mathcal{L}\right\}\cong\det\,\pi_{*}\mathcal{O}(\mathsf{D}^{*}\mid\mathsf{L}^{*})]\otimes\mathcal{L}^{\mathsf{d}}\ ,$ where \mathcal{L} is the invertible sheaf and $\mathsf{d}=\begin{pmatrix}\varepsilon-1+r\\\varepsilon\end{pmatrix}$. Hence,

$$-\left(\frac{\epsilon^{-1+r}}{\epsilon^{-1}}\right)\left[\det\left(N_{V_{\boldsymbol{\ell}}/E_{\boldsymbol{\ell}}}\right)\right] \sim \left[\det\pi_*(\mathcal{O}(D^*\mid L^*)\right] + \alpha \sum_{j=1}^{\boldsymbol{\ell}} \bar{\varphi}_j^* \epsilon_j L_j \mid E_j.$$

Thus,

$$\begin{pmatrix} \varepsilon^{-1+r} \\ \varepsilon^{-1} \end{pmatrix} \mathbb{K}(\mathbb{E}_{\ell}) = \begin{pmatrix} \varepsilon^{-1+r} \\ \varepsilon^{-1} \end{pmatrix} \mathbb{K}(\mathbb{V}_{\ell}) \mid \mathbb{E}_{\ell} - [\det \pi_{*} \mathcal{O}(\mathbb{D}^{*} | L^{*})]$$

$$- \alpha \cdot \sum \varepsilon_{j} \overline{\varphi}_{j}^{*} (\varepsilon_{j} L_{j} | \mathbb{E}_{j})$$

$$= -[\det \pi_{*} \mathcal{O}(\mathbb{D}^{*} | L^{*})] + \begin{pmatrix} \varepsilon^{+r-1} \\ \varepsilon \end{pmatrix} \left\{ \frac{\varepsilon}{r} \sum (v_{j} - 1) \overline{\varphi}_{j}^{*} (L_{j} | \mathbb{E}_{j}) - \varepsilon_{j} \overline{\varphi}_{j}^{*} L_{j} | \mathbb{E}_{j} \right\}$$

$$\leq -[\det \pi_{*} \mathcal{O}(\mathbb{D}^{*} | L^{*})] + \begin{pmatrix} \varepsilon^{+r-1} \\ \varepsilon \end{pmatrix} \left\{ \sum \varepsilon_{j} \left(\frac{v_{j} - 1 - r}{r} \right) \overline{\varphi}_{j}^{*} (L_{j} | \mathbb{E}_{j}) \right\},$$

$$\text{because } L_{j} \mid \mathbb{E}_{j} \text{ is effective and } \varepsilon_{j} \geq \varepsilon \text{. If } v_{j} - 1 - r > 0,$$

$$\text{then } L_{j} \mid \mathbb{E}_{j} \text{ is exceptional. Hence}$$

$$\kappa(\sum \epsilon_{j} \left(\frac{v_{j}^{-1-r}}{r}\right) \bar{\varphi}_{j}^{*} L_{j} | E_{j}, E_{\ell}) \leq 0.$$

On the other hand, the left hand side is not less than

$$\kappa([\det \pi_*(\mathcal{O}_D^*) \mid L^*] + {\binom{\varepsilon - 1 + r}{\varepsilon - 1}} K(E_{\ell}), E_{\ell}).$$

From the following lemma, $\varkappa([\det(\pi_*(\mathcal{O}D^*)|L^*)], E_{\ell}) = n-r,$ which implies $\varkappa(E_{\ell}) = -\infty.$

Lemma. Let M be a projective n-manifold and \mathcal{E} a locally free sheaf of rank r. The projective bundle $\pi: \mathbb{P}(\mathcal{E}) \to \mathbb{M}$ has the tautological line bundle E. Assume that $\varepsilon E + \pi^*(D)$ is very ample, where $\varepsilon > 0$ and D is a divisor on M. Then $\pi_* \mathcal{O}(\varepsilon E + \pi^*D)$ is the ample sheaf. Hence $[\det \pi_*(\mathcal{O} \varepsilon E + \pi^*D)]$ is ample.

Since $\mathbb{P}(S^{\mathcal{E}}(\mathcal{E})) \cong \mathbb{P}(S^{\mathcal{E}}(\mathcal{E}) \otimes \mathcal{O}(D)) \subset_{\bullet} \mathbb{P}(\mathcal{E}E + \pi^*D)$, whose isomorphism i transforms $E_{\mathcal{E}}$ to $\mathcal{E}E + \pi^*D$, we have the imbeddings $\mathbb{P}(\mathcal{E}) \subset \mathbb{P}(S^{\mathcal{E}}(\mathcal{E})) \subset_{\bullet} \mathbb{P}(H^{\mathcal{O}}(\mathbb{P}, \mathcal{O}(\mathcal{E}E + \pi^*D)),$

E_{\varepsilon} being the tautological bundle of $\mathbb{P}(S^{\varepsilon}(\mathcal{E}))$. The hyperplane section H of $\mathbb{P}(H^0(\mathbb{P},\mathcal{O}(\varepsilon E + \pi^*D)))$ induces $E_{\varepsilon} + \pi^*_{\varepsilon}D$ on $\mathbb{P}(S^{\varepsilon}(\mathcal{E}))$ and so $E_{\varepsilon} + \pi^*_{\varepsilon}D$ is ample. Hence $\pi_{\varepsilon} + \mathcal{O}(E_{\varepsilon} + \pi^*_{\varepsilon}D) = \pi_{\varepsilon} + \mathcal{O}(\varepsilon E + \pi^*D) = S^{\varepsilon}(\mathcal{E}) \otimes \mathcal{O}(D)$ is also ample by Hartshorne's theorem.

Consequently we obtain

Theorem. Let V be a projective n-manifold of hyperbolic type, whose |mK(V)| has no base point for $m\gg 0$. Then exceptional subvarieties for $\overline{\Phi}_{mK(V)}$ are algebraic varieties of elliptic type.

Corollary. Let V be a submanifold of an abelian variety. Then the minimal canonical fibered manifold $f:V \to W$ is defined. K_V is a pull back of an ample divisor on W.

Problem. In the above situation, we assume that V is of hyperbolic type . Then is $3K_V$ very ample?

Remark. Let V be a 3-manifold of hyperbolic type whose $|\mathsf{mK}(\mathsf{V})|$ has no base point for $\mathsf{m}\gg 0$. We first assume that a non-singular surface S is the total exceptional set. Then we have two cases: (1) $\mathsf{f}(\mathsf{S}) = \mathsf{p} \in \mathsf{W}$. $\mathsf{S}^3 = \mathsf{the}$ multiplicity of W at p is 2,3,4,...,9 since $\mathsf{-K}(\mathsf{S})$ is ample. S is a rational surface called Del Pezzo surface, including \mathbb{P}^2 , quadrics, cubics, (2) $\mathsf{f}(\mathsf{S}) = \Gamma$ a curve. $\mathsf{S} \to \Gamma$ is a (2,1)-fibered surface whose general fiber is \mathbb{P}^1 . The multiplicity of W at a general point of Γ is 2. Second we assume that

a non-singular curve C is the total exceptional set of V. Then $C \cong \mathbb{P}^1$ and $N_{V/C} \cong \mathcal{O}(-1) \oplus \mathcal{O}(-1)$. Moreover, any non-singular curve can never be the total exceptional set of n-manifold (n \geq 4) of hyperbolic type under our assumption (i.e., $B_c \mid mK(V) \mid = \emptyset$).

The author wishes to express his hearty thanks to Mr. T. Fujita.

References

- [1] R. Hartshorne: Ample vector bundles, Publ. Math., I.H.E.S. No.29 (1966), 319-349.
- [2] S. Iitaka: On D-dimensions of algebraic varieties, J. Math. Soc. Japan, 23 (1971), 356-373.
- [3] S. Iitaka: On some new birational invariants and their application to rationality of certain algebraic varieties of dimension 3, J. Math. Soc. Japan, 24 (1972), 384-396.
- [4] K. Ueno: Classification of algebraic varieties, I, Compositio Math., 27 (1973), 277-342.
- [5] K. Ueno: Classification of algebraic varieties and compact complex manifolds, (to appear). Lecture Note in Mathematics, Springer (1975).