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1. Let V be a projective n-manifold (i.e., non-singular
projective algebraic variety of dimension n) of hyperbolic
type. Assume that the m-canonical system ]mK(V)l has no base
point for large m. We then have a morphism £ = §n1: V—W
c:[PNm where N = Pm(V) -1. Choose m so large that f is
birational and that W is normal. Let > = {w € W;

dim fl(w) > 0},~ which is a Zariski closed subset of W. > is

a union of irreducible components éil’ "":Er’ Our purpose

here is to prove that each §:j is an algebraic variety of

elliptic type. We éall 2, the total exceptional set and Eij

an exceptional subvariety of V.

2. We prove this by induction on dim f(zaj). If dLnf(Eﬁ)
>0, then consider a general hyperplane section Wl of Wc:PNm.
Vl = flwl is an (n-1)-submanifold of V, which is iinearly
equivalent to mK(V) as a divisor 1i.e., Vl'v mK (V). By the
symbol (F(E) we indicate the sheaf of gerﬁs‘of holomorphic
sections of the vector bundle or the divisor E. Considering

the exact sequence
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S0 ™ G(eR(V)) — O ((me)K(V)) —3 (-((mke)K(V)|V;) —> 0
with the fact that K(V;) ~ (K(V)+V,) jvl ~ (L+m)RWV) | Vv, we

obtain the exact sequence:
HOV, O (me DR(V)) — BO(V,, Ome, (v)))) — B (V, G (e, (m-1)K(V)))

where e = rn(e1 -1). By a generalization of Kodaira's vanishing
theorem, Hp(—mK(V)) =0 for any m >0 and p <« n. Hence,

the Serre duality implies Hl((m+ 1) K(V)) = 0. Therefore,

Trvll elmK(V)l is complete, so §e1mK(V) , Vl = §e1K(V)'

Hence, 2‘j N Vl- is exceptional for QelK(Vl). By induction
hypothesis, it follows that ’C(Zj n Vl) = =20, which induces

x(zj) = -0. Thus we can assume that f(zj) is a point p

and write E = Zj which is a subvariety of codimension r.

3. If r =1, by the generalized adjunction formula, we have
x(E) & x{K(V)+EY|E, E) = x(E |E, E).

A general hyperplane section W. does not contain p and |W

1 1|p

has a member W'. Then

f*W' = r,

where each component of G differs from E and ry > 0. Hence

E+ G~ f*(wl),

£*W) |E = xE|E+G|E ~£*W, | p) =0,

which implies X(E|E, E) = -0 . Thus X(E) = - .

4. 1In the case of r > 1, we first resolve the singularity
of E following the method of Hironaka. Let M V1 —>V
be a monoidal transformation with non-singular center C C

sing(E), the singular locus of E. Let E; be the strict
' 2



236
transform and L, the exceptional divisor for My Then

R(V)) = p*R(V)+(v;-1)L; and K(V;) |E; =¥ (RV)| E)+(v,-1)L, ] E

where vy = codim. of C in V. If C 'is a divisor on E,

then v, ~1 =71 and if not, L, | E, is exceptional for

M \ E, :—E1 —>E. If E; is still singular, we have to perform

another monoidal transformation Moy V, —> V.. Repeating this

2 1
: . &
process, we have a sequence of monoidal transformations Vl -

1 ——L>V and a non-singular EI , being the

strict transform of El—l' Let ij = /“"j Crrro My v, —> vj-l‘

V‘e_l e __,V

Then we have K(VE) = ?1*K(V)+ Z(Vj -1')?j*Lj -1 Moreover by an

exact sequence

1 1 v
) = o — Qo |E — O ) —™0
Ey Vk‘ £ Yy /Eyp
where NA’\?//E is the dual bundle of the normal bundle, we have
LR
, K(E,) = K(V,) \EL-I-' [det NVJe/E/z]'

In order to compute the divisor [det N

v /E,C] tire»blo;ﬂ' V, up
£

A

with center Eﬂ. Then we have a monoidal transformation 1}':
v* '——>V£, whose exceptional divisor L* is isomorphic to

P (N ).  O@W®) ] L* 1is the dual of the fundamental sheaf

N, /Ep

G*‘P(l) of P = {p(NVZ /E,ﬂ)' Consider a general hyperplane
section D¥ of V¥ and write D = f ?l(D""), which is a prime
divisor passing through p. Write £*D = DO + ... DO being

the proper transform of D. Then since codim E = ¢ > 1,
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D0 contains E. Letting El be the order of D0 at the

generic point of C, we have /U‘l*DO = D1+ “-11‘1’ where D1 is
the strict transform of D. Considering in the same way as a

above, we have

* _ * * .
?1D0_DL+ El?lLl-l- 62?L+ +££L£,

*D = YFe ¥ * * co+ €, PFL + g L¥
‘/’1D Y@ D, = D"+ 51‘{'1]‘1"' Ey¥o Lyt - AT
where 1]3 = ?j“{)’ and € is the order of D at the general
point of E;. Hence £j z2 £, since (el¥®) IL* = G'IP('E )
£
we have ﬂ*(G(- eL®) | L*y ~ S (GNV\;/EL)’ where

: L¥ = P(N ) — E

v /e, T Ea
\P]_DIL*—D*‘L*'FE Sal*(e 'El)-{-...

" is the natural projection. Moreover,

- % . * FIRE S
FIREE (e Ly g | By ) ¥ (e L, | B )+ e LY,
where §j = ?j | EL; On the other hand, in view of 1}/1*(D) | L*
= \h*(n | p) ~ 0, it follows that

- eL¥ | L* ~D* | L¥ 4 TG ¥ (e Ly | E) + - T (e, L, Ep)
Hence, S (G(NVL/EI)) ~ (0¥ \L*)@‘Ib 0’(?1 (elLll E1)®

@7!:",‘0'(& L, IE ). Moreover,
G((E-lﬂ:)[d |
tN
e-1 /o Ny e,

det{n*G(D* | %) @Z} ~ det T, FO*| L)1 ,,‘5“

]

det S&( & (N V /E, ))

and

¢-1+r
where Z is the invertible sheaf and &« = c .

Hence,

£-1

g-1+r * - __,£ - ‘
-( )[det(N /E )] ~[det7t*(9'(D ‘L )]+o(j2=_,17’j Eij Ej'
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Thus,

E-1+i) _ £-1+r -
) K(Ez) -( . K(VL) ’E‘e - [det 7, ((D*| L¥)]

T2 gy p (e gLylEp

¢+r-1 £ -
-[det?E*G(D*lL*)]+( ¢ ){—;Z(v.-l)?.*(ijj)-£J?*L |E }

v.=-1l-r

T LT C== YN

because Lj | Ej is effective and j 2 ¢e. If vj-l—r >0,
then Lj lEj is exceptional. Hence

-1-r

m(ze )?J*L|E,E)—0

On the other hand, the left hand side is not less than
x([det m, (BD*) | L*] +(£;i-r)K(EL), E,).
From the following lemma, x ([det(7r, (0D*)|L*)], ;2) = n-r,
which implies &(EI) = -
Lemma. Let M be a projective n-manifold and g a locally
free sheaf of rank r . The projective bundle T : P(£) —M

has the tautological line bundle E. Assumé that gE+ 7©*(D)

is very ample, where £ > 0 and D 1is a divisor on M. Then
7, O(eE+ 7£*D) is the am.ple sheaf. Hence [det T (B¢ E+m*D)]
is ample.

since P(s8(8)) r(s%(£)® GMD)) GP(£E+ ™*D), whose
isomoxphism i trénsforms E£ to £.E+-7r§D, we have the

imbeddings (&) C P(SE(8)) G P ®, O (¢ E+ D)),
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EE being the tautological bundle of IP(Se(é,’ )). The hyperplane
section H of P(HO(P, G(eE+ m*D))) induces E£+ 7C§D on
lP(Si(g)) and so E,+ 7t’§D is ample. Hence 7Z'£*(9(E&+7C:D)
= T, 0(¢E+ *D) = SE(£)® F(D) is also ample by Hartshorne's
theorem;

Consequently we obtain

Theorem. Let V be a projective n-manifold of hyperbolic
type, whose |mK(V)l has no base point for m > 0. Then
exceptional subvarieties for imK(V) are algebraic varieties
of elliptic type.

Corollary. Let V be a submanifold of an abelian variety.
Then tbe minimal canonical fibered manifold f : V —>W is
defined. KV is a pull bacic of an ample divisor on W.

Problem. 1In the above situation, we assume that V 1is of
hyperbolic type . Then is ]3KV| very ample?

Remark. Let V be a 3-manifold of hyperbolic type whose
‘mK(V)l has no base point for m > 0. We first assume that
a non-singular surface S is 1;he total exceptional set. Then
we have two cases: (1) £(S) =p € W. S3 = the multiplicity of
W at p 1is 2,3, 4,...,9 since -K(S) is ample. S 1is a
rational surfaée called Del Pezzo surface, including IPZ,
quadrics, cubics, ... . (2) £f(S) =T a curve. S — [ isa
(2,1)-fibered surface whose general fiber is lPl. The multiplicity

of W at a general point of [ is 2. Second we assume that
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a non-singular curve C 1is the total exceptional set of V,

Then C e—lPl and N > (-1) ® O (-1). Moreover, any non-

vV/C
singular curve can never be the total exceptional set of n-
manifold (n 2 4) of hyperbolic type under our assumption (i.e.,
B lok(W)| =9).

The author wishes to express his hearty thanks to Mr. T.

Fujita.
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