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§ 1. Introduction
¥ -

A holomorphic automorphism g of a complex space ¥ is called

ollowing thres

Hy

e gontraction to a point C€ X if g satisfies the

conditions:

(1)  g(0) =0,

. ‘. ~ . N o
(i1) 1im g%(x) = © fov anv poini x & &,
V-3 460
(iii) for any smell neighborhood U of ¢ in KR , there exists

an integer V_ such that gv(b) C U for 211 Y=V

where g¥ is the y-times composite of g. By (277 the complex space
.% which admits a contracting ocutomorphism is holomorphically iso-

. . N : s - . '
morphic to an algebraic subset of ¢ -for some N. We identify % to

the algebraic subset of QN. Then there exists a contracting auto-
T .
morphisn T of ¢V 1o the origin O such that gqgé = g ({27, £37).

R . N . ’ 5 . .
Obviously the action of § on £'-{0} is free and properly discontinu-

ous. Hence the quotient space H = £'-10}/<&>» is a compact complex

manifold which is called a primery Hopf nanifcld. Sometimes we

nifold. The compect

3

. . . N . 1 . . S

indicate by # a N-dimensional nrimary Hopf =
- 1]

complex space %X-{0}/<g> is clearly an znalytic subset of a primary

Hopf manifold. A compact ccmplex manifold X of dimensicn n (nx?2

is called a Hopf monifold if its universal covering is holomorphicall
» . n - -
isomorphic to € -{0} (Kodairal4l).

The purpose of this paper is to show several properties of

subvarieties of Hopf manifolds.

* In [ 2], the condition (iii) iz forgottien.
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§ 2. Hopf manifolds
The following proposition shows that it is sufficient to
coneider only subvarieties of primary Hopf manifolds.

T R Semime s T B X

(higher dimensional) primary Hopf manifold.

Proof. Let X be any Hopf manifold. Then, by definition, there
exists a group G of holomorphic transformations éf @n—{O} such
that X = € -10}/G (n = dim X). It follows from a theorem of Hartogs
that any element of G can be extendéd to a holomorphic transformation
of Cn. Hence we may assume that eacn element of G is a holomorpﬁic
transfgﬁation of €% which fixes the origin 0 e, By the same
argument as in [47 pp 694-695, G contgins a contraction.

For each element xe€ G, ‘we denofe by dx(0) the jacobian matrix
at the origin 0 € ¢ .
(det(ax(0))] < 1.

Proof. If x€G is a cdntraction, then any e;genvalue d‘Qf
‘dx(O) satisfies [di<1 (see [3] for the detail). Hence idet(dkko)){<ll.
Convé%%ly, let x be an element of G satisfying‘{det(dx(O))[<ﬁl;
Let g be-a contraction gontained in G. Since €n~£0}/(g) is compact,
the index of the infinite cyclic subgroup {g} generated by g is
finite in G. Now assume that x is not a contraction. Then x° is
not a contraction for any integers n. Hence X # gm for any pair

of integers n and m except n = m = 0. This implieé that {x}n{g}={1}.

-2 -
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This contradicts = the fact that {g} is.of the finite index in
G, g.e.d.
Let U be a éubgroup of G defined by
U={xe€6: |det(ax(0))] = 1}.

Obviously U is a normal subgroup of G.

Lemma 2. There exists an infinite cyclic subgroup Z of G

such that .G is the semi-direct product of Z and U § G = Z+U.

,Ezégf. Define.a group homomorphism § : G—>R by &(x) =
- log [det(dx(d))l (x€G). Let g €G be a contraction. Then the
index d of the infinite cyclic group {ﬁ(gl)} generated by ﬁ(gl)
in %(G) is finite. Hence a1 i(gl) is a minimum positive.element
of L(G). Let g be an eiément of G such that (g) = at E(gl).
We put Z ={g}. Then it is clear that G = Z-U, g.e.d.

Lemma 3. U is a finite normal subgroup of G.

Proof. Clear by Lemna 2.

Now continue the proof of Proposition 1. It is easy to see
thatvany holomorphic transformation u of ¢ which fixes the origin
is linear, if u is of the finite order. Hence U is a finite subgroup
of GL(n,C). Hence, by H. Cartan [1], ¥ = ¢%/U is a complex spa§e
with unique possible singularity at 5, where 0 is the correspg%ing
point to the origin 0 €¢”. The generator g of Z induces a contracting
automorphism g of % such that g(0) = 0. Hence X = ¥ ~ IQB}/<§>
is a submanifold of a primary Hopf manifold as we have seen in thé

introduction. " Q.E.D.



§ 3. Line bundles defined by divisors

Let M be an’arbitrary compact complex manifold and N be a

t

divisor of M. The line bundle [N] defined by N is an element of
Hl(M, 0*). There is a natural homomorphism i : Hl(M, C*) —>
Hl(M, 0*) induced by the natural injection ¢*—> 0%, If [N] is

in the image of i, then [N] is called a locally flat line bundle.

In other words, {N] is locally flat if and only if its transition
. functions can be writien by constant functions.

Now let & be any contracting automorphism of @N which fixes
the origin Oé.cN: Then, by L. Reich (([¢1, [7]), we can choose

a system of coordinates of CN

such that g can be written in the
following form:

z

N
t\)-.
]
N
i
-+
20
n
N
N

= Zrl—l + ooy Zp

z! = z + P (Zy,00e,2. )
(1) rl+1 rl+1 r1+1 rl+1 170 Ty

z! = Z +
rl+r2 r1+r2—l

o + P (zl,,..,'zr )

: Z
L1 +T, T1+T, r1+r2 1

z! =.d Z 4+ P )
r1+r2+1 rl+r2+1 rl+r2+1 rl+r2+1 T.+T

(Zyyeeey2
1’ b 1 2

oS
ZN = ZN._,l +dNZN + PN(ZI’.'.’Zrl‘frz'l‘ v T _ )7

r 1
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wherefl>(N1{2 - 2{%Iﬁ:>0, f* is the number of Jordan blocks of

the linear part, Pj (rl+--»+rs<4jSIi+---+rs+ ) are finite sums
. m m T .

of monomials zjlc—- zrrS which satisfy

- S

m m

1 Ts

. A . =0(l '-o(r 5
(2) J s

mfun-m' >2 ( a1l m,>0 ).

Let w: CN—{O}-——?H = CN—{O}/<§> be the covering projection.
For any analytic subset X in H, the seb Zﬁ_l(X) is an analytic
subset in CN-(O}.‘If dim X=1, then by a theorem of Remmert-Stein,
% =»%-1(X)&)§O} is an analytic subset of ¢¥, In what follows, we
indicate by the Séript letters the analytic subsets in @N corresponding
in the above manner to the analytic subsets of H written by the
Roman letters. An analytic subset is called a variety if it is
irreducible.

Assume that X is an analytic subvariety in H of dim X=2
and that’D'is an analytic subvariety of codimension 1 in X. It 1is
clear that ¥ and B are both Z-invariant in CN,,i.e. g(¥) =%
~and g(P) =D.

Lemma 4 ({27). There éxists a2 non-constant holomorphic

function f on % such that g*f = Af for some constant & ( 0<leal<1)

that figo = O.
and a il? 0

Remark 1. In (27, the word "variety" is used as "analytic
set".

Let X be a non-singular manifold. Consider f of Lemma 4 as a



multiplicative multi-valued holcmorphic function on X (K. Xodaira

{47 pp TO0l). The divisor D, = (£) is well=cGefined. The ecguaiion

g*f = & f implies that the line bundle [D,] ie locally flat of which

he

the transition functions are some vowers of ¢f. Ve summarize these

facts as follows.

P

Theorem 1. Let X be a submanifold of H and D an effective

divisor on X. Assume that dim X=2. Then there oxists

an effective divisor E on X such thet {ne line bundle {D 4+ n] is

-C‘

locally flat of which the transition functions are some povers of

a2 certain constant «e¢* ( 0 <ili<1).

Remark 2. The following example shows that there are cases
such that the "additional" effective divisor E of Theorem 1 is
indispensable.

Let (xo, X ) be a standard system of coordinates of

X1y Xo

€4, Fix a complex number « such that o< i<, Let T be a contracti

holomorphic automorphism of'C4 defined by
- (xo, Xy »X2’ XB'J’ — (4, KXy, Xy, 0(x3).
Define Z-invariant subvarieties of 64 by

XGXl = X2X3

o

){-2)(3:0

Denote the intersection %(\}5’ by)é} . Then ,&’ :{xo = x3 = O}U
{ X = x7 = O} We put
By ={xg=x5=0}

and

o
i
o



482;(}(1: X3 = 0o}.

Then S =.§ -{0}/K&), 8 = “Xl ~L0}/<®&> -and Sé = /32 ~L0t KB are
subvarieties of a compact complex manifold X = & —{O}/{@}. It is
clear that [Sl + 82] = [s] is locally flat. We shall prove that either
‘ [81] or [823 is not locally flat. Assume that both C813 and [82—.\

are locally flat. Let ] = {U;\} be a sufficiently fine finite

open covering of X. We represent [Slj as a lmc’ocycle (CIAV} e '

Zl(’Ul, C*). Since dim HO(X, O[Sl] ) >0, there exists a non-zero
section { which yanishes exactly on S, . Let CPJJ\ = cl}“f‘q}lf* on

UaN Ut&- As we can easily see,

- AP o e L
?21 q’(;\ cﬁ

is a meromorphic l-form on X. Since ¥ - QO} is simply connected,

f (x) = expg 13
is a holomorphlc function on ‘3( {O} such that g*f = €1f1"
616 c*, O<(Ql{< 1) which vanishes exactly on ,81 -{0} with
multiplicity 1. Since K is normal at O, fl uniquely extends to

a holomorphic function on % . Comparing the initial terms of 'g“*fl
m
. o .1
X : y =
and f; at 0, we see that g, is some pdver of &, i.e. §; =& | <m12 1).

By the same manner, we construct f2 for a non-zero section 5026

, m,
H,O(X, O[SZ']) such that '"g'*fz = o 2f2 (mzzl). Let f; be a restriction

of a holomorphic function x5 to % -{0}. Then g‘*fo =ofy. It is
easy to see that £ = £ +f.° -1 is a non—vanishing holomorphic
. 1" t2" 1o smo—1

function on ¥ -£0% such that Bxf = 1 2 ¢ (mﬂ-i-mz—lzl) But

this does not bceur if dim X>1. In fact, using the non—vanlshlng
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holomorphic function f, we get the following commutative dizgram;

%, —-gO} g > ?{,‘“{O},
lf " lf
: -1
o X dm1+m2 S C*:

Then f induces a proper surjective holomorphic mapping f:X—>
C*/<¢m1+m2_l>. For any point Te ¢*/{o"LF m2-l>’ ?"l(tj = X¢ is

a compact subvariety in X. Hence @'l(Xt) is a complex analytic
subset in C4~(O} whose connected components are compact,where

O is the covering map 04—40}——964—Q0}/<§). This implies that
33-1(th is a countable union of points. Hence dim X = O.

This coﬁtradicts dim X>1. This implies that either Csl] or ESZ]
is not locally flat;

Remark 3. If dim X = 2, then [D] is always locally flat ([31).

§ 4. Some properties of subvarieties
By Lemma 5 in [ 2], we have easily

Proposition 2. Let Y, and Y, be subvarieties of a (primary)

Hopf manifold]such that YlC.Y2 and 0<:n1~= dim Yl<:n2 = dim 12.

Then there exists‘g'sequence of subvarieties W Wl,..., W

p (P =

O’
n,-n,) in H with following properties:

i Wy=1Y W =Y
@) S

0 1’ 27

(ii) WGV, L4 (i =0,..0,p-1), dinm W, + 1= dinm W, 5.
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. ; AL - . e . A - -
Proposition 3. Let H = € ~{0Y/<gY be a vrimary Hopf manifold.
Then
L i T L
(a) any positive dimensional subvariety in E~ contains a
curve,

(b) any irreducible curve in H° is non-singular elliptic,

(c) for any elliptic curve C in H

, there exist an eigenvaiue

-

~ . C g . A m L
ol of g, a constant @ and certain positive integers m, n with ¥ = @‘

such that C is isomorphic to 6*/<?>'
Proof. (a) Let Y be a n~dimensional subvariety in HN (n>1).
For any integer k (1< k<0N), the (N-k)-dimensional subspace ghi-X

defined by Zy =ee. =2y = 0 is Z-invariant. There exists

an integer k such that dim (CN-(k"l)r\%%) = 1. Then ﬁ((@N_(k‘leQé-—

N
oy

"is a l-dimensional analytic subset of Y.

. : \ )

(b) Let C be any irreducible curve in 1, Then Cis a 1-
dimensional analytic subset of CN. Let Cb be one of the irreducible

o . ) n .
components of C,. Then, for some positive integer Ny & 0 acts on

. . ,X.
CO as a contracting automorphism of -GO' Let X CO >co be

the normalization of (30. Ther g"0 naturally induces a contracting'

*

0

of one point 0%*. Hence (? —{O ~ Cr- 0¥}~ g%, Thus €* is an infinite
0 0

N -
automorphism of (30. By [2], C.=x¢. It is clear that A™(0) consisis

cyclic unramified covering of C. Therefore C is a non-singular

elliptic curve.

. 4 A . N-k
(¢) Consider the Z~invariant subspaces €

cN—k

defined in (a). -

For k = 0, is the total space. Fix the integer k (0< k< N-1)



-k Nkl e k=1 .
such that (C¢ K ana Cet ¢ . If Une contains a
: ] . Ly n N-k-1 o pa e
point p other than 0, then Tn¢ contains an infinite seguence

. 1 T . - .
of points  (p)~——>0 (n=1,2,...). Hence one of the irrcducible

e (O Ne-k~1 . ~ A
components of C is contained in € . S8ince g is transitive

over all the irreducible components of c , this imyplies thrat CC
N-k-1" N—k~1 .

¢ """ [Therefore Cnc‘ _{O}. Hence f =
Eontradictiony.

k . . ; :
restriction of 2101 to € , vanishes nowhere on C—{O;. Moreover

Zr+1 ) ei-k?

f satisfies the eguation g*f = dlf-rrlf’ Hence we get the following

comnutative diagram:

C-{o}y —& 5 ¢-fo}
P ¢

\lf Q’] 'l\/
RCAR {
C

This induces a covering f : C—>C*/Kd, .>. Since both C and C*/{& _ .>

K+ 4
are non-singular elliptic curves, f has no branch poinis by the
Hurwitz's formula. Hence there exist @(Eiﬁ* and positive integers

m, n such that C& */<€; and o(, = én. . Q.E.D.

Remark 4. By Propositions 2 and 3 (a), it follows that any

o

n-dimensional suovarlety of a Hopf manifold contains subvarieties

of arbitrary dimensions less than n.

- 10 -
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§ 5. Subvarieties of algebraic diménsion O
-In general, let M be a compact complex analytic subvariety.
Then the field (‘m(M} of all ineromorphic functions on M has the finite

transendental degrec a(M) over C. We call a{M) the algebraic dimension

< di The number dim M - a(¥) is called
=ainm M. the algebraic codimension of M.
i

of M. It is well known that a(M)

Theorem 2, Let ¥ be a subvariety of dimension k in N—dime‘n_‘s_mi_gp_eg

primary Hopf manifold B, Assume that a(Y) = 0. Then the number of

(k-1)-dimensional subvarieties in Y is at most N.

Before proving the theorem, we shall make some preparations.
Let o(l,...,qiN be the eig-envalués of & ((1)). Put ej = lqg O(J.
(0L arg 9j< 2%, =1, 2,...,N). Let K be g vector space over the
field of rational numbers § generated bj the elements 2R\,r:l-; Bl,...,
| ON. Choose a basis Tyr Goreeor Tn of K 80 that the foilowing ‘
conditions may be satisfied: | |
(i) = 21T,
(ii) f;"Cl,...,'C,\} is a subset of {61""’61\1} ,
(iii) for any le, Ty is linearly ihdependent to
WG + QY +- -+ + Q7 4,
(iv) if '9.—. 93’ trz ek and V<, then j<vk.

It is easy to check that we can choose .such a basis. We denote

by O(iy the element of {0(1”"’0(1\!} corresponding to Ty. Note that

Ty=8;, = 1og &, (V =1, 2,..., 75)‘ If the equation
a a
A 1 :
&y, =y rordy (A<iy)

holds for some integers By9eeerd then .

l’.

- 11 -~
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ﬂ .
2
T=0. = S a.b. + ve ).
= by, ji_l 56 + 2T (pe )
g
Since g;ia.éj is written by a linear combination of Tb, Ti,.., ﬁ;l,

this is absurd. Therefore diy has ho such relations. Hence by (1),

! = . 3
zi dlyzl (yzl, 2,.0;, )‘)0

Proof of Theorem 2. Ve may assume that Y can't be contained

any primary Hopf manifold of dimension less than N. Let D be a
subvariety of codimension 1 in Y. By Lemma 4, P is contained in
the zero locus of a non-constant holomorphic function f on ﬂg

such that *f = of ( 0 <|dI<1l ). There exist some integers m,

L EEERRTON sugh tha?
.om m.
A
“m-'—-d-l‘ . dio
i, A
Put
il m)
h zila P Zy .
1 A

Since Y is not contained in'any lower dimengional primary Hopf
manifold, h is not equal to zero on'%; Hence both f* and h are
eigenfunctions of Z* of‘which the eigenvalues are the same &°.
Then h/fm defines a non-zero  meromorphic function on Y. By

the assumption a(Y) = 0, h/f" = constant = ¢ £ 0. Hence we get
(3) h= of®, |

Let Ziv (V=1,000, A) bé analytic subsetls of Y corresponding to

{ziv = O}{{ié. The equation (3) implies that D is contained in

- 12 -
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A

U

. Since A<N, this proves the theoren. Q.E.D.
V=1

Z.
1y

§ 6. C*~actions

Proposition 4. Thére exists a holomorphic mapping

C?: CXCN —_— CN
W ~ W
(t, 2) —— §,(2)

which satisfies the following properties:

(i) for every te¢, @’t' is a holomorphic automorphism of
N

C

whicﬁ fixes the origin,
1) @ o= P9
n

(iii) there exists an integer n, such that ?1 = g 0

b4

(iv) every Z-invariant subvarieties in N is Eft-_i‘gyj};;ggj;

for a1l tec.
Ve say that an analytic subset of CN is ?—-invariant, if it

is ?t—invariant for all t€C.
. Proof. Let olil,...,o(i

A

be the eigenvalues of & considered in
§ 5. For any eigenvalue o(jfof g, there exist some integers mj,' m.

Jli'ff

m. such that
IN

mj mjl mj}‘ '

‘Xj =0\11 -..aiA (j=1, 2, eo.", N).

Puj; Ny = My Oy and g =8 - We define

t
(4) O(iv=exp t-tv (teC, v=1,2,...,A),
and

' s
t ' : -1 . (
(5) D(?O = exp ( 'tnjyzs‘lmj‘)’tv ) ’(nj.= Doty s 3 = 1,2,...,N).

- 13 -
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n
Let R(d~0,..., WO) = 1 be any vrelation zmong the eigenvalue

of gy, where R(ul,...,uN) is a product of some (possibly negative)

powers of u. (j = 1,2,...,N) , uj being indeterminates. Now let

J
ay 2y
R(ul,...,uN) =T uy (aje Z). Then, for te€¢,
: #
n~t n.t a.-n.t a,n.t
0 0 170 N7O
(6) R(O‘l ,n.tto(N )=0(1 "’“N

il

exp (t > a.n. 3-m. Ty
j=1 9 dpo WY

AN
exp (t2 (2 a.n.m

t °
o 3 i) &)

it

Put t.= 1 in (6 ). Then we get

A :
a. = €Z).
2 JZ 84850 T = P (pez)
: N
Hence we get p = and }i aj j Jv =0 (¥V=1,2,...,A). Therefore
n.t n t
0 , 0
(7) R(dl ,--o-,o\N ) = l

for all t€ €. Put @j = . By (1), the j-th coordinate of the point

%
gg(z) is given by
(3) (gg(Z)). = @Ijl {Z- + Q(n, zl,.,.,zj_l)} ,

where Q is a polynomial of n, ceerZs_ge Replace n and @?‘of (%)

Zq 9
, respectively. Then we get a holomorphic automorphism

o5 N .
g% of £° defined by

~ V % ;
(§y20), = g8 {2+ (8, 2p5mnz') )
We shall prove that %::{%t}téc)satisfies the desired conditions.

- 14 -
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The condition (i) and (iii) are cleéarly satisfiel. To prove the con~

dition (ii) is satisfied we put

. .
z =0T, Qlt,z) =
;

Q(62) : {@t o )
% (

and A’ =
Qw(t z)

!

N
We write G%\z) as

(9)  P.(z) = &%z + Q(t,2)).

Again we put

(10)  dlt,s,z) = ¢, (2) = ¢, - ¢ (2).

It is sufficient to prove that da(t,s,z),vanishes identically. By (9),

) a(t,s,2) = AU S(z1Q(t+s,2)) ~ AY(A%(z+Q(e,z))+Q(t, A5 (z+Q(s,2)))
1

]

At+SQ(t+s,z) - At+sQ(s,z) - AtQ(t,As(z+Q(s,z))).

’ i i,
o s 105 R , |
Let Qj(s,z) = 2;Aqil”'ij_1(8)zl "'zj-l be'nhe j~th component of

ii -1 |
Q(s,z), where Iypeeeniy g satisfy 8, @J_l = 85 and 1£>>Q.

Then, by (7 )’

Qj<t,AS(z+Q(s;z)))

il

l -1
2 qil”,i t){@l(z +Q; (s, z))} 93 1(23 194 l(s z))} J

_ i i,
?? > qil"’ij_1<t)(zl+Ql(s’z)) 1"’633-1+Qj_1(s’z)) -1,

Henée we get ‘
(12)  A®Q(t,45%(2+Q(s,2))) = A*Sq(t,z+Q(s,2)).

Combining (11) with (12), we obtain

- 15 —



a(t,s,2z) = AP5(Q(t+s,z)-as,2)-Q(t,2+Q(s,2))).
Hence it is sufficient to show that
1(t,8,2) = Q(%+s,2z) - Q(s,2) - Q(t,2+Q(s,2))
vanishes identically. Note that every component of dl(t,s,z) is
a polynomial of %, s and z.
Fix any integer t = m. Since dl(m,n,z) vanishes identically

for any n€ Z, the algebraic subset in CN+1

N+L |

defined by

{(s,é)é ¢ dl(m,%,z) =0 }

.
contains infinitely many N-dimensional subspaces of ®h+1. Hence we
infer that dl(m,s,z) vanishes identically for any integer m. Again,

since dl(m,s,z) = 0 for any me.z, the algebraic

N+2

subset in € defined by dl‘t 8 z) = 0 contains infinitely many

(N+1)-dimensional subspaces of CN+2

N+2

. Hence we conclude that dl
vanishes identically on € . Therefore the condition (ii) is
satisfied.
Next we prove that the condition (i%) is satisfied. We need
the Iollow1ng
g- and N
Lemma 5. Let Qé be a (ﬂ—lnvarlant analytic subvariety in n ¢,

Let Z be a pure l-codimensional Z-invariant analytic subset of 1&.

~

Then each irreducible component of Z is P-invariant.

Proof., By Lemma 4, there exists a holomorphic function f on
Qé such that g*f = &f (0< [«|<1) and that f(iﬁ = 0. Here we shall prove

the following equation:

(13) G = o's,

- 16 —
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Once the equation (13) is proved, the lemma is clear. In fact,
each irreducible component of X is an'irreducible component of the
zZero 1o¢us of f. Since everything continuously varies depending on
t, (13) implies that the ifreducible’components of & isiz?—invariant.
We put
m«>={heG@ : ¥*h =dh ).
Then M() is a finite dimensional vector space over € (cf.[21). Let

Gpreee10g be a basis of M(K). Put 6'§(z) = 6}( @;(z))|(i =1,2,...,8).

. ~ : + .
Since r% is q%—invariant, the- elements oi,...,oﬁ form another basis

of M(K). Hence there exist some constants oij(t) depending on t such

that _
, = c..{t ce
oy 32;_1 13(t) o

We claim that C(t) = (cij(t)) is holomorphically,dépendent on t.

In fact, we can choose points z yecvsZy e‘l& such that

1

Gl(zl) e Gl(zs)

S = X X

O.S(zl) S ()"'S(ZS)—

is a non-singular matrix. Then,
t t A

(14) L :

0_:(.21) mg(zs')';

gt o oo,

9ince the left hand side of’(14J‘is holomorphically dependent on t,

- 17 -~



¢(t) is holomorphic.
"It is easy to see that {C(t)}tec is a l-parameter subgroup
of GL(s,C), satisfying the equality,
(15)  c(n) = o1 (ne 2).
' %{QJ
Hence there exist a matrix ‘A which has ¥ Jordan canonical form
and a non-singular matrix P such that

c(t) = P Lexp(tA)P.

By (1¥), A is a diagonal matrix. Put P'lﬁs = Tﬁ (j = 1s2500048).
Then,

% - .
(16) —CJ = (eXP taj) Lj (J -:"1,2,...,8),

where al,;..,as are the diagonal‘components of A.'Comparing the
initial termPof the both sides of (18), we get
o > : ' :
(17)  exp taj-= exp 2. @gjvty (3= 1,2,000s8)%
for some integers By Letting t = 1, we geht

; A , _ ;
A= exp ay = exp. 2. ny, T (3 = 1,2,00048).
‘ v=1

Hence for any i and j,
-
n, =1n, )CTy= D..
vg( v lv_), v= Pij o

choosing some integers pij' Since Tb’ Ti,...,'tA are linearly

o :‘ Oo
Jv iy J ‘

Hence exp taj = exp ta, for any i and j. Therefore c(t) is a

independent over §, this implies that n. = n, and Py
scalar matrix:

c(t) = &1 (o = exp ta,).

Since feM(o(),.f can be expressed as

- 18
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my N.‘L . ‘VV t { g
Then §if = %Cj ff}’é’% = zcj*cj = A'f, q.ce.d.

Proof of (iv). By Lemma 5 [2], there exists a sequence

{qgj : j=0 1,...,p} of g~1nvar1ant subvarletles of @ such that

Wa = a given Z-invariant subvarlety WU CW. ., din W, + 1 =
0 J+1 J

dim qu+l and (h§ = ¢¥ (p=N - dim;u%); since ¢V is obviously &~ and
?-dﬁvariant, we infer that W is Qy—invariant by the previous
lenma. 4 | Q.E.D.

As a corollary, we obtain

. : . T 3 b N ) 2 H
Theorem 3, For any primary Hopf manifold H', there exists

another primary Hopf manifold H'N with feollowing properties:

(i) il is a finite cyclic unramified covering of HN,

(ii) 'Y pag a free C*-action ¢ = {?t:}tec* such that

every positive dimensional gubvariety in H'N is

p~invariant.
Proof. Let H' = CN—{O}/<§nQ}. Then everythig is clear from

Proposition 4.

Corollary. The Euler number of a submanifald of a Hopf manifold
48 equal to O. |
Proof. By Theorem 3, every'submanifold of a Hopf manifold has
a flnlte unramified coverlng which admits a free Sl~act10n Hence

the Euler number vanishes. Q.E.D.
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7. Subvarieties of algebraic codimension 1

[Zee)

Let Y be a n-dizmensional (n=2) subvariety of a primary
N . .
lopf manifold HW. Take another primary Hopf manifold K

N-—-——>HN be the covering map. We denote by

bt

Theorem 5. Let o : H!
VAl ~ o -1,
Y' a connected component of w ~{Y).

Theorem 4. The algebraic dimension of Y is n-1 if and only if

the C*-zction ¢ on Y' reduces t

e

complex torus action.

Proof., Assume that a(Y) = n-1. Since a(¥') = a(Y) = n-1,
'e haé an (n-1l)-dimensional algebraic family of elliptic curve‘s‘.,
| The moduli of curves depens éontinuously on the
parameters. Hence, by Proposition 3, the moduli are constant. Since
every curve in Y is Cp—invariant', the C*-action reduces to a
complex torus action on the open dense subset of ¥Y' and therefore
on the whole Y'.

Conversely, assume that § reduces to a complex torus action V
on Y!'. Then "\é' is an affine variety in CN with the C*-action ‘\’F
inducéd by §5 Moreover the action';[\: is compatible with g', where
g' is a contracting sutomorphism to O of" CN'de.fining H‘N. It is
not difficult to check that the C*-action $ on "1,&’ is algebraic.
(Construct a contracting automorphism on C X ’Lé,'x l&' which leaves
invariant the closure T’ of th»e graph [ of @ , Where (: is an
analytic subset of CX’\é'x '\a.'. Use the result of [2] to show that
T is an algebraic subset of Cx’\é'xﬂé,'.) Hence, by Proposition (1.1.3)

, ,
N for

in Orlik-VWagreich [5], there is an embedding j : f%' —s L
' Ead ' ‘

some N' and a C¥—action '\iz' on CN such that j(f\gf‘) is Y’?"-—invariant

and that -‘\A{;' induces (\A‘; on ,’\3'. Moredver, by a suitable choice of

2 Nt ; . oy i .
coordinates (zl,...,zN) on € , the action (\i"v on @k can be written.

- 20 -
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as
~7 ql th
V(@ (2pseneszy)) = (@ 729500500 2y )s
. i
where the qi's are.positive integers. There exists a constant
such that Q& induces g' on mé'.-Then Yt = qé'-{o}/<g'> can be
. ' ~ :
considered as a submanifold of €V L0yt

The following theorem is known.

Theorem (Ueno {8]). Let M, be a subvariety of a compact complex

variety;MO. Then

(18) dim My - a(Ml) < dinm MO":a(MO)°
. v - e
Now it is clear that a(€' -{0}/J!>) = N'~l. Hence, by (18),
we get a(Y¥') = dim Y' ~ 1. Since a(Y') < dim Y', we obtain

a(Y') = a(Y) = N-l, Q.FLD.
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Remark 5. Topologically, any submanifold of z Hopf manifold

h

is diffeomorphic to a fibre bundle over.a l-dimensional c¢irecle of

which the transition function has a finite order as an element

1%,

the diffeomorphism group of the fibre. This can be seen without

difficulty from Theorem 3.

o

Remark 6. A compact complex surface S is a submanifold of

I

Hopf manifold if aﬁd only if S is a relatively minimal surface c¢f

class VI, VII —elllgtlc or a Hopf surface. (See [37 for the proof

of the "if" part.) Let S be a submanlfold of a H0p1 manifold.

It is clear by Proposition 3 that S is relatlvely minimal. By
Theorem 1, S is not algebraic. Hence a(8)<1. Assume that a(8) =
Thén, by Theorem 1, there exists a locally flat iine bundle L on
-8 such that the mapping  §L :_S———aPn éefinedgbyfthe lineérisystem
lL{ gives an algebraic reduction of S wh}ch ié defined everywhere.
Put A::@L(S). Let'n be the line 5undle on A associated to a
ﬁyperpléne section of A. Then we havei§£q:= L. We note that every
fibre of @L : S—> A is a non-singular elliptic curve (Propoéition»E).
We indicate by bi(M)'the i-th Betti number of a manifold M.‘It is
clear that bl(A):;bl(S)é;bl(A) f~2. Assume first that'bl(A) = bl(S).
Sincg L is a locally flat iine bundle on §, L is raised from a |
group represegtation p of Hl(S, Z) into €*. Let m be a certain
positive integer such that ?m is trivial on the torsion part of

FH (s, ). Then, in view of b (A) = b (S), there exists a locally

m

2

flat line bundle 75' on A such that E*’s‘ = 1", Hence we get BrE =

b*
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Since @# : H (A, O%)—>H™(S, 0*) islinjection, this implies
that the ample line bundle 7 on A is locally flat. This is absurd.
Hence we get blbﬁ)<Ib1(S). Next assume that bl(S) = bl(A) + 2,
By Corollary to Theorem 3, we get bQ(S) = 2bl(A) + 2. This implies
that the dual of‘the homology class represepted by a general‘fibre
is a Betti base of HZ(S, Z). This contradicts Theorem 1. Hence we
conclude thaﬁ bl(S) = bl(A) + 1. Therefore bl(S) is odd. Hence $
is either a surface of VIO or VIIO—elliptic. Consider the case
a(S)yﬁ 0. By the classification theory of surfaces f4]; a felatively
minimal surface with no ndn-constant meromorphic functions and
vanisﬁing Euler numbef is eithér a complex torus or a surface of
VIIO. A complex torusvhas a'pésitive algebraic dimension if it
contains a divisor. Hence by Propositidn 3 we infer that S is of
V110~class. Moreover bl(S) =1 ahd,bé(S) = 0. Henée, by iheorem‘34

[4], 8 is 2 Hopf surface.
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