7

An example of surfaces with $b_1 = 1$

By Masahisa Inoue

In this note, we consider (compact complex) surfaces S satisfying

(a)
$$b_1(S) = 1, b_2(S) \neq 0,$$

and

(β) S is minimal.

(cf. [1] and [3].) As yet, we have two kinds of such surfaces. We shall construct one of them. (Another kind of them is constructed in [4].) In our construction, we shall use some methods in Hirzebruch [2].

For a quadratic irrational number $\,x$, we denote by $\,x'$ the conjugate of $\,x$. We take a <u>real</u> quadratic irrational number $\,\omega$ such that

$$\omega > 1 > \omega' > 0$$
.

Then ω is expanded into a purely periodic continued fraction:

$$\omega = [[n_0, n_1, \dots, n_{r-1}]]$$

where r is the smallest period (see [2]). For any integer i, we define

$$n_i = n_j$$
, $0 \le j \le r-1$, $i \equiv j \pmod{r}$.

Then

$$n_i \ge 2$$
 for any integer i.

We define quadratic irrational numbers ω_i inductively by

(1)
$$\omega_{0} = \omega$$

$$\omega_{i-1} = n_{i-1} - 1/\omega_{i}.$$

Let \mathfrak{W} be the \mathbb{Z} -module generated by 1 and ω , and let $U = \{\alpha \in \mathbb{R} \mid \alpha > 0, \quad \alpha \cdot \mathfrak{W} \cup \mathbb{W} \cup \mathbb{W} \},$ $U^+ = \{\alpha \in U \mid \alpha \cdot \alpha' = 1\}.$

Then U and U⁺ are infinite cyclic groups. We take a generator α_1 of U⁺ such that $\alpha_1 > 1$. Throughout this note we assume that there exists an element α_0 of U such that

$$\alpha_0 \cdot \alpha_0' = -1, \quad \alpha_0 > 1.$$

Then α_{0} generates U and

$$\alpha_1 = \alpha_0^2$$

We define integral matrices N_0 and N_1 by

(2)
$${}^{t}N_{i} \cdot {}^{\omega}_{1} = \alpha_{i} \, {}^{\omega}_{1}, \quad i = 0, 1.$$

Then

det
$$N_0 = -1$$
, $N_0^2 = N_1$,
 $N_1 = \begin{bmatrix} n_{r-1}, 1 \\ -1, 0 \end{bmatrix} \cdot \begin{bmatrix} n_{r-2}, 1 \\ -1, 0 \end{bmatrix} \cdot \cdots \cdot \begin{bmatrix} n_0, 1 \\ -1, 0 \end{bmatrix}$

For example, if we take

$$\omega = (3 + \sqrt{5})/2$$

then

$$\omega = [[3]],$$

$$\alpha_{1} = (3 + \sqrt{5})/2, \quad \alpha_{0} = (1 + \sqrt{5})/2,$$

$$N_{1} = \begin{bmatrix} 3, 1 \\ -1, 0 \end{bmatrix}, \quad N_{0} = \begin{bmatrix} 2, 1 \\ -1, -1 \end{bmatrix}$$

We define positive quadratic numbers a_i for any integer i as follows:

$$a_{i} = (\omega_{1}\omega_{2} \cdot \cdots \cdot \omega_{i})^{-1}$$
 for $i \ge 1$,
 $a_{0} = 1$,
 $a_{-i} = \omega_{0}\omega_{-1}\omega_{-2}\cdots \omega_{-i+1}$ for $i \ge 1$.

It follows from (1) that

(3)
$$n_{i-1} a_{i-1} - a_{i} = a_{i-2}, \\ n_{i-1} a'_{i-1} - a'_{i} = a'_{i-2}.$$

We take two series of infinitely many copies of \mathbb{C}^2 :

$$V_{i} = \{(u_{i}, v_{i}) \in \mathbb{C}^{2}\}, i \in \mathbb{Z},$$

$$W_{j} = \{(z_{j}, w_{j}) \in \mathbb{C}^{2}\}, j \in \mathbb{Z}.$$

We identify (u_i, v_i) of V_i and (u_{i-1}, v_{i-1}) of V_{i-1} if and only if

$$v_{i} = v_{i-1}^{n_{i-1}} u_{i-1},$$
 $u_{i} = 1/v_{i-1}, u_{i} \neq 0, v_{i-1} \neq 0,$

and form their union

$$\mathcal{V} = \bigcup_{i \in \mathbb{Z}} V_i.$$

Similarly we form the union of W_{i}

$$W = \bigcup_{j \in \mathbb{Z}} W_j$$

by the identifications

$$w_{j} = w_{j-1}^{n_{j-1}} z_{j-1},$$
 $z_{j} = 1/w_{j-1}, z_{j} \neq 0, w_{j-1} \neq 0.$

Then $\mathcal W$ and $\mathcal W$ are Hausdorff spaces and, hence, complex manifolds with $\{V_i\}$ and $\{W_j\}$ as their coordinate neighbourhoods, respectively. Let \tilde{C} be a subvariety of $\mathcal W$ defined by

$$\tilde{C} \cap V_{i} = \{(u_{i}, v_{i}) \mid u_{i} \cdot v_{i} = 0\}$$

for any i ϵ Z. Then \tilde{C} consists of infinitely many irreducible components \tilde{C}_i , i ϵ Z, where \tilde{C}_i is a non-singular rational curve and

$$\tilde{C}_{i} \cap \tilde{C}_{i+1} = \text{the origin } p_{i+1} \text{ of } V_{i+1},$$

$$(transversally)$$

$$\tilde{C}_{i} \cap \tilde{C}_{k} = \phi$$
, $i - k \neq \pm 1, 0$,
 $\tilde{C}_{i}^{2} = -n_{i}$.

Similarly, \mathbf{W} contains a subvariety $\tilde{\mathbf{D}}$ with infinitely many irreducible components $\tilde{\mathbf{D}}_{\mathbf{j}}$, \mathbf{j} $\boldsymbol{\varepsilon}$ \mathbf{Z} , where $\tilde{\mathbf{D}}_{\mathbf{j}}$ is a non-singular rational curve and

$$\tilde{D}_{j} \cap \tilde{D}_{j+1} = \text{the origin } q_{j+1} \text{ of } W_{j+1},$$

$$(\text{transversally})$$

$$\tilde{D}_{j} \cap \tilde{D}_{k} = \phi$$
, $j - k = \pm 1, 0$, $\tilde{D}_{j}^{2} = -n_{j}$.

It is clear that

$$\int -\tilde{C} = \{ (u_0, v_0) \in V_0 \mid u_0 \cdot v_0 \neq 0 \},
\int -\tilde{D} = \{ (z_0, w_0) \in W_0 \mid z_0 \cdot w_0 \neq 0 \}.$$

By (3), we can prove that

$$|u_{i}|^{a_{i}} \cdot |v_{i}|^{a_{i-1}} = |u_{k}|^{a_{k}} \cdot |v_{k}|^{a_{k-1}},$$

$$|u_{i}|^{a_{i}'} \cdot |v_{i}|^{a_{i-1}'} = |u_{k}|^{a_{k}'} \cdot |v_{k}|^{a_{k-1}'}, \text{ on } V_{i} \cap V_{k},$$

and

$$\begin{aligned} &|z_{j}|^{a_{j}^{i}} \cdot |w_{j}|^{a_{j-1}^{i}} = |z_{\ell}|^{a_{\ell}^{i}} \cdot |w_{\ell}|^{a_{\ell-1}^{i}}, \\ &|z_{j}|^{a_{j}^{i}} \cdot |w_{j}|^{a_{j-1}^{i}} = |z_{\ell}|^{a_{\ell}^{i}} \cdot |w_{\ell}|^{a_{\ell-1}^{i}}, \quad \text{on} \quad W_{j} \cap W_{\ell}. \end{aligned}$$

Hence, if we define

$$r = |u_{i}|^{a_{i}} \cdot |v_{i}|^{a_{i-1}},$$

$$s = |u_{i}|^{a_{i}'} \cdot |v_{i}|^{a_{i-1}'}, \text{ on } V_{i},$$

and

$$p = |z_{j}|^{a_{j}} \cdot |w_{j}|^{a_{j-1}},$$

$$q = |z_{j}|^{a_{j}'} \cdot |w_{j}|^{a_{j-1}'}, \text{ on } W_{j},$$

then r, s and p, q are non-negative $\underline{\text{continuous}}$ functions on $\mathbb G$ and $\mathbb G$, respectively. Moreover

$$\tilde{C} = \{P \in \mathcal{O} \mid r(P) = 0\} = \{P \in \mathcal{O} \mid s(P) = 0\},\$$

$$\tilde{D} = \{Q \in \mathcal{O} \mid p(Q) = 0\} = \{Q \in \mathcal{O} \mid q(Q) = 0\}.$$

We identify $(u_{_0},\,v_{_0})$ ϵ $\mathcal{V}-\tilde{C}$ and $(z_{_0},\,w_{_0})$ ϵ $\mathcal{W}-\tilde{D}$ if and only if

$$v_0 = w_0^a \cdot z_0^b$$
,
 $u_0 = w_0^c \cdot z_0^d$, u_0 , v_0 , w_0 , $z_0 \neq 0$,

where $\begin{pmatrix} a, b \\ c, d \end{pmatrix} = N_0$, and form the union of \mathcal{O} and \mathcal{W} .

From (2) and (3) we can deduce

$$r(w_{0}^{c} z_{0}^{d}, w_{0}^{a} z_{0}^{b}) = p(z_{0}, w_{0})^{\alpha_{0}},$$

$$s(w_{0}^{c} z_{0}^{d}, w_{0}^{a} z_{0}^{b}) = q(z_{0}, w_{0})^{-1/\alpha_{0}},$$

for $(z_0, w_0) \in W - \tilde{D}$. By (4), we can prove that W is a Hausdorff space and, hence, a complex manifold. We define

$$\rho(P) = \begin{cases} r(P) & \text{for } P \in \mathcal{J}, \\ p(P)^{\alpha_0} & \text{for } P \in \mathcal{J}, \end{cases}$$

and

$$\sigma(P) = \begin{cases} s(P) & \text{for } P \in \mathcal{V}, \\ q(P)^{-1/\alpha_0} & \text{for } P \in \mathcal{W}. \end{cases}$$

$$\tilde{C} \cup \tilde{D} = \{P \in \mathcal{V} \cup \mathcal{W} \mid \rho(P) = 0\},$$

$$\tilde{C} = \{P \in \mathcal{V} \cup \mathcal{W} \mid \sigma(P) = 0\},$$

$$\tilde{D} = \{P \in \mathcal{V} \cup \mathcal{W} \mid \sigma(P) = \infty\}.$$

We define an analytic automorphism g of $\mathcal{V}\mathcal{W}$ as follows:

g sends
$$(u_i, v_i)$$
 of V_i to (u_i, v_i) of V_{i-r} ,

g sends
$$(z_j,w_j)$$
 of W_j to (z_j,w_j) of W_{j-r} .

From (2), it follows that

(5)
$$g^* \rho = \rho^{\alpha_1},$$
$$g^* \sigma = \sigma^{1/\alpha_1}.$$

Let $\mathfrak J$ be an open subset of $\mathfrak V \mathfrak W$ defined as follows:

$$\mathcal{J} = \{ P \in \mathcal{VU}_{W} | \rho(P) < 1 \}.$$

Then D is invariant by g and

$$\mathfrak{D}\supset \tilde{c}, \tilde{p}$$
.

Moreover

$$g(\tilde{C}_{i}) = \tilde{C}_{i-r}, \quad g(p_{i}) = p_{i-r},$$

 $g(\tilde{D}_{j}) = \tilde{D}_{j-r}, \quad g(q_{j}) = q_{j-r}.$

By (5), we can prove that g generates a properly discontinuous group $\langle g \rangle$ of analytic automorphisms of \mathcal{Y} free from fixed points. We define S_{ω} to be the quotient space of \mathcal{Y} by $\langle g \rangle$:

$$S_{(i)} = 3 / \langle g \rangle .$$

 S_{ω} is a complex manifold of dimension 2.

Let π be the projection of $\mathfrak J$ onto S_ω and let

$$C = \pi(\tilde{C}), \quad C_{i} = \pi(\tilde{C}_{i}),$$

$$D = \pi(\tilde{D}), D_{i} = \pi(\tilde{D}_{i}).$$

Then C and D are <u>compact</u> subvarieties of S_{ω} which have irreducible components C_0 , C_1 , \cdots , C_{r-1} and D_0 , D_1 , \cdots , D_{r-1} , respectively. When $r \geqslant 2$, C and D are cycles of non-singular rational curves C_0 , C_1 , \cdots , C_{r-1} and D_0 , D_1 , \cdots , D_{r-1} , respectively, where the intersections are <u>transversal</u> and

$$C_{i}^{2} = D_{i}^{2} = -n_{i}$$

When r = 1, C and D are rational curves with an ordinary double point and

$$C^2 = D^2 = -n_0 + 2.$$

In any case

(6)
$$C^2 = D^2 = -(n_0 + n_1 + \cdots + n_{r-1} - 2r).$$

The configurations for $\,$ C, $\,$ D $\,$ are illustrated as follows :

Evidently, C and D do not intersect.

Let (ξ, ζ) be the coordinate of $\mathbb{H} \times \mathbb{C}$ where \mathbb{H} is the upper half of the complex plane and let G be the group of analytic automorphisms of $\mathbb{H} \times \mathbb{C}$ generated by

$$g_{0} : (\xi, \zeta) \longrightarrow (\alpha_{1}\xi, \frac{1}{\alpha_{1}}\zeta),$$

$$g_{1} : (\xi, \zeta) \longrightarrow (\xi + \omega, \zeta + \omega'),$$

$$g_{2} : (\xi, \zeta) \longrightarrow (\xi + 1, \zeta + 1).$$

G is a properly discontinuous group of automorphisms of $\mathbb{H}\times\mathbb{C} \ \ \text{free from fixed points.} \ \ \text{We define a holomorphic mapping} \ \varphi=(\xi\,,\,\zeta) \ \ \text{of} \ \ S_\omega-C-D \ \ \text{into} \ \ \mathbb{H}\times\mathbb{C} \ /G \ \ \text{by}$

$$2\pi \sqrt{-1} \xi = \omega \log v_0 + \log u_0$$
,
 $2\pi \sqrt{-1} \zeta = \omega \log v_0 + \log u_0$.

Then φ is an isomorphism of $S_\omega-C-D$ onto $\mathbb{H}\times {\bf C}$ /G. By this fact and the fact that C, D are compact, we can prove

that S_{ω} is a <u>compact</u> complex surface.

Since \mathcal{S} is simply connected, we obtain

Proposition 1.

$$\pi_1(S_\omega) \cong \mathbf{Z}, b_1(S_\omega) = 1.$$

Let K be the canonical line bundle of S_{ω} . Then

$$K = [-C - D].$$

Hence, by (6) and the Noether formula, we obtain

Proposition 2.

$$b_2(S_{\omega}) = c_2(S_{\omega}) = 2(n_0 + n_1 + \cdots + n_{r-1} - 2r).$$

By the adjunction formula, we can easily prove

Remark.

- 1. If $\omega=(3+\sqrt{5})/2$, then $b_2(S_\omega)=2$ and S_ω contains exactly two irreducible curves.
- 2. Let $S^+ = \{P \in S_{\omega} \mid \sigma(P) \leq 1\}$ and $S^- = \{P \in S_{\omega} \mid \sigma(P) \geq 1\}$. Then S^+ and S^- are deformation retracts of C and D, respectively. Hence the Euler numbers of S^+ and S^- equal r. Moreover, the Euler number of $S^+ \cap S^-$ equals zero. Thus, by the additivity of the Euler number, we obtain

$$b_2(S_{\omega}) = c_2(S_{\omega}) = 2r$$
,
 $n_0 + n_1 + \cdots + n_{r-1} = 3r$.

3. S_{ω} has an involution \mathbf{V} defined as follows: \mathbf{V} sends (u_i, v_i) of V_i to (u_i, v_i) of W_i , \mathbf{V} sends (z_i, w_i) of W_i to (z_i, w_i) of V_i .

 \mathbf{l} has no fixed points on S_{ij} and

$$(C_i) = D_i$$

Let

$$\hat{S}_{\omega} = S_{\omega}/\langle \mathbf{l} \rangle$$
.

 $\boldsymbol{\widehat{S}}_{\omega}$ also satisfies (a) and (b).

- 4. F. Hirzebruch remarked that we can construct a surface for any real quadratic irrational number ω such that $\omega > 1 > \omega' > 0$ by similar methods.
- 5. D. Mumford, I. Nakamura and T. Oda remarked that $\,S_{\omega}^{}\,$ can be constructed by the methods of troidal embeddings.

References

[1] K. Kodaira, On the structure of compact complex analytic surfaces, II, American Journal of Mathematics, Vol.88 (1966), pp.682-721.

- [2] F. Hirzebruch, Hilbert modular surfaces, L'Enseignement mathématique, t. XIX, fasc. 3-4.
- [3] M. Inoue, On surfaces of class VII₀, <u>Inventiones</u>

 <u>Mathematicae</u>, Vol.24 (1974), pp.269-310.
- [4] , New surfaces with no meromorphic functions

 (to appear in the Proceedings of the International

 Congress in Vancouver.)