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INCREMENTAL ASYMPTOTIC EXPANSION METHOD FOR
CONTINUOUS PROPAGATION OF ELASTIC-PLASTIC BOUNDARIES

Tsuneyoshi NAKAMURA and Koji UETANI
Department of Architecture
Kyoto University

1. Introduction. The response of an elastic-plastic structure
to a prescribed external disturbance is characterized by the
spreading and diminishing of plastic and unloaded regions and
hence by the movement or propagation of the boundaries between
elastic, plastic and elastically unloaded regions. A plastic
region may appear from the boundary of or in an elastic or elas-
tically unloaded region. The boundary between a growing plastic
region and the corresponding diminishing elastic or unloaded re-
gion will henceforth be referred to simply as an elastie-plastic
boundary. A region under unloading may-spread from the boundary
of or in a plastically deformed region. The points on the bound-
ary between a growing elastically unloaded region and the corres-
pondingly diminishing plastic region are under neutral loading
and the boundary will be referred to as a neutral loading bound-
ary. In the present paper, only those boundary regions which

are (n-1)-dimensional spaces in an n-dimensiomnal region will be
considered. For the analysis of post-bifurcation paths emanat-
ing from elastic-plastic critical points, it seems that the prop-
agation of elastic-plastic and/or neutral loading boundaries
needs to be analyzed more accuratly and carefully than for prob-
lems of analyzing stable fundamental paths away from the criti-
cal points. An elastic-plastic and neutral loading boundary may
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be a surface of discontinuity in the dependent variables and
their derivatives, particularly in dynamic problems. While some
analytical tools for treating discontinuities have been provided
by Hill in his comprehensive paper [l], no efficient numerical
method of dealing with continuous propagation of such disconti-
nuitied have been proposed so far to the best of the authors'
knowledge.

A routine application of the finite element method to
the analysis of an elastic-plastic structure furnishes element-
wise elastic-plastic or neutral loading boundaries as stepwise
solutions. Neither the history dependence of plastic deforma-
tion during-an incremental step nor the effect of smooth and
continuous propagation of elastic-plastic and neutral loading
boundaries upon the behavior of a structure has been taken into
consideration in any elaborated finite element methods. In order
to remove the deficieney due to the former within the framework
of constant-strain finite elements, the present authors have pro-
posed an incremental perturbation method [2, 3] for large dis-
placement analysis of elastic-plastic structures, which enables
one to satisfy all the governing rate-equations to a desired
accuracy during each incremental step. The purpose of this paper
is to present an idea for treating the latter problem and to
demonstrate, by means of two simple examples, an incremental
asymptotic expansion method (or incremental perturbation method)
in which the effect of continuous propagation of elastic-plastic
or neutral loading boundaries has been taken into account.

The idea of a floating joint attached to a point on an
elastic-plastic boundary and travelling with the boundary as the
plastic region spreads, is first illustrated by a simple bar
element under tension in Section 2. The derivation of an instan-
taneous stiffness equation is compared with the process of deriv-
ing it from field equations in terms of integrated quantities.

In Séction 3, the idea of a floating joint is applied to the pro-
blem of large displacement analysis of an idealized sandwich
beam~column. A set of asymptotic expansion equations is develop-
ed for the case of a neutral loading boundary in Section 4 and
for the case of an elastic-plastic boundary in Section 5.
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2. A straight bar under simp]é tension. Let x denote the coor-
dinate taken along the initially straight member-axis of a bar
under simple tension as shown in Fig.l. The cross-section of
the bar is assumed to be monotonically and smoothly increasing
from the left fixed end A at = = 0 toward the right 1oéded end C
at x = 7 and denoted by S(x). For the sake‘of simplicity, it is
assumed that the bar is made of a homogeneous elastic-linear
strain-hardening material which obeys the idealized uniaxial

stress-strain relation shown in Fig.2.

floating node

L(A~B) B
plastic region

R(B~C) C
elastic region

Fig.l. Straight bar under simple tension
with an elastic-plastic floating node.

Fig.2. Bilinear uniaxial stress-strain diagram
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If the tensile force PC applied at C is increased from
zero, it is at A with the smallest cross-sectional area that the
first yield occurs and that an elastic-plastic boundary appears.
As PC is increased further, the elastic-plastic boundary moves
toward C. Let ¢ denote a path parameter such that at ¢ = 0 the
elastic-plastic boundary is at z = 0. Let o(x, t) denote the
normal stress acting on a deformed cross-section and measured
per unit area of the corresponding undeformed cross-section lo-
cated at x. The equilibrium equation may be written as:

(S(m)o(x, t) )’ =0 |, (1)

where a prime denotes differentiation with réspect to z.

A rate-type formulation of this problem is first shown in
the following. The partial derivative of a field quantity with
respect to ¢ is denoted by a dot. Then the rate equation of
equilibrium may be written as: ‘

. [
(S(x)o(x, £) ) -0 . (2)
The boundary conditions in the rate form are given by

wlz, t) =0 at =z = 0 , (3)
S(z)d(x, ¢t) = PC(t) at x (4)

The relation between the infinitesimal longitudinal strain e(x,t)

and the longitudinal displacement u(x, t) may be written as:

u'(xa t) 3 . (5)
w'(x, t) . 3 (6)

e(x, t)
e(x, t)

The stress rate-strain rate relations are given by

Qe

= Ee if o < cy or if o = Gy and o0 < 0 , (7)
gf¢  if o=o90, and G >0, (8)

Qe
I

where Oy denotes the initial yield stress in tension.

Let x = »(t) represent the position of the elastic-plastic
boundary B at ¢. Use of Eq.(4) in the general solution of Eq.(2)
leads to the expression:

S(z, t) = PC(t)/S(x) . (9)
Since the region AB of 0 < x < r(t) is in the plastic range and

since the region BC of r(¢t) < x < 1 still remains in the elastic
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range, the stress-strain relations (7) and (8) may be applied to
BC and AB, respectively. Let the subscripts Z and R denote those
quantities which belong to the regions or elements AB and BC,
respectively. Then

6L = ETéL for 0 <x < r(t), (10)

GR = Be, for »(t) <=z < 1 . (11)

Integration of Eq.(6) with respect to z subject to the boundary
condition (3) and substitution of Eqgs.(10) and (11)and then (9)
into the resulting equation provide the following relation be-
tween PC and the displacement rate AC of the loaded end C:

. r(t) L,
AC = I er(x,t)dx + J ER(x,t)dx
r(t)
A
_ [ (71 (" __1 L0
= { o7 ja 5rz) 9t E Jr 57z) 9* }P
- [ o(r)  w(r) }-c
- { - () lze (12)
where »(t) , z ; i
o [r(e)] =I 5757 dx and [r(e)] :J a7
0 r(t) (13)

Then the instantaneous stiffness equation of the bar AC at ¢t > ¢
may be written as
BTk
Ep [r(t)]+ETY [r(t)]

AC(e) = PC(e) . (14)

The stiffness coefficient in Eq.(14) contains r(¢). The formula-
tion is completed by imposing the following additional equation
which characterizes »(¢t) as the elastic-plastic boundary:

og r(t), t =op r(t), t =0, (15)
Since the stress field in the element BC may be written as
t
Oplx,t) = opl(x,0) +.J oplx,T) dt
0
(o) t (0) C C
_ 1 Crergne — ¢ pC(t)-PC(0)
= 0 (x) + S(a) JOP (t)dr o(x) + S7%) ,

Eq.(15) may-be reduced to
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(0) c _pC
o(r) + p (tg(i)(O) y

Although the second equation in Eq.(16) can be written directly

=0 or Pp(t) = oys(r) . (16)

for such a simple statically determinate model, it has been the
purpose of the lengthy derivation of Eq.(16) to demonstrate the
general procedure. It should be noted that, in view of the pro-
perties

o[r(t)] ~ 0 as » > 0 and V[r(¢)] >0 as »r > 1 , (17)
the stiffness coefficient in Eq.(14) takes on an intermediate
value between the following two extreme values:

A
%/T 1 dx when the whole element is elastic and
OS(x)

A
g7/| =L+ dz when the whole element is plastic.
OS(x)

For this particularly simple problem, an alternative
formulation with respect to the integrated quantities or total
quantities is possible. The solution of Eq. (1) subject to the
mechanical boundary condition given by the integrated form of
Eq.(4) may readily be obtained as

o(x, t) = PC(t)/S(x) . (18)

‘The (total)stress-(total)strain relations for the plastic and.
elastic regions may be written, respectively, as

E& GL(m,t)-G

- Ly

ep(z,t) = = o7 for 0 < x < 2(t) , (19)
(x,t

eplz,t) = 35—§*—1 r(t) <z <1 . (20)

The (total) displacement AC(#) of the end C may readily be ex-

pressed as follows:

A
AC(t)

p :
J er(x,t) da + J eplx,t) dx

r

0 .
1 1 o(r) Y(r)|,C
(E - E—T)O'yr‘(‘f;) + { o7 - F }P (t) . (21)

The rate expression derived by differentiating (21) with respect
to ¢:

It
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AC (L _ Dy » Ldd 1 dvlpc s
10s) = (2 7)oyt + {ET 2,1 dr}P (£)7(t)

¢(r) , Vv(r)l ¢
+ { o7 + 5 }P (t)

may be shown to coincide with Eq.(12) if the definitions (13)
and Eq.(16) are utilized. The repeated derivation of Eq. (12)
has been carried. out here not only for the purpose of demonstra-
ting the equivalence between the two formulations, but also for
pointing out that the formulation in terms of the integrated
quantities may be possible only if the constitutive equations
are written in terms of the integrated quantities. Since the
constitutive equations in the flow theory are not given in terms
of the integrated quantities and are history-dependent, the rate-
type formulation will in general be inevitable and should be
distinguished from its linearized version in terms of the linear
finite increments as will be discussed later.

In the remaining part of this section, it is shown that
certain singularities appearing in the disconnected element
stiffness equations for the elastic and plastic regions and in
the superposed stiffness equation for the whole bar turn out to
be removed after elimination of the nodal quantities belonging
to the elastic-plastic boundary. The well-known direct stiff-
ness method is formally applied first to the system consisting
of the two elements AB and BC. 1In other words, a tentative
floating node B is considered to lie on the elastic-plastic
boundary. The location of the node B depends upon ¢ and has
been denoted by x = r(¢t). The element stiffness equations for
the elements AB and BC with varying lengths may be written for-

mally as
g [1  -1]A* PA
b(r) [—1 J:HAB} = {133} , (22a)
E 1 -I|fAB pB
Y (r) [—1 1]{2\0} B {130} ) (22b)

respectively, where the superscripts A and B denote those nodal
quantities belonging to the nodes A and B, respectively. It
should be noted in view of the properties of ¢(r) and Y(r) given
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by Eq.(17), that the stiffness matrices in Eqgs.(22a and b) are
divergent as » + 0 and r » 7, respectively. This means that the
element stiffnesses would be increased infinitely if their
lengths are reduced simply to zero. The system stiffness equa-
tion derived by simple superposition:

BT/¢  -ET/¢ 0 |4 pA
-ET/¢  ET/9+E/y -E/y|{AB} = {PB
0 -E/Y z/y [ A€ pC (23)

retains still the same singularities. Since 2B can be assumed
to be zero without losing gemerality, AP may readily be elimi-
nated from Eq.(23). The resulting equation:

pvvec A | (OO R O )

coincides essentially with Eq.(14) and no longer contains the
afore-mentioned singularities. The nature of the floating node
B may be observed also from the remaining equation:

. TyAd AC

Ay = E-YA=+EHA (25)

E¢+ETY

The solution procedure for Eq.(24) by the application of the
perturbation method or asymptotic expansion method will be
discussed through the more practical example in the following

sections.

3. The tangential stiffness equation for a cantilever beam-
column. Fig.3 shows a cantilever beam-column element with
an idealized sandwich cross-section. The tangential stiffness
relation in terms of nodal force-rates and nodal displacement-
rates is derived by the same procedure as in Section 2 for such
an element when containing an elastic-plastic boundary or a
neutral loading boundary. TFor this purpose, a tentative float-
ing joint B is again considered to lie on the boundary. The
joint B moves from the fixed end A toward the free end C as the
boundary moves. Let x denote the coordinate taken along the
initially-straight member-axis. For the sake of simplicity
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The elastic-plastic
boundary or the
neutral boundarju

undeformed
(reference state

element R
deformed state

Fig.3. Sandwich beam-column with an
elastic-plastic floating node.

variation of e, at x=r{t1); eu{r(tl),t)

.

distribution of ¢ at
t=t; eyl(x, t7)
x

the position of the elastic-
plastic boundary at t=t;

e 1 ——

Fig.4. Timewise variation of the strain distribution

and of the elastic-plastic floating node.
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without losing generality,.the elastic-plastic or %Futra%)load-
ing boundary is assumed to be at A at ¢ = 0. Let u(x), w(x) and
g;(x) and gg(x) denote those initial tangential and normal dis-
placements and the initial stresses in the upper and bottom
flanges, respectively, which the beam-column has experienced by
the time ¢ = 0. The subscripts L and R denote those quantities
belonging to the elements AB and BC, respectively. The sub-
scripts u and » denote those quantities belonging to the upper
and lower flangeé, respectively. The elastic-plastic boundary
in a flange at time ¢ > 0 is denoted by = = »(t).

The following displacement-rate functions are employed:

. - > 2 o 3
wL(x,t) = aZL(t)x + agL(é)x R
}for the element

up(e,) = b, (t)x, L (AB), (26L)

. . b e 2 hd 3

wR(x:t),‘ AR t a;px + A% + Y ,}

&R(x,t) _ 503 . Esz - foz_the element
R(BC). (26R)

The corresponding nodal displacement rate-generalized displace-
ment rate relations may be written as

a (t) = AL(r»)AL(t) (27L)
where
a réB 3/r2 -1/p 0
. L R A +B 3 2
a, = ?SL s Bp = = ?B and AL = |-8/» 1/r 0
b,, Nu 0 0o 1/r

Similar equations for the element R may be written
readily but are omitted. Similar omissions will be made here-
after unless otherwise stated for particular distinctions due ‘to
the difference in forms. The strain rate-displacement rate re-
lations are given by

° ) Pt o

{?um? N {ZfL * YL * th}
= Paa ! _ n

eyl [t hwy

e (x,t) ,
L u ’r

Il

BL(x,t)aL(t) = BL(x,t)AL(r)AL(t) 5 (28L)
where
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2
14 14
ZwLx+2h SwLx +6hx 1

Pon_ 1,2 _
2wLm 2h 5wLx 6hx 1 R

and where % denotes the distance between a sandwich flange and

the member axis. The current displacement gradients w»; and CRA
in BL and BR may be expressed as follows:
- t, (), t
wé(m,t} =wl(x) + J wé(x,s)ds + J wi(m,s)ds , (29L)
0 tplx)
> v,
wp(z,t) =0 (2) + J ol(x,6)ds (Z9R)
0 : .

where ¢,(x) represents that time at which the elastic-plastic
boundary or neutral loading boundary passes through z and is the
inverse of r(t) as shown in Fig.4. The stress rate-strain rate
relations for the flanges may be written as:

. g E 0 | (e .
o, (z,t) = {“L} = | ¥ {”L} = Ee; . (30L)
o] 0 E e
bL bL bL
The variational principles for the rate quantities may
be written as:

n () se . To Yy - sA.Tp 31L
JO [eL oy, + (0, .+0y ) 8w wé]dx = 6A"P (31L)
JZ Esé Ty + (0 40 )6127’57’:[dx = A Tp (31R)
»(t) R ¥R uk “bR R°R - R R °

Substitution of Equations (27), (28) and (30) into Equations (31)
provides the tangential stiffness equations for the two elements
L and R,,which may be written as: '

K, (2, 8B, (¢) = PL(t) (32L)
where

K =af [[e.7e 8. +5 |az a (33L)

L~ "L 0 L "LL L L

SL and SR represent, respectively, the terms involving the
current stresses CE(x, t) and C%(x, t) given by

() tplx) | t .
CZ(x,t) = &lz) + J EReB(x,s) ds + J ELeL(x,s) ds ,

-11-
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(0) t o,
Qg(m,t) = olx) + jOEReR(x,s) ds . (34R)

Since the elements of KL involve terms of negative powers of r,
KL+[w] as » » 0. On the other hand, KR+[w] as » » 1. These
apparent singularities due to direct use of KL and KR may readi-
ly be removed if AP is eliminated from the superposed stiffness
equation for the whole cantilever ABC:

BB BB BC e B BB BC * B
kKBBkBB kO (AP (KPP kPO (A ,
. - 35)
B ce cB  ,CC (
Kz Ke [1AC] |K K HACT | B¢

After elimination, the stiffness equation with respect to {Ap}
and'{ﬁc} may be written as

Ker, £)AS(t) = PCre) (36)
where -1
K = KCC _ (CByBB " BC (37)

Neither for » » 0 nor for r - 1, the matrix K given by Eq.(37)
is divergent any longer. The continuous variation of the elas-
tic-plastic stiffness of the whole beam-column has now been ex-

pressed with » as a parameter.

4. Neutral loading boundary condition and asymptotic expansion.
If propagation of a neutral boundary is to occur in the
upper flange, the neutral loading boundary condition may be

written as

B A
uR uR 2L
Usual application of the asymptotic expansion procedure to Eq.

&uR(r’t) = E (r,t)AR(r){ }EF(r,t)AF(t) =0 . (38)

(38) with appropriate precaution of treating r as a function of
t, furnishes the following ordered set of equations:

(1) Cc
Flysg 27 =0
Y oF Wo @z e (O G- O (G-2
oy A YL
F|t=0 * 3r ! t=0 7 (A ,... A, P ,... 70 )

(@) @ (39)
where A and r denote, respectively, the coefficients in the

-12-
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expansions of A(¢) and »(¢) in powers of ¢:

() (¢} 2
A(t) = A +A_t +At2 PR B
. D 2
l"(t) = rt 4P 2,;2 R (40)

A similar ordered set of equations may be derived also for Eq.

(11): ) w

c
Klt=0 AT = PT,
N5 W , G=D W, @ W (-1 O (-2
‘A C, 3K AC_ v~ _ - o
Klgeo & 7 52l e=0 z P +Q(A...;A,,r..r
(41)

The)system of simultaneous equations (39) and (41) for E& and
i-1
'(r must be solved successively.

5. Elastic-plastic boundary condition and asymptotic expansion.
If propagation of an elastic-plastic boundary is to
occur in the upper flange which has not experienced any plastic
deformation, the elastic-plastic boundary condition may be
written as:
o, p(r-t) =0y, ' (42)

where o, denotes the constant yield stress. The ordered set of
expanded equations may be reduced to the following form:
¥, =
ult=0 = % >
(0)

(0 & 90 i ( -1 W (1-1
8 A + B PR R AT, (43)
t=0
where
G = EuRBuR(O,O)AR(O) . (48

. . . . .w
Since the i-th order stiffness equation does not contain »r ,

Eq. (41) may be solved-independently of Eq.(43) for 23. The

solution X may then be substituted into Eq.(43) to find %).
The first order equation of (39) and the 0-th order equation of
(43) define, respectively, that the initial positions of the
boundaries are at x = 0. It has been tacitly assumed in the
foregoing development that an appropriate choice of the para-
meter ¢t is to be made so that »'(0) # 0 .

In practical problems of a beam-column or a framed

-13-
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structure subjected to repeated loads, the subsequent yield
stress of the material in a plastically deformed portion is de-
pendent up on the previous history of the stress-strain path.

In such a problem, o, in Eq.(43) must be treated as a function

; Y
of x which are known from the analysis in the preceding step.

6. Concluding remarks. In view of the results of Cicala [4]

and of Hutchinson [5], a careful treatment of the variation of
an unload region and hence of the propagation of a neutral bound-
ary with a high accuracy seems to be crucial in the elastic-plas-
tic bifurcation and post-bifurcation analysis of a structure.
With such problems in mind as a field of potential application,

a numerical method has been devised of dealing with continuous
propagation of an elastic-plastic boundary and a neutral loading
boundary across which some discontinuities in the dependent var-
iables and/or their derivatives may occur. The proposed idea
has been illustrated by the two examples to considerable details.
Although certain difficulties may arise in two- and three-dimen-
sional finite elements, the proposed procedure furnishes, at
least for beam-columns and framed structures, a means of taking
into account, not only the continuous stiffness variation of an
element containing a possibly discontinuous moving boundary, but
also the termination condition when the boundary surface passes
through the terminal point or surface.
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