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On the fundamental solution of partial differential

operators of Schrodinger's type

Daisuke FUJIWARA
Dept. Math. Univ. of Tokyo
§ 1 Preliminaries

We shall construct the fundamental solution of partial differential
operators of Schrodinger's type;
L=(/i)>/3t +35 1/y/ex (bfi) 4 hx, (Vefnehn/i) o = + v(x),
where h is a positive constant and ( gjk(x)) _ is a positive definite
matrix-valued function of class CM(Rn). Jl’I(‘he notion of Feynman
integral has been explained mathematically by several authors ( for
example[ | ) andB~ —)[7,—’ and their references.) as a limit of analytic
continuation of Wiener integrals. Direct treatment of it was proposed
by Ito C K ) in introducing an " ideal uniform measure on }};O,t:'[
In this note we prove that the Riemannian sum approximation of Feynman's
path integral that Feynman himself defined in [2 j actually converges
in the operator norm to fundamental solution ofthe operator L if the
function exp (i/h)S, S being the classical action, oscillates rapidly.
Note that our method enables one to treat the case that gjk(x) are

not constant.



140
§ 2 assumptions

The Laglangean function is of the form

(g, @) =% S g (@ a a - V),
Jk j k
where (g(a is a positive definite matrix valued function, i.e,

=2g(x) dx? d.x is a Riemannian metric in R . The Hamiltonian

function is H(p, q) = q:p - L, where q-.p _%E; J We denote
by q(t,y,% ) and p(t,y, §) the solution of Ha.nulton {equitlons

dg ©H dp ; H

dt —5; at ) T g a

satisfying initial conditions q =y, p = g at t =0,
Our first assumption-is
(A-I) Therepxists a constant S)O such that the canonical transformation
Vi3 — & 7) =ty §), ety §))
indtt;ces a diffeomorphism of the configuration space for any t 6@, & J.
Let x0 =x (t X, %) be the unique solutlon of q(t,x, Q;") X

Then a generating function of % is given by

1 * |
So(t.x,é) = jL(é’ q) ds + xv% .
where the integral should be xixade along the classical orbit frem xo 10 X.
Denoting the Euclidean length of a vector x in R by x , we shall further
make the following assumptions;
. B §) -8, §) [ 220 5, §) 6 Ix2) ),
= | grad < 5(x,%) - 8(x, %) )[2/”(x. 500 & CLE=171)s

where 17 (x, 2 %) and ’ (x,%,7) are smooth functlons with a positive
[~
2

(A-II) ?£ = | erad

lower bound and @(t) is a function such that (9 (t) = 0(t ) near t=0
and Q)= t%  for t>1, with some 5>0.

(A-III) For any multi-index X , there exists a constant C> 0

2
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such that we have
&) 5, ) - s s D€ ¢ F
L 75(::, 6) - s(x, 7 ))( < C y.

yalty, 2)
Let Y(t,x,‘{) = det Zeovve—— Then Y =¢ 0 for
Ty
0<t < by (4-I). OUr last assumption is

—

(4-1IV) For any multi-index X there exists a constant C )0 such

that we have estimates;

-1
(9 Y(t,x,f) T(tux, 7) )/é sz.? v

o -1 - -1 _
[(%)“@(t,x,p 1ty §) )]gc G &)

5 3 Results
¢ 3

- -1
)“ Y(tnx’%) expih S(tlx’% ’Y)o

We set E (t,x,§,y) =
where S(t,x, 7, ¥) = 8,(t,x, %) -fer) . Then E  satisfies
(b/1) * />t + B(h/i/yx, %) )E (t,x, 8,5 '=0h2 F(t,x, §.7),
where F(t,x, 3) = $ A ¥(t,x, $ )2 pr in S(tx, §)_

We define two operators E(t) and F(t) by
1) B(t) f£(x) = (ZTFh)-n// E(t,x, §.y) £(y) dy d ¥,

-n 2
F(t) £f(x) =(2wh) F(t,x, §,y) f(y)dydg§ .

These are defined at least for any f in Cgo(Rn). It is easy to see
E(0) f£(x) = f(x). Moreover we have

Lemma, We have the following estimate

I E(t)“é c and ||F(t) | ¢ b°,  for any t in [o. 3].
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T{¢ This is an immediate consequence of our previous work[;qj.

Z/_
We set E(t) = Eo(t) + (i/h)/ Eo(t-s) F(s) ds.
12

Let T ©be the one parameter unitary groupp generated by H( -ih.&/) X, X) .
t

OUr main result is

THEOREM  (Feynman [_2))

Bim || B( t/k ) EC t/k ) o...E(t/k) - T, | = o

kK~ i

Proof

Vitét/ddt/ Note that -ih 3 />t + H( -ih )} fx, x)E(t)
t
- oin~ / F(t-s) F(s) ds and that
0

t
h-iﬁ///\ F(t-s) F(s) ds ” §§ C(t|h3 for t.eib, E]&
0

Hence the difference R(t) = T, - E(t) is estimated asfR(t) || ¢t |2 h.

Now let t be any positive number. Take k so large as t/k belongs to

B Th /eI men \\RG/W|CC R’ (07 i taplics that
\| E(t/k) E(t/k) oooe E(t/K) - T, [ = 14+ (RG/MA)) -1,

and this converges to O.

§ b Space time Approach

If we integrate first by % in (1) and use stationary phase method,

we can prove that
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B(t) f(x) = /a(t’x’y) exp i h-iy (x, y) f(y) dy,

i : gy) %
where a(t,x,y) = (hi/Z(W)in

g(x)
where j?(x,y) is the classical action /[ L ds along classical path

from y to x. ‘% (x,y, t) is the solution of q(t,x,%) =y and

Hess ﬁS = the Hessian matrix of So(t,x, ‘j) with respect to % variables at
g = %(x,y,t, ). Starting with this expression of“E(t), we can

discuss everything and prove our result in the configuration space and

time.
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