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§ 1. Transformation group with codimension one orbit

1.1. Let us first recall some basic facts about differentiab;e
transformation groups.

(1.1.1) Let G be a compact Lie group acting differentiably
on a manifold M. Then by averaging an arbitrary given Riemannian
metric on M, we may have a G-invariant Riemannian metric on M.

(1.1.2) Let x €M, Then the isotropy subgroup G aCts&SEL__ﬂ\\

K,.__/

a normal vector space Nx of the orbit G(x) at x ; orthogonally

we call it the slice representation of Gx at x and denote by
. — ]
Px : GX O(NX), where O(Nx) is the group of orthogonal
transformations on Nx’
(1.1.3) (Differentiable slice theorem) Let E(VY) Dbe the

normal bundle of the orbit G(x) = G/Gx' Then

N

E(V) =G X N_

X
Cx
where GX acts on Nx via ‘ﬁx' We note that G acts naturally
on E(Y) as bundle mappings and we may choose small positive
real number &£ such that the exponential mapping gives an
eguivariant diffeomorphism of the £ -disk bundle of E(VY) onto
an invariant tubular neighborhood of G(x). (cf.[3],Lemma 3.1)
(1.1.4) Let H CG be a closed subgroup. Denote by (H),
the set of all subgroups of G which is conjugate to H in G.
We introduce the following partial ordering relation " <" by
defining (Hl) <:(H2) if and only if there exists Hl < (Hl) and

H2 e (H2) such that Hl(:sz. If M 1is connected, then there

4
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exists an absolute minimal (H) among the conjugate classes

{ (Gx) l X € M.}, moreover the set

M(H)={X€M‘GX6(H)}

is a dense open submanifold. The conjugate class (H) is called

the type of principal isotropy subgroups, and the orbit G/H is

called principal (cf.[31,(2.2) and (2.4)). An orbit G{(x) is
called singular if dim G(x) < dim G/H.

Combining (1.1.3) and (1.1.4), we have the following result.

Lemma 1.1.5. f M is connected, then the slice representation

of G, at x €M is trivial if and only if G, is a ernClgalr

isotropy subgroup.

Corollary 1.1.6. If M and G are connected and G(x) is

an orbit of codimension one, then G(x) is a principal orbit only

when the normal line bundle of G(x) in M is orientable.

1.2. Now we prove the following result.

Lemma 1.2.1. Let G be a compact connected Lie group. Let

M be a compact connected manifold without boundary and assume

= 0.

Suppose that G acts differentiably on M with an orbit G/K

of codimension one. Then G/K is a principal orbit, and M has

just two singular orbits G/Kl and G/K2 (equivariantly diffeomor-

phic or not). Moreover there is a closed invariant tubular

neighborhood Xs of G/Ks (s = 1,2) such that

&
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M=X,\JX, and xl/\x2= 90X, = axz.

Proof. Let N be a closed invariant tubular neighborhood

of G/K in M. Consider the following commutative diagram :

HO(G/K;Zz) —ﬁ—» gl (N, 9 N;z,) <= gl (M,M-intN;2,)

.wl

1

s* 1
H (G/K;Zz)f—————— H

l(M;Z

i*
H < .

(N ; 2,) H 2)

Here 95 is a Thom isomorphism and Wy is a first Stiefel-Whitney

class of the normal line bundle of G/K in M. Then Hl(M;Zz) = 0

implies Wy = 0, and hence G/K 1is a principal orbit by Corollary

1.1.2. Next, if M has no singular orbit, then M has just one

isotropy type (K), and hence there is a differentiable fibration

G/K > M —EB 5 M

where M* is the orbit space which is a circle. Then the homo-

morphism
Py : Hy(M ; 2)——>H,(M* ; Z) X %

is surjective, because G/K is connected. This fact contradicts
Hl(M ; 22) = 0. Therefore M has at least one singular orbit.
Then we can easily seen that M 1is a special G-manifold (in the
sense of Hirzebruch-Mayer) with the orbit space M* = [1,2] by

the differentiable slice theorem (1.1.3). Let p : M—> M* be

£
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a natural projection. Then p_l(s) is a singular orbit for s = 1,2
and M(K) = p—l((l,Z)). Moreover, let
_ -1 _ =1
X, =P ([{1,3/2]) and X, =P ([3/2,2]).
Then Xy is a closed invariant tubular neighborhood of G/KS = p—l(s)
for s =1,2. g.e.d.

§ 2. Cohomological aspect

2.1, Let M be a 2n-dimensional compact connected orientable

manifold without boundary and assume

H*(M ; Q) = Q[u]/(un+l), deg u = 2.

rational cohomology complex projective

We call such a manifold M
be 2n-dimensional compact connected sub-

n-space. Let Xl’ X2
manifolds of M such that
M = Xl\J X2 and Xl/\ X2 = 9 Xl = 29 X2.

Let f; : H¥(M ; Q)———-;>H*(Xs ; Q) Dbe the homomorphism induced
by the inclusion map fS : Xs——~9-M for s = 1,2. Then we have

the following result.

be non-negative integers such that

Lemma 2.1.%. Let nl, n2
n ns+l
£% (u Sy # 0 but £* (u ) =0
s = 1,2. Then we have n = n, + n, + 1.

for

°
°

Proof. By the following exact sequence

7
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-1 k k 2 k
(X:Q) —==> H' (M,X_;Q) —> H" (M;0) —=> H" (X_;0)

I

k
H™ (Xy_gr 0Xy_(i0Q)

Hk

we have the following equations of Poincaré polynomials :

. = * .7 i .
P(Xy_gr 9Xq_git) = P(ker £% ;) + P(im H_ it),

1

. = i * . - ; .
P(X, it) = Plim £} ;) + £~ P(im §_ ;t).

Thus we have
. - . = * . - 3 £% .
(2.1.2) P(XB_S,29X3_S,t) t P(Xs,t) P(ker fs ;t) t P(im £% ;)

for s = 1,2. By the Poincaré duality for X, r we have

P(x_, Ox_it) = 2" p(x, ;t7h),

2n

. - -1
P(X_ it) =t P(xs,axs.t )

Then we have from (2.1.2)

P(ker £} ;t) - t P(im £} ;t) = £22 (P (im £1 sty -t P (ker £ .

By the assumption on the integers n;, N, we have

2 2ns
P (im f; ;) =1 + %+ ... + t y
2ns+2 on
P (ker f; ;) = t + ... + t .
Therefore we have
2n.+2 2n
T & R
-2n -2n.,-2 _
T C N T R i P D I
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Put t = 1. Then we have n = n, + n, + 1. g.e.d.

Remark. Let V = @ Vn be a finitely generated graded
nz0
module over the rational numbers @ and bn

]

dim Vn . Then the

polynomial

_ 2
P(V;t) = b0 + blt + bzt F e

is called the Poincaré polynomial of V. If V = H*(X;Q) for a

topological space X, then simply denote

P(X;t) = P(V;t).

2.2. From now on, we assume that M is a simply connected.
rational cohomology complex projective n-space and G 1is a compact
connected Lie group which acts differentiably on M with a
codimension one orbit G/K. Then by Lemma 1.2.1, there are just
two singular orbits G/Kl and G/K2 (we can assume K <:Ks for
s = 1,2), moreover there is a closed invariant tubular neighborhood

XS of G/KS (s = 1,2) in M, such that

M=XxUZX, and XN X, = 2 X, = ’()xz.

Let n;, n, be non-negative integers defined in Lemma 2.1.1, and

let

k_ = 2n - dim G/K
s s

for s 1,2. Then it is clear that

(2.2.1) 2 SkSSZ(n—ns), (s =1,2).



101

Because E)Xs = G/K as G-manifolds, the fibre bundle

P

K /K > G/K G/K

S

is a (ks—l)—sphere bundle.

Lerma 2.2.2. If k,> 2, then G/K, is simply connected and

1

hence Ky is connected.

Proof. If k2:> 2, then TCl(G/Kl) = 7C1(M) by the general

position theorem. Thus G/Kl is simply connected by the assumption

that M is simply connected. Let Kg be the identity component

of Kl' Then G/Kg is a connected finite covering space over a
simply connected space G/Kl‘ Thus ‘Kg = Kl’ g.e.d.

2.3. First we assume that G/Kl and G/K2 are orientable,

and we have the following result.

Proposition 2.3.1. _Assume that G/K1 and G/K2 are orientable.

(i) 1If klzs kZEE 0 (mod 2), then G/KS is a rational cohomology

complex projective n_-space and kS = 2(n—ns) for s =1,2.

(ii) The case klEE kZEE 1 (mod 2) does not occur.

(iii) - If klEE 0 (mod 2) and k,=1 (mod 2), then k, + k, = n + 2

2

and there are two cases :

(a) n; =n, and
k2—l 2 2n1
P(G/Kl;t) = (1 + t Y(L + £+ --- + ¢ ),
kl—l 5 2n2
P(G/Kz;t) = (1 + t YL + 5+ -+« + t ).
(b) k; =2(n, +1), Xk, =n; - n, +1 and
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nl—n 2 n,+tn

(1 + t 2)(1 + t% + ... + t ),

il

P(G/Kl i t)

1+t +t2+ ...+t 2.

i

P(G/K, it)

Proof. We have

k
— s -
P(xS,Q)xs jt) =t P (G/K ;t)

by Thom isomorphism and
P(XS ;t) = P(G/Ks it).

Thus we have from (2.1.2),

kz—l 2 2n1
(2.3.2)l P(G/Kl st) = t P(G/K2 ;) + (L + €7 + ... + t )
2n.+2
e T e 2
. kl—l 2 2n2
(2.3.2)2 P(G/K2 ) = t P(G/Kl ) + (L + €7+ ..+ t )
2n. 42
e e S

Because n = + n, + 1, we have from (2.3.2),

) 2
(2.3.3), (1-tkl+k2—2)P(G/Kl it) = (l—tk2+2n2)(l +E2 4 L.+t
+ (tkz—l—t2n1+l)(1 + t2 + ... + t2n2),
(2.3.3), (l—tkl+k2_2)P(G/K2 i) =,(1-tk1+2n1)(1 + 2+ ...+t
+ (tkl—l-t2n2$l)(l + e L+ tznl).
Put t = -1 in (2.3.3). We have

//
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kq+k
- 1 2 X6k

kl+k

k,
(1 - (-1) %y (n + 1),

I

(2.3.4) k

(1 - (-1) (1 - (-1) Y (n + 1)

%) X (6/x,)

where )f(G/KS) = P(G/Ks;—l) is the Euler characteristic of G/Ks'

In particular, klEE k2 (mod 2) implies k k,= 0 (mod 2) by

17 %2
(2.3.4).
(i) I1f klzz szs 0 (mod 2), then
X A(G/K) # 0
for s =1,2 from (2.3.3). Thus
0

rank Ks = rank G

for s = 1,2 and hence

i
o

1%9%e/k) 5 0 = PPt/ ;o
k

(cf.[/],Theorem 26.1), where Kg is the identity component of K_.

Because the induced homomorphism
H* (G/K, 5 Q) —> H*(G/KQ ; Q)

is injective, the Poincaré polynomial P(G/Ks ; t) is an even
function for s = 1,2. Then we have from (2.3.2),

2 2ns
P(G/KS ;) =1+t 4+ ... + t

for s = 1,2. Therefore G/KS is a rational cohomology complex
projective n_-space and k_ = 2(n - ns) for s = 1,2.

s
(iii) Next, if klsz 0 (mod 2) and kZEE 1 (mod 2), then

X(G/K]) =n+1#0 and X(G/K,) =0

/2



104

from (2.3.4). Thus P(G/Kl;t) is an even function, and we have

from (2.3.3),

2n k-1
P(G/Kl;t)=l+t2+...+tl+t2 (l+t2+...+
(2.3.5) ky+k, 2 k,+2n, R 2n,
t P(G/Kl;t)=t (1 +t°+ ... + ¢ )
2n. +1 2n
+t T et vt 3.
Thus we have
k.+k, -2 k.+2n 2n
(2.3.6) T 2 o2 e+ e b
2n.+1 k,+2k_ -3 2n
- WS B
Recall that k; - 2 s;znz from (2.2.1) and Lemma 2.1.1.
(iii)a First assume kl - 2 <f2n2. Then we have
kl + k2 -2 = 2nl + 1
and
2n
2n.~k.+1 2 1
Lt td ..+ 20+t + .0+t )|
) “ 2n
=(l+t+...+t2)(1+t2+...+t2)

from (2.3.6). Put Tt

I

(2n, + 2

and hence n, =n More

1. Then we have

- kl)(n1 + 1) = (k2 —l)(n2 + 1)

(zn1 + 2 - kl)(n2 + 1),
over

+ 3 =n + 2.

/3
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(iii)b Next assume k. - 2 = 2n.,. Then

an + 1 kl + 2k2 -3

from (2.3.6), and hence

kl = 2(n2 +1) and k, =n, - n, + 1.

Moreover

+ n, + 3 =n+ 2.

2

The Poincaré polynomial P(G/Kl;t) is obtained from (2.3.5), and
P(G/Kz;t) is obtained from (2.3.2) and the polynomial P(G/Kl;t).

g.e.d.

2.4. Now we assume kl = 2 and consider certain relation

between H*(G/Kg ; Q) and H*(G/KS ; O), where Kg

is the
identity component of Ks’ The following argument is essentially

due to H.C.Wang [4].

Remark. If G/K2 is non-orientable, then we have kl = 2

from (2.2.1) and Lemma 2.2.2.

Lemma 2.4.1. If kl = 2, then the induced homomorphism Ri

is an identity on H*(G/K0 ; Q) for every k € K. Here the right

, 0o . . 0 0
translation R, on G/K is given by Rk(gK ) = gkK .

Proof. (i) First assume k2:> 2. Then K is connected from

1
Lemma 2.2.2 and the coset space Kl/K is a circle. Therefore

there is a connected central subhgroup T of Kl such that

¥
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K C K, = 7.x0

Hence for each k € K there is u € T/\ K such that R, = R,
on G/Ko. Because T is connected, there is a continuous mapping
u : [0,1]——>T such that u(0) is the identity element and

u(l) = u. Because each u(t) commutes with each element of K,

a homotopy

H = G/KO—-——> G/K0

can be defined by Ht(gKO) = gu(t)KO, where H, is the identity

4]
and Hl = Ru = Rk‘ Therefore R* is an identity.

k
(ii) Next assume k2 = 2. Let Xs be the invariant closed
tubular neighborhood of G/KS in M (s = 1,2) such that

M=xlux2 and xlr\x2= 9x1= sz-

Let iS : le\ X2~—~> X_ be an inclusion mapping. Then the induced

homomorphism
i

g* ° 7Zl(x1/\ X,) —> 7C1(xs)

is surjective for s = 1,2 from the general position theorem.

Thus there is a natural surjection

hs : 7fl(Xs)~——~%>'ﬂi(xl/"\xz)/(ker il*)dker iz*)

for s = 1,2 such that the following diagram is commutative :

i
. 1*
TCl(xl./\ X,) ——> 7C1(x1)

i h
|

7T, (X,) 2> T, (X, N\ X,)/(ker i ,)-(ker i

%) -

/5



107

Then there is a surjection
TR U X)) ——> T0 (XN X,)/ (ker ig,)-(ker i,,)

by van Kampen's theorem. But M = Xl\J X2 is simply connected

and hence
TCl(XI/\ X,) = (ker il*)‘(ker 12*).

On the other hand, the inclusion is : le\ X2—~f> X is homotopy

equivalent to the projection Py G/K—->-G/Ks. Thus we have
(2.4.2) TC(G/R) = (ker pj,) - (ker p,,).
From homotopy exact sequences for the principal bundles
G —> G/K and G —3> G/K

we have a commutative diagram :

0

TCl(G) _ 7‘C1(G/K) —L > K/KO

id ps* Zs

) S 0
T, (G) —> 7T, (G/K,) —>K /K

where 9 and 95 (s = 1,2) are surjective. Thus we have

from (2.4.2),

K/’ = QUL (6/K) = Q((ker p ) - (ker p,,))

il

il

g (xer py,) - @(ker p,,) C (ker 2,)-(ker 2,) < K/K°.

Therefore

/6
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2.4.3)  x/&’ = N xdnrx® <« k-l

because ker ZS = Kg/“\K/KO. Then the proof of Lemma 2.4.1 for

k, = 2 is done similarly as for k2:> 2. g.e.d.

Now we consider a commutative diagram of natural projections :

e/’ — 2 oGk

(2.4.4) po Py

for s =1,2.

Lemma 2.4.5. £ k1 = 2, then

H*(G/K) ; Q) = gqRH*(G/K_ ; Q) + (ker pJ¥)

for s = 1,2 (direct sum or not).

Proof. Because Ks/K is a (kS - 1) -sphere, Ks/K is connected
and hence the natural mapping Kg/KO———>-KS/K is surjective. Thus

= g9 =
(2.4.6) K, = KK (s =1,2).

Hence for each a €& Ks there is k € K such that R; = Ri on
H*(G/Kg ; Q). By Lemma 2.4.1 and a commutative diagram :
0*
. 0 Ps . 0
H (G/KS ;i Q) —————=> H*(G/K~ ; Q)

= * = 1
R® = RE Rf = id
0*
0 Pg 0
H* (G/Kg ; Q) — > H*(G/K ; Q),

77
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we have

(2.4.7) PO* (W) = p2* (RX (u))

for each a & Ks and each u € H*(G/Kg ; Q). By averaging (2.4.7)

on a finite group Ks/Kg , we have

0, 0 . o - .0 .
Pg H*(G/KS ; Q) = P *a H*(G/KS ; Q),

because

0
Q)Ks/Ks

-

q% H*(G/K_ ; Q) = H*(G/KJ

Thus we have

= 0
Q) = qf H¥(G/K_ ; Q) + (ker p_*). gq.e.d.

0
*
H (G/Ks

~e

2.5. Denote by J= D3I, I = a¥ Hk((;/x2 ; Q). Then J is
k
a graded subalgebra of H*(G/Kg ; Q). Because

0

p
Kg/KO — > 9 —2, G/Kg

is an orientable (k2 - 1) -sphere bundle, its rational Euler class
e(pg) can be determined up to sign. Then
Lemma 2.5.1. ker pg* = J-e(pg) + J-e(pg)2 .

Proof. From a Gysin sequence for a sphere bundle and Lemma

2.4.5, we have
0 0 0 0 0 0
ker pz* = H*(G/K2 : Q)-e(pz) = J-e(pz) + (ker pz*)'e(pz).

Hence

/&
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ker pg* = J~e(pg) + J-e(pg)2 + ...+ J-e(pg)N

for sufficiently large N, as submodules of H*(G/Kg ; Q). For
each Xk &€ K, we have a commutative diagram :
R
e/ — X 5 g0
V] 0
P2 P2
R
0 k 0
_—
G/K2 G/K2
which is a bundle mapping. Thus we have
0 0 0
* = -
R¥ e(p,) e(p,) or -e(p,).
Here Ri e(pg) = —e(pg) occurs when R, reverses an orientation

of the sphere bundle. Therefore
0,2 0,2
* =
R¥ (e (py) ™) e(p,)

for each k €& K. Because

0 2 0
J = g% H*(G/K, i Q) = H*(G/K, ; Q) ° = H*(G/K, ; Q)

by (2.4.6), we have

0,2

(2.5.2) e(pz) € J

and hence

0,2

ker pg* = J-e(pg) + J-e(pz) . g.e.d.

Lemma 2.5.3.  dim(ker po*) < dim J + dim(J /\ker po*).

Here the equality occurs if and only if

/7
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0,2 0,2

5NN 3-e(? = 0, 7-e(p? = 3 Nker p)»

and E : J —> ker pg* is injective, where E is defined by

E(x) = x-e(pg).
Proof. By (2.5.2), we have
J-e(pg)2 < J N\ ker pg*
and hence we have from Lemma 2.5.1
dim(ker pg*) < dim J + dim(J N kerxr pg*) .
Moreover we have the condition on which the equality occurs. g.e.d.

2.6. Now we assume that G/K2 is non-orientable. Then we

have kl =2 from (2.2.1) and Lemma 2.2.2.

Lemma 2.6.1. If G/K2 is non-orientable, then

0 k2
0 2k2—1
P(G/K~ ;t) = (1 + t )P(G/K2 it) - P(nl’nz it).
Here P(nl,n2 ;) = 0 _for nl;> n, and
2n.+1 2n.+2 2n
P(n,,n ;t)=t1 v+t 1 +...+1:2
172
for nl-< n,.
Proof. From a Gysin sequence :
- 0 Oy -
k-k 0 e(pz) Py k+1l-k

H 2(G/K2;Q) E— Hk(G/K(Z);Q) ———;\Hk(G/KO;Q) —>H 2(G/K27Q) ’

20
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we have
0 .0 0
P(G/K2 ;) = P(im pz* ;) + Plker pz* by,
0 ~k, 0
(2.6.2) P(G/K, ; t) =t P(ker p,* ;t) + P(imD ;t),
k.-1
pe/k’ st) =t 2 P(im§:t) + Plim pO* 1t).

By Lemma 2.4.5 and the definition J = q§ H*(G/K2 ; Q),

P(im pg* ;)

P(po*(3) it)

n

P(J ;t) - P(J N ker pg* ),

and hence

0

(2.6.3) P(im po* ;t) ‘2)*

P(G/K2 it) - P(T Nker p it).

Because G/K2 is non-orientable, there is k € K such that the

2

right translation Rk on G/Kg reverses an orientation of G/Kg.
Then

(2.6.4) 2.dim H*(G/K, ; Q) < dim H*(G/K) ; Q)
by Poincaré duality (c£.[21). By Lemma 2.4.5, we have

(2.6.5) dim H*(G/K) ; Q) = dim J + dim(ker pg*) - Aim(J N ker po*) .
Then we have

. . 0 . 0
dim J < dim(ker p2*) - dim(J N ker pz*)

from (2.6.4),(2.6.5) and dim J = dim H*(G/K2 : Q). Thus we have

dim J = dim(ker pg*) - dim{J N ker pg*)

2/
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by Lemma 2.5.3. Moreover we have

k

(2.6.6) P (ker pg* k) = t 2 P(J ;t) + P(JT N\ ker pg* ;t)
from Lemma 2.5.1 and Lemma 2.5.3. Combining (2.6.2),(2.6.3) and

(2.6.6), we have

k

P(G/K) it) = (1 + t 2)P(G/K, it),

2k2—l

P(G/Ko ;t) (1L + t )P(G/K2 ;) - (1 + t"l)P(J/\ ker pg* ;

It remains to show

1+ £t h)p(a N ker pg* it) = P(ny,n, ;t).

Consider the following commutative diagram :

p*
H*(G/K, ; Q) ——2—> H*(G/K ; Q)

* *
a3 d
0*
. 0 P2 . 0
H* (G/K, ; Q) —=—> H*(G/K" ; Q).
Because g* 1is an isomorphism from Lemma 2.4.1, we have

P(J [ ker pg* it) = P(ker p3 it).

Recall that Py * G/K-———-—)—G/K2 is homotopy equivalent to

i2 : Xl/\ Xz-—~> X2, and consider the following commutative
diagram :
£y
H*(M,Xl ; Q) ——H*(M ; Q) ——>H*(X; i Q)
s i¥
= f§ ll
1%

2 .

22
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Then we have
2n,+2 2n
P (ker pg* it) = P(ker i* ;t) =

2 .
0 (if nl> n2).

Thus we have

_ t + ...+ t (if n n,)
(1 + t ™ hyp(3 A ker pg* t) = 1< ™

g.e.d.

2.7. Now we can prove the following result.

n is even,

Proposition 2.7.1. _Assume that G/K2 is non-orientable.

(1) I1f G/Kl is orientable, then G/Kl is a rational cohomology
A

complex projective (n - 1l)-space and G/Kg is a rational cohomology

n-sphere.

it
w

and

(ii) If G/Kl is non-orientable, then n

P(G/K, it) = 1 + £2, P(G/Kg s t)

n

(1 + t2)2

Proof. Because G/K2 is non-orientable, we have
k, = 2 and dim G/Kl = 2n - 2.

(i) First assume that G/Kl is orientable. Then by the
Poincaré duality for G/Kl, we have from (2.3.2),

2nl+l 2

2n-1 (1L + t% + ... +

(2.7.2) t P (G/K, ;L

) = P(G/Kl ;t) + t

-1+ ti+ .+t N

23

t

t + ... + t (if nl‘< n2)

2n

2

)
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By the Poincaré duality for G/Kg , we have from Lemma 2.6.1,

2k2

2n ) = t P(G/K, it).

(2.7.3) t“% P(G/K, .

Combining (2.7.2),(2.7.3) and (2.3.2) with kl = 2, we have

2k 2k .+2n

2n
2)P(e/K, it) = (1 -t 2 2

2 1

(2.7.4) (1 - ¢ (L + 7 + ... + t )

2k.-1  2n.+1 2n
+ e 2 o Vet Ll vt Yy,

In particular we have
7{(G/Kl) = P(G/K; ; -1) # o.

Therefore P(G/Kl ;t) is an even function by the same argument

as in the proof of Proposition 2.3.1 (i). Hence we have from (2.7.4),

(2.7.5) k, =n, +1 and P(G/K, it) =1 + €2 4 ...+ £2072,
Then we have from (2.3.2) and (2.7.5),

2 2n,
(2.7.6) P(G/K2 ;) =1+t + %+ ... + t .

Thus 7C(G/K2) # 0 and hence P(G/K2 :t) is an even function.

Therefore

1
-

n, =0 and P(G/K2 s t)

from (2.7.6), and hence n, =n - 1 by Lemma 2.1.1. Then

P(G/Kg ;8) =1 + &8

from Lemma 2.6.1. Consequently G/Kl is a rational cohomology

complex projective (n - 1l)-space and G/Kg is a rational cohomology

n-sphere. Moreover X(G/kG)+0 implies n =0 (mod2),

24
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(ii) Next assume that G/Kl is non-orientable. Then
k, =k, = 2,

From Lemma 2.6.1, we have

P(G/KY it) = (1 + £)P(G/K, it),
(2.7.7)

p(c/k" ;t)

(1 + t3)P(G/K2 i) - P(ny,n, ;t).

Similarly we have

P(G/KS 5t) = (1 + £)P(G/K, it),
(2.7.8)

p(c/x? ;t)

(1 + t3)P(G/K1 i) = P(ny,n, ;t).

Here P(a,b ;t) = 0 for a_> b and

t2a+l t2a+2 2b

P(a,b ;t) = + + ... + t

for a <b.

If n, < n,, then we have from (2.7.7) and (2.7.8),

2n1+1 2n., +2 2n

t +t T 4+ ...+t 2 =0 (modal+td.
Thus n; = n, (mod 3) and
(2.7.9) P(G/K, it)-P(G/K, it) = t2nl+l(1+t+t2)(l+t6+t12+...+t2(n2_nl—3))
Then
(2.7.10) X (G/xy) = X(e/K)) = (n) - ny)/3 <L o.

If }C(G/Ks) # 0 for s =1,2 then P(G/KS ;t) is an even

function for s = 1,2 and this contradicts (2.7.9). Thus

25
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X (G/K)) #0 and X (G/K,) =0
from (2.7.10), and hence

(2.7.11) rank Kg = rank G # rank Kg .

On the other hand,

rank Kg = rank K0 + 1

for s = 1,2 because KS/K = Sl. This contradicts (2.7.11).
Therefore the case n, <:n2_ does not occur. Similarly the case
n, <:nl does not occur. .

Finally if n, = n2, then n = 2nl + 1 and we have from
(2.7.7) and (2.7.8)

(1 + t2)P(G/KS ;

e

p(c/xg s t)
(2.7.12)

p(c/K’ ;t) t)

~e

(1 + t3)P(G/Ks

for s =1,2. Let Xs be the invariant closed tubular neighborhood

of G/KS such that
M=X1UX2 and xlf\x2=3xl=axz.

Consider the Mayer-Vietoris cohomology sequence of a triad

M ; X ,Xz). Then we have

1

2nl+l 2 2nl

P(G/Kl ;) + P(G/K2 st) - P(G/K ;t) = (1-t (1L +t5+ ... + t

Because P(G/K ;t) = P(G/K0 ;t) from Lemma 2.4.1, we have
from (2.7.12),

2n.+1 2n
(2.7.13) (1 - t3)P(G/Kl it) = (L-t L )ya+e2+ ...+ Y.

26
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Thus ;{(G/Ki) =n; +1 # 0 and hence P(G/K, ;jt) is an

function. Therefore we have from (2.7.13),

n, = 1 and P(G/K1 st) =1 + t2.

Consequently, n = 3 and

P(G/Ks i) =1 + t2,
P(G/Kg ;) = (1 + tz)2
for s =1,2 from (2.7.12). qg.e.d.

27
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g3 Exam?/es-

(31 1) m=mmrmyr1 & L2, BlC)=Pl™eC") =
? 0'(«.+:)xU‘(»n.+:)zéif.'im‘;%zzz‘,é. so4ER3,
AR o Tt

X ={ ot =t vy 1 03, ) _/ [MoPe e [t "= s 415, 1 £

w A i T, BRIE

Pu(@) =4 (Uor -+ tha 05 - 0)f

BulCO={(0: - 0:Uoi - UDf
tHo., UndxUlav1) 2 3p458 Q@ o, X «TEFBEI <
FRT 3421250 ﬁfﬂﬁd“éé, st hi2, BFR0 o
(A)-ti> o3BT Hd. |

W2) R(C)=PR™BC) ro SO(n+)o B &ELE

REAZS., % (0:--:0:¢:(T) t:b")‘é’f‘/ﬁnf:’-——ﬁ'f
t He £8F »'J“,‘

Ho = S(Or)=x 0(1)), H, =SO(-1)xSO),

He = SOn-1)x By , (0<t</)
LYy, ARRE LoBB L3, SOt+1)/H, =R (R) 7% 3,
Bo 2, n=itmdz) ot %, 230 0 (A)-li)-(8) o HBA
T, N=0(mod2) ot %, (B) @1%/52"26 3. L5595
t, h=2 b=n=m+l, m=0 th,Tud.

28
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(1313) m=2p+l L 2, P,,(C)=P(C"’%C‘) r o
SUp+1)x SUC2) o T>Y LFE1rd 3 BRBIERLE LB,
t-eoe + 6uee r&khFLo /o3t He t &

¥,
Ho = S(TtpxU01) x S(Ttw=TT1) ,

//* 0 e } ‘ g{(—:\‘ 0) o | }
H, {/0 AZ)xA,/A/ / He 0 xA 1Al=1. A € S(D0xT(1))
o<¥</

thY . AR loftBiis. ki3, ZRO0o 4)-
Gi)-a) oIBATHY) . f=2p. fa=3, n=2p+l, n==p &

5, T,
3 4) @Qn = SO(+2)/Somyx SOC) £ 1<, Ef8%hi1< &

> T SO+1) E4EB I3,

o / (]

Aa—'-( Vst o snp € SO(n+2)
~sin@ o cesf
AEDTRARR BT 4V DTt H, £ 87T,

H, = So(), Hg = SO(-1) » SO(2)

Ho = SOtm-1), 0<6< 4
e ). RRR LaBEsHo. nodite. 7+l 0L ¥,
Q sEBHn RO ED - HERY 24T s Y,
T(@n)=2, 2%3. ch3, ZIRO o (A)-U)-C8) 0Tk
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LTHY), b=2, b=R=n+l, #=0 tJ5> 203,

[1]

(2]

[3]
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