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ABSTRACT

An iterative algorithm is developed for solving large scale
linear programming problems. The algorithm is essentially an
iterative relaxation method for solving a system of linear
equality and inequalities which is introduced by using the duvality
relation between the primal and dual linear programming problems.
The relaxation process of the algorithm is performed by using the
method of conjugate gradients for solving linear equations and a
specially devised linear search algorithm, which can be viewed as
a modified Géuss—Newton process for minimizing a certain function.
It is shown that the algorithm always converges in finite number
of steps to a vector, which is an optimal solution when it exists.
The algorithm is conceptually very simple and shares with general
iterative methods the desirable features; it always work with

original data and is self-correcting and stable.
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1. INTRODUCTION

Linear programming has become an important tool for ._.. ...
a wide range of problems encountered in business, industry and
government. There have been many ways to solve linear program-
ming problems [5, 9, 19 -22, 32, 36] but the Simplex method due
to Dantzig and its extensions have almost been exclusively used
to solve them. At the present time, linear programming prac-
tioners are required to solve larger and larger problems. How-
ever, the numerical solution of a large scaie linear programming
problem contains various difficulties. The main difficulties are
the computational instabilities and the growth of quantity of
data handled in the course of the Simplex iterations. Theré have
been several alternative schemes [2, 3, 17, 50] for ensuring‘its
numerical stability. The compact inverse techniques [7, 10, 12,
15, 33, 44, 51] have been designed to control the growth of the
number of non-zero entries in the Simplex tableau. The decompo-
sition principle'[B, 11, 16, 42] have been developed to reduce
the quantity of the data handled, by taking advantage of the
special structure of problems. These techniques have been suc-
cessfully applied to large scale problems but when the scale is
vastly iarge the difficulties arise even with these methods;
besides, they may pursue a very long laborious tour of vertices
before the optimal solution is reached {26, 29, 30, 50], since
each step of the Simplex method consists of searching for an ad-
joint vertex which gives an improved value of the objective func-
tion and of determining this vertex numerically by an elimination

method for solving linear equations. Although the determination
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of the numerical values of the vertices from step to step is in-
dispensable to the Simplex method it is only a necessary mean to
identify constraints active at the optimal solution. Hence, it
is natural to investigate the way to speed up the convergence to
the optimal solution of large scale problems. This consideration
leads to the development of different techniques from the Simplex
method. There have been several attempts on this line [19 -22,
32, 36}.

While the Simplex method and its variants adapt the direct
methods for solving linear equations, the methods of Agmon [11],
Cline and Pyle [5], Held and Karp [21] and Oettli [36] correspond
to iterative relaxation method for solving linear equations. But
the convergence of their methods is essentially linear and general-
ly too slow for practical applications. The method presented here
uses similar point of view, in Geoffrion's terminology [16], a
'dualization relaxation' approach, but different techniques are
employed for relaxation. In the relaxation method of Agmon [1],
Motzkin and Shoenberg [34] for solving a system of linear in-
equalities, the most violated inequality is relaxed at each step
by 'Kaczmarz-like’ projectioh method [27;v38, 46, 47] which
results in the linear convergence of the method. In our method,
all the violated constraints-are felaxed at each step by using
the conjugate gradient method which has been appraised as one of
the best available algorithm for solving a sparse set of linear
equations [23, 40, 41]. This ensures the finite termination pro-
perty of our method even when the optimal solution is not unique

or there exists no feasible solution at all for the given problem.
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Our method is conceptually very simple and shares with general

iterative methods the desirable feasures;

(1)

it always works with original data hence can take ad-

vantage of the sparseness of given data, and

(2)

it is self-correcting and stable, hence any approxima-

tion to the optimal solution can be incorporated profitably.

In what follows, we will use the following notations:

rt

At,xt

ImF

Ken F

S, T

ol

.
.

.0

0

The Moore-Penrose inverse of matrix F.
Transpose of matrix 4 or column vector x.
The range space of matrix F.

The null space of matrix F.

The projection matrix onto S along T.

The vector space formed by n-dimensional column vec- -
tors

The topological closure of set C.
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2. FORMULATION OF THE PROBLEM

Consider the linear programming problem of the form;

maximize ctx + ctx
1™1 272
subject to
4111 T A1p%y T By
(1) Ay zq + Ay, s b, and
©, 20 ,

where 4 and 4 are m

11 29 1 an and m, an matrices and bl, b

2’ cll
Chr Ty and x, are column vectors of suitable dimensions. The

dual of the problem is to

C .. t t
minimize biyy + byy,
subject to

t t B

A28y T A21Y2 T ey e
t t
2

(2) Ajoyy * Ajo¥, 2 ¢, and

v
o

Lp)

where ¥y and y, are column vectors of suitable dimensions.
It is well-known that the optimal solutions % and j of these
problems, if they exist, are the solution of the system of the

linear equalities and inequalities (1) and (2) and the equality

£ £t ¢
(3) ¢1®y) Foexmy = Byyy *t Doy,

This system is equivalently expressed, for example, as the system

of the eguality
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(3") ¢0(z) = o¥x - bty =0,

and 2{m +n) inequalities

n
= - Lz L
¢, (2) =0, ziluﬂJgJ 0, (1£7 5m)
= 7§ 20 £ £
¢1+m(z) i=1aijgj -6, , (L2 _ml)
= 2 L £
W (z) = % > <<
¢j+m+ml+n2 o - i:iaijni - Xj 20, (L24%n)
( = 7 P4 L£4 L
¢j+m+n+ml+n2 2) = X5~ iélaijni 20, (1sg —nl)
= 2 L7 £
¢i+m+2n+ml(z) = Niwm = 0, (12 m2) '
where m = ml + Moy 7 = nq + Ny
A A b
A4z (o) =| 1 712 + b = (8.) = . '
vd A A 4 b
21 22 2
e x
e = (X’l,) = 1 r x = (g’l:) = 1 '
e, x,
yl X
y = (ni) = and z = .
Yo Y

Conversely, if the system defined by (3') and (4) has a solution
2t = (7. gt) then z and y are the solutions of the primal and
dual problems respectively. Then the problem is equivalent to

finding a solution of this system. We shall denote by S the

(possibly empty) set of vectors z which satisfy the system.
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There are many methods for solving a system of linear in-
equalities [1, 13, 18, 24, 25, 34, 35, 37)]. 1In this paper,
we develop a new method for finding a solution of the system (3)
(4). Our approach is similar to that of Nagaraja and Krishna [35]

for solving the special system of linear inequalities of the form
(5) ’ Az 2 0 .

But different techniques are used by taking advantage of the in-
herent structure of the system introduced from the dual linear
programming problems.

. . + .
Given a point z e R" nL if

(6) ¢k(z) £ 0 for some k # 0,

then the constraint ¢k(z) 2 0 and the corresponding hyperplane Hk

defined by

(7) Hk {z: ¢k(z) =0},

are said to be active for z. The set of indexes of active

constraints for z will be denoted by A(z), i.e.,
(8) A(z) = {k: ¢k(z) £ 0 and 1£k<£2(m+n)} .

Note here that the equality sign is included in the expression
(6) , which will be seen to guarantee the finite convergence of

our method. Hyperplanes Hk defined by the linear equalities

9 Hy : ¢k(z) =0, k=1,2,...,2m+n),
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~divide the whole space ™7 into mutually disjoint convex sets C

More precisely, let CQ’ £ =1,2,...,N, be équivalent classes

n
’

given by the equivalence relation " between elements in R

which is defined by

(10) 2] v E, > Alz) = Alz,) .

Each class C2 thus defined is a convex set which possibly has no
interior point. We shall call {Cg} a partition of R by the
system (3') - (4). We can well define active constraints for Cz

and the corresponding index set A(Cg) by

A(Cl) = A(z) for = sC2 .

Let a function V(z) be defined by

_ 2(m+n) 2 2
11 14 = x . = .
(11) (=) 1 (¢£(z))_ 7:EAX(z)dﬁ,L(-%’) '
Where
0 if d4d>0
(d)_ =

d if d<£0 .

Since (d)f is a continuously differentiable convex function in d
and ¢i(z)'s are linear functions in z, V(z) is a continuocusly
differentiable convex function in z. Also V(z) is a quadratic
spline function in 2z, that is, it is quadratic on every convex

set Cz. We note that
v(z) 2 0 ,

and the equality holds, iff, the system of inegqualities (3') and

(4) is consistent.
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Let a linear manifold L be defined by

(12) L = {z: q>0(z) = 0}

and let VL(z) be the restriction of V(z) on the linear manifold
L, then VL(Z), zel, is also a continuously differentiable convex
quadratic spline function of =z in L, more precisely, it is a
quadratic function in any local coordinates of L on every convex

set Cz N L. We note that
(13) VL(z) 2 0,

and the equality holds if and only if the system (3') and (4) is
consistent and satisfied with 7 = (z°: yt)t where x and y are the
solutions of the primal and dual.problems respectively.

Thus our problem is reduced either to minimize the function

VL(z) or to solve the system of equations

(14) VLVL(z) =0,

where VL E‘PLV is a gradient projection operator, PL is the
orthogonal projector, defined by

(15) P, =1~ eet/lleﬂg and e’ = (e

t:-bt)

H4

'}

and V = (3/0zy, «-., 8/35 , 8/3Y s -+, 2/0y ). Since L is an
m+n -1 dimensional linear manifolds unconstrained minimization
methods coupled with the projection technique of Rosen [43] are

applicable to this problem.

There are many available methods for numerical unconstrained

minimization. However when we are to deal with a large scale



problem, the methods which require the storage for approximate
Hessian matrices are discarded. In the next section, we g il
discuss the use of modified Gauss-Newton method coupled with the
conjugate gradient algorithm for minimizing the function VL(z).
We shall also discuss briefly in section 4 the application of

Fletcher-Reeves method [14, 31] to the function.



3. GAUSS-NEWTON METHOD WITH THE CONJUGATE GRADIENT ALGORITHM

The modified Gauss-Newton method applied to the peacewise
quadratic function v, requires a linearly constrained linear
least squares solution at every step of the iteration. The solu-
tion of this restricted least squares can conveniently be obtain-
ed by applying the conjugate gradient method coupled with Rosen's
projection method [43]. Before introducing the algorithm we give
some notations used in it.

Given a vector Z, let a matrix F(2) and a vector d(Z) be

defined respectively by

B t ] [ (0) l
(V¢il) ¢il .
| (v¢i )t o; (0)
F(z) = .2_ and d(z) = % '
t (0)
LV @) % )
where A(2) = {il, i2'f"’ ik(%)}' Then the sum of squares of ac-

tive constraints for z is expressed as
~ ~ 2
(16) z 02 (2) = ]Id(z)—F(z)z]|2 .

1eA(z) ¢

Hence we have

(17) VL(z) = ||d(z) - F(z)zl|§ = [Jd(z) —:F(z)PLz||§ ,

- 10 -
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I

(18) VLVL(z) 2.3 V¢i¢i(z)

ieA(z)

~2(F(2)P) " (d(2) - F(2) P 2) .

Note here that VLVL(z) is a linear spline function in z, i.e., it
is linear on every convex set C£ N L and continuous.

The following algorithm minimizes the function VL(z).

MGNCG ALGORITHM: 1et zq

mum point of VL‘ Generate a sequence {zi} of approximations to

el be an initial approximation to a mini-

the minimum point by the iterative formula

(19) z. =

j+1 pjzj+l+ (l_pj)zj' Jj=0, ll-"‘l

stopping if VLVL(zj) = 0, where the vector 2. is a solution

J+l

. + +

of the problem of minimizing the sum of linear squares

(21) ¢§ (z) ,

LL
teA(zj)

subject to 2z €l, that is computed by the CG Algorithm (27) given
below and pj =1 if VL(zj+1) = 0, otherwise pj is so chosen as to
‘minimize the continuously differentiable convex quadratic spline

function
(22) T/'(sz.+1 + (1-—p)zj)

.in p, which is computed by the linear search algorithm described

below.

- 11 -



which corresponds to (25), we obtain the following algorithm
which accomplishes the constrained minimization of the sum of
linear squares (21) with the constraint z €L by putting d = d(zj),

F o= F(zj) and Wy = Bge

CG ALGORITHM: Given an kX(m +n) matrix F and a k-dimensional
column vector d, generate a sequence {wi} of (m +n)-dimensional

column vectors by the recurrence formula

r, = d - FPLwO,

Py = PPy,

o, = llpFtr 115/ 1lFe 0012,
(27) Wepp T Yy + O P

Popy ST PPy =y m PP Dy,

B, = B FPe N3 /1P P00 112,

Pia1 = PLF P4y * B8P

starting with W and stopping if p; vanishes, where r. and p; are
k- and (m +n)-dimensional column vectors respectively and the

products of the form Py should be computed by the formula
t 2
(28) Piv=muv- (e v/”el‘z)e.

Note here that when the matrix F(zj) is sparse, this algorithm

can fully exploit this property.

THEOREM 3.2: The sequence {wi} generated by the above algorithm

converges in finite steps to the vector

- 12 -
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which corresponds to (25), we obtain the following algorithm
which accomplishes the constrained minimization of the sum of
linear squares (21) with the constraint z € L by putting 4 = d(zj),

F = F(zj) and wo = z,..

CG ALGORITHM: Given an k x (m +7n) matrix F and a k-dimensional
column vector d, generate a sequence {wi} of (m + n)-dimensional

column vectors by the recurrence formula

r, = d - FPLwO,
po = PLFtrO,
o, = e PP 15/ lrpp 012,

(27) W4y T w, + 0 P,
ripy T4 T FPpws =Ty - o PP P
B, = e o 03 /1R P%0 (15,
Pisr = P(F P4y * BiPss

starting with wg and stopping if p; vanishes, where r, and p; are
k- and (m +n)-dimensional column vectors respectively and the

products of the form PLv should be computed by the formula

(28) Po=v - (e%/]le]lD)e.

L
Note here that when the matrix F(zj) is sparse, this algorithm

can fully exploit this property.

THEOREM 3.2: The sequence {wi} generated by the above algorithm

converges in finite steps to the vector

- 13 -
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(29) D = (PP )Td + (I - (FP )+FP Yw
L L L’“o0 "

which minimizes the sum of linear squares
2
(30) lld - Full}

subject to the constraint w el when W, belongs to L.

Before proving the theorem we prepare the following lemmas.

LEMMA 3.3: Let P be the orthogonal projector onto a subspace T.

Then the equality
(31) pirr)T = (7p)T

holds for an arbitrary matrix F which can form the product FP.

The matrix G = (FP)+ satisfies the egualities

(32) FG = Py FP,KeH.PFt (an orthogonal projector) and

(33) GF = Pry pr®, Ken PFUF

and F is a generalized inverse of G.
Proof) Since Im(FP)f = Im(FP)t = IanFtCZ ImP, then we have (31).

Since FG = F(FP)T = FP(FP)+, then we have (32). Since

(cr? = (rr) TrrrY TP = o) TrR(P) TP = (7R TF

i

GF,
GF is a projector. Since ImgrF C ImG = IanFt and
nank PF = nank FP =rnank.FP((FP)+F)P £ nank(FP)fF = nank GF,
t

then we have Im GF = ImPF”. Since

Ken GF = Ken (FP)fF = Kea (PF) tF = Ken prtF .

- 14 -
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thus we have (33). We have
¢r¢ = wp) rmyt = ) Trp )T = )T = 6 ;

which completes the proof.

The following definition and lemma are due to Rao and Mitra

[39].

Definition: A matrix G is called a T-restricted least squares
(T-ris) inverse of F if for any d, the vector w = Gd is a T-res-

tricted least squares solution which minimizes the function
2
(34) lla - Full

subject to w €eT. Further if the vector Gd gives the minimum
||+ || ,-norm solution among the T-rils solutions, G is called a T-
restricted minimum norm least squares inverse of F and is denoted

by F;.

LEMMA 3.4: A matrix 6 is a T-restricted minimum norm least

squares inverse of F, iff,

(35) Im¢CT,
(36) (FG)tFp = FP  and
(37) cterp = ¢tp .

Then we have the following lemma.-

LEMMA 3.5: The matrix ¢ = (FP)f defined in Lemma 3.3 is a T-

restricted minimum norm least squares inverse of F, i.e.,

- 15 -
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to_ ot
(38) (rP)" = F.

Proof) We have by (31) Im¢G = ImP(FP)T.CIIn:P = T. We have by

(32), (Fe)tFP = (FG)FP = FP. We have Gierp = ¢t ((rP) FP) =

tyt _ t

¢t rmy eyt = ((rR)TFPe)t = ((FP) TRER(FR) (rp) )t = gt

Thus we have the desired result by Lemma 3.4.

Proof of Theorem 3.2) Noting that d, FPy, w;, v, and p in (27)
correspond to b, 4, o0 T and p; in Theorem 3.1 respectively, we
have by (24) the first half of the theorem. Since P v, = w, we
have by (31) F(I - (FP,) FPYu, = F(1-P (FP) FP )P0 =

(FP, - FP, (FPL)fFPL)yJO =0 and (I - (FPL)TFPL)% =

(-2, (72 rP )P

= PL(I‘—(FPL)TFPL)w hence the second term

o 0’
of the right-hand-side of (29) belongs to the subspace Ker F () L.
Thus. the last half of the theorem follows directly from Lemma 3.5.

The following lemma is easily seen by Lemma 3.3.

LEMMA 3.6: Let z, belong to L, the sequence {zi} generated by the

algorithm (19) is contained in the subspace L.

Next we discuss a method for minimizing the function (22) in
p. There are many available linear search methods to minimize the
function, which are described, for example, in [31]. Since it is |
a continuously differentiable piecewise quadratic convex function
in p we can give a special algorithm which takes advantage of this
property. Before introducing the algorithm we give some results
used in it.

Let Aj be a vector defined by

(39) AL = Z, - z.,

- 16 -
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where z. and zj are given in MGNCG Algorithm, then

J+1

= t -
(40) Aj = (F(zj)PL) (d(zj) F(zj)Psz).

Let zj(p) be a vector defined by

41 . = pZ. + (1- z.=pA. + =z..
(41) zJ(p) szH ( p)(7 P p

LEMMA 3.7: VL(zj(p)) is a continuously differentiable convex
guadratic splihe function in p, whose derivative is given by
Ly (z2.(p)) = <V,V, (2.(p)), A.>
dp 'L'"F L"L " )
= 2(p]|F(z (0P, b2
J L=g'2

(42) - <d(zj (p)) - F(zj(p) )Psz" F(zj (p) )PLAj>)

1]

p 2
2(p[l7 (2 () A 115

- <d(zj(p))_—F(zj(p))zj,F(zj(p))Aj>).

which is a monotone increasing, continuous and piecewise linear
function in p.
Proof) Since'zj(p) is a linear mapping from the non-negative axis

to Rm+n

and VL(z) is a continuously differentiable convex quadra-
tic spline function in =z, so is VL(zj(p)) in p. Hence its deriva-
tive in p is a continuous and piecewise linear function with

finite number of knots in p and if p is not a knot point, then

a2
—=V,(z.(p)) 2 0.
dp2 L™=g "

(43)

which implies the derivative (42) is a monotone increasing func-

tion in p. We have

- 17 -



94

d d
EEVL(zj(p)) <VLVL(zj(p))’232j(p)>

= <VLVL(zj(p)), Aj>
(44) .
= 2<—(F(zj(p))PL) (d(zj(p))-—F(zj(p))Psz(p)), Aj>

= 2<-(d(zj(p))-F(zj(p))PL(ij +zj). F(zj(p))PLAj>.

Since P,z. = 3, and P,A. = A. (42) follows from (44). The mono-
L%g J L™y J

tone behaviour of the derivative (42) follows also from its

form (42) since |[F(zj(p))AjH§ 2 0, where if the equality holds
h < . -F(z. 2., F(z. A.> = d hence dV . d
then d(zg(g)) (zg(p)) i’ (zJ(p)) ; e L(za(p))/ p

= 0. This completes the proof.

LEMMA 3.8: If A(zj(p)) = A(zj) and p <1 then
(45) Ay (z.(0)) = 2||F(z.)A.]]2(p-1) S 0,
de L'7j j g2

where the equality holds if and only if VLVL(zj) = 0 in which case
A, = 0. |

d

Proof) 1In the proofs of this and subsequent lemmas d(zj), F(zj)
and P, will be abbreviated as d, F and P respectively. We have

by (18), (41) and the assumption

) I o
—5<VLVL(zj(p) ), AJ.> <d —Fsz, FPAJ.> - p<FPAJ., F’PAJ.>

(- 7Pz ) teprp) T (a - PPz )

- p<FPA ., FPA .>
. P i’ j )

Il (7P) (7P) T (d - FPzJ.)ug(l—p) 20.

- 18 -
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Hence the equality holds, iff,
t _ . T '
(FP) (d—fFsz) =0 or (FP) (d-Fsz) =0

which mean VLVL(zj) = -0 and Aj = 0 respectively. This completes

the proof.

Since the minimum of the convex function VL(zj(p)) is given by

the solution of the following equation

_1d -
(46) Wilp) = 54V (55(p)) =0,

N =

and the condition of Lemma 3.8 is satisfied for p = 0, it follows
from Lemma 3.7 that there exists a positive number p which mini-
mizes the function (22) unless VLVL(zj) = 0 and that the sequence

{VL(zi)} is a monotone decreasing function of %, i.e.,
VL(zl) >V (z)) > 7, (23) .....

e i et e e e e e e e e e e e e e e en e e Gem e e e e e e o e v

— . e s hmee e mie s iee  amm Tt eem  Seem  cemm e e bem e e Gme e mm v G W e e e e ae o

Now we give an algorithm for solving the equation (46), which
takes advantage of the properties of the function Wj(p) given in

the preceding lemmas. We will use the following notations,

- 19 -
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(47)

and

_ 2
o(p) = llF(zj(p))Ajll2
T(p) = <d(zj(p)) —F(zj(p))zj, F(zj(p))Aj>
W(p) = Wj(p) = pa(p) - t(p) .

LINEAR SEARCH ALGORITHM: Given vectors zj and §j+l' compute a

value p = pj which minimizes the function (22) by the following

iterative linear search algorithm. It generates shrinking inter-

vals (Yi' Pi) which contain pj and detects pj within finite number

of steps. See Fig. 2.

1.

Yo = 0, (viz., pj is contained in the interval (0, «).)
Y := 1.
0

7z = 0.

If W(Y) = 0, (viz., p = Y gives the minimum of the function
(22),) then go to 11, otherwise if W(Y¥) > 0, (viz., pj is
contained in the interval (yo, ¥).) then

FO := ¥ and go to 5,

otherwise, (viz., pj‘is contained in the interval (¥, @ ,)

Yo = Y-

~

Y := 1(y)/0(¥), (viz., compute the intersection of the p-axis
and the extension of the line segments of the graph
{(p, W(p)) : pe R}, that contains the point (¥, W (})),)

Go to 2.

- 20 -
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T$ 3= Pi—l'
Y := (YiW(Fi) - FiW(Yi))/(W(Fi) - W(Yi))’ (viz., compute the

point which divides the interval (Yi’ Fi) into two parts with
the lengths of the ratio, _W(Yi) :W(Fi)')
Evaluate the values o(Y) and T(¥).

W(Y) = Yo(¥) - 1(¥).

If Ww(Y) = 0 then go to 11, otherwise if W(¥) > 0, (viz., p
is contained in the interval (Yi' Y¥),) then
Fi := ¥ and go to 6,

otherwise (viz., p is contained in (¥, Fi)’)

Yi 5.

Y := t(¥) /o (V).
If ¥ £ Y; or Y 2 T, then go to 9, otherwise (viz., ¥ is con-

tained in (Yi' Pi)’) evaluates the values o(Y¥) and t(¥).

If W(Y) = 0 then go to 11, otherwise if W(Y¥) > 0, then
Fi := ¥ and go to 9,
otherwise

Y; = Y-

Y = (Yi'+Ti)/2-
Evaluate the values o(y) and T(¥).

W(y) := yo(¥) - 1(¥).

-2/ -
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10. If W(y) = 0 then go to 11, otherwise if W(¥) > 0 then
Fi := ¥ and go to 5,
otherwise

Y; 7 ¥ and go to 5.

11. p. =

il

Y.

o a mmm m e @mm mm e m Geme e et s e em e eem s e e mm e e et e Gmh e S mem e e oo

THEOREM 3.9: Linear Search Algorithm generates P which is a
solution of the equation (46) in finite number of steps.

Proof) It follows from Lemmas 3.7 and 3.8 that the statements

1 v 4 generate either pj or an interval (YO, Po) which contains pj
in finite number of steps. Suppose the'algorithm does not yield
a solution pj in finite number of steps, it generates infinite

nunber of intervals (Yi' Pi) which contains pj and satisfies
ri+l-Y£+1 < (Pi_Yi)/z' for 7¢=0,l, .o

fhen for a sufficiently large value of ¢ the interval (Yi’ Pi)
contains at most one knot point of the piecewise linear function
Wj(p). Hence at the next (Z+1)-th step the statement 7 or 5
generates a value y which satisfies Wj(?) = 0, according as the

interval (Yi' Fi) contains a knot point or not, which contradicts

the hypothesis.
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Before proving the convergence of the MGNCG Algorithm we pre-

pare the following lemmas.

LEMMA 3.10: If the algorithm (19) does not terminate within

finite steps, then
1im W . (0 A, = 0.
(48) Gim i { 74 | P

Proof) Suppose not, then there exist a subsequence {jl, j2,...}

of indices and a positive number € such that

(49) rz.;}fk(oz/llAjkll2 < -2e, for any k

since by Lemma 3.8 we have Wj(O) < 0. Because Vt(z) is a contin-
uously differentiable non-negative convex quadratic spline func-
tion, VLVL(z) is uniformly continuous on a convex level set

defined by
(50) L(zg) = {zel: v, (2) £ VL(zO)} ,

which contains the sequence {zj}. Hence, there exists a positive
number 6§ such that

it

-z, (]|, < & implies
I g 2

(51)
}lVLVL(zjk) - VLVL(zjk(p))HZ < e

for any k. Furthermore we have

(52) szk - zjk(p)llz = pHAikllz and
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W, (0) - W, (p) VoV, (z, ) -V , vy
| Iy i = L5 ) = Vs (o) 85,71

(53)

I

ella; I, .,
Jp 2
so that if 0 <p <é&/||A. ||, then
Jk 2
W. (p) < W, (0) + |w, (0) = W, (p)]
Yk Ik I Ik

< =2¢lla. |, +ella, I, = -ella, ||
Iy 2 I 2 Jp 2’

for any k = 1,2,3, ...~. Hence, for ¢ = 6/1]Aj “2, we have
k .

o1

k k k

(54)

2] - . = -
< 2| -ellag lld0 = -2 ¢

‘0

This contradicts the fact that V,(z) 2 0, since V, (z. ) £
L L Jk+l
v, (z. (P)).
L Iy

LEMMA 3.11: The condition (48) implies

(55) LimV V) (z,) = 0.

g

Proof) Since

>
1

t oyt
(F(z;)) "F(2) (F(2)) " (d(z) = Fz,)2,)

1.
. F(z_.)A.
(F(za)? (zJ)AJ,
we have by Lemma 3.8
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Il

2
—WJ(O)/“A;]HZ ”F(ZJ)AJHZ/ ”AJHZ

i

T 2
HF(zj)(F(zj)) (d(zj) ~F(zj)zj)![2/

811,
1.
2 -
2 HF(zj) (F(z,)) (d(z) F(zj)zj)]lz/
.'.
I (F(z,)) 1
2

+ ,
HF(zj)(F(zj)) (d(z) F(zj)zj)llz/
.‘-
(mgxl](F(z)) ”2).
The denominator of the last formula is finite. Hence, if the

condition (48) is satisfied then the numerator converges to zero

as j tends to infinity, which implies that
T
"% ) = (Flz., d(z.) - F(z.)=z.
L L(zg) ( (zJ)) ( (zJ) (zJ)zJ)
converges to zero vector.

LEMMA 3.12: 1If VLVL(zj+l) # 0 then A(zj+l) # A(zj), where §j+l

and zj are defined in MGNCG Algorithm.
Proof) Suppose A(zj+l) = A(zj) then we have

l.
i—V

N _ S S - -
(VB j40) = (FES)PY (R, ) = F(E; )PE, )

(FP) ¥ (d - FP3

g+ =0

which completes the proof.
LEMMA 3.13: 1If VLVL(zj) # 0 and vaL(zj+l) # 0 then

A(zj) 7 A(z. .),

Jj+l
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where zj and zj+l

Proof) Suppose A(zj) = A(zj+l) then we have

are defined in MGNCG Algorithm.

14 _
Tao VL r a1) = <V V(B 00) 0 A5

— t
= =< (F(zj_l_l)P) (d(zj+l) - F(zj+1)sz+l)’ Aj>

= -<(FP) ¥ (4 - FP(pA; +2)), B>

t 2
= || (FP) (FP) " (d - szj) Hz(pj -1).

Since p = pj minimizes the differentiable function (22) in p,

d _
VLB = 0

‘hence VLVL(zj) = (FP)t(FP)(FP)T(d - Fsz) = 0 or pj = 1. Here

pj = 1 implies zj+1 = Zj+1’ hence by Lemma 3i12 v = 0.

L% 540
This completes the proof.

Now we prove the convergence of the MGNCG Algorithm.

THEOREM 3.14: If either of the problems (1) or (2) has an
optimal solution, i.e., S # ® then the sequence {zj} generated by
the MGNCG Algorithm (19) converges in finite number of steps to a

solution % €38.

Proof) 1If 2 ¢ EJL N S then for any keA(Cy),

¢k(§) 2 0 and ¢k(z) £ 0 for =z¢ Cz,

hence ¢k(§) = 0 for k EA(CR) .
This implies that if E& N S # & then the linear system

(56) d(z') - F(z')z =0,
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is solvable in z for any z'¢e CIL' Let U' be a union of the sets

CR, N L which touch the set S, i.e.,
= u I N
ur = éﬁl{cz N L: Cl S # 0} # 0

Then there exists a neighbourhood U of S such that

(57) U={zel: VL(z) <stCu'C it

hence the system (56) is solvable in z for any z' el. It follows
from Lemma 3.11 that there exists an integer jo such that zj el

for 4 2 jo. Then for § 2 jo the linear equation
58 d(z.,) - F(z,)z =0
(58) ( .7) 7

is solvable in z. Hence the vector §j+l is a solution of this

equation, i.e., for 4 2 jo,

¢i(§j+l) =0 for % sA(zj)

- which implies

(59) A(zJ.) C A(z )

Jj+l
thus

(60) A(zJ.)C A(zj(p))C A('z"J._I_l) for pel0, 1].

. _ 2 _ t, 2
since dW.(p)/dp = ||F(z,(e))8;]l5 = ((Ve,)"A)

. pX
zeA(zJ.(o))

- 2 _ 2
2 ieAz(z ) ((v¢,) Aj) = Hl"'(zJ.)AJ.II2 = dWJ.(O)/dp, for pe [0, 1] the

J
_zeto o of Wj(p) is contained in the closed interval [0, 1]. See

Fig. 1. Hence
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(61) A(zj) CﬁA(zj(pj)) = Az, .) .

J+i
Suppose the algorithm (19) does not converge in finite number of
steps, then by Lemma 3.13 and (61),
'Y >
#A(zj) < #A(zj+1) for 4 2 Jg

where #A(z) is the number of the elements of A(z). Hence

im #A (2 )
Jre Jd

=W'

which contradicts the fact that the number of the constraints is

finite.

LEMMA 3.15: The set CV of all the critical points of the func-

tion VL(z), defined by
CV = {z¢el: VLVL(z) = 0} .

is a (possibly unbounded) closed convex polyhedral convex set on
which the function VL(z) takes the minimum value VL(CV)‘ When

the system (3) - (4) is consistent then S = CV.
Proof) The result is easily deduced from the form (18) of

VLVL(z), since VL(z) is a continuous convex function and

Cp = ;ﬁl(% N{zel: (F(z"))%(d(z") - F(za")z) = 0

and z' ECR})

LEMMA 3.16: 1If ¢k(z') < 0 for some z' sCV then the function ¢k(z)

1l

is constant on CV’ i.e., ¢k(z) ¢k(z') < 0, for =z eCV.
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Proof) 1If CV consists of a single point the result is trivial.
Suppose there exists a critical points =z eCV'which is different

from z'. Let vectors A and z(p) be defined respectively by

pA + z' and A = z - z'.

I

z(p)

Since CV is a closed convex set, z(p) is contained in CV for

p € [0, 1] hence VL(z(p)) is constant for pe [0, 1]. Thus

av, (z(p)) /dp = of (<vo, 82)%)

z
1eA (2 (p))

62 x .r . '
(62) Y oieA B () (Vo Breg (27D

il

0 for pe(0,1).
There exists a positive number § such that
¢k(z(p)) < 0 for all pe (0, 8),

hence k e A(2(p)) for pe (0, §). Therefore, noting the equality

(62), we have

2 2

(<V¢,, 8>)" = iaA(g(p))(<v¢i'A>) =0,

hence <V¢k, A> = 0, which implies ¢k(z(p)) is constant for all

pel[0, 1]. This completes the proof.

LEMMA 3.17: There exists an integer 2 such that CV Claﬁ.
Proof) Suppose we assume contrary, there exist two different

vectors z, z' eCV and ¢k such that

6,(2) >0 > ¢, (z")
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since CV is a closed set. This contradicts the previous lemma.

THEOREM 3.18: The sequence {zj} generated by the MGNCG Algorithm
converges in finite number of steps to a critical point z which
minimizes the function VL(z).

Proof) Since the result has been already proved in the case
where S # ¢, we need to prove only the case where § = ¢&. Let a

finite set A? be defined by
A% = {x: ¢k(z) < 0 for =z eCV} ,

which is well defined by Lemma 3.16. Suppose 2 e?} N CV then for

k eA(CQ) we have

¢k(3) £0 for zeC,,

hence, from the continuity of ¢k, ¢k(2) £ 0, which implies
(63) A(Cz)(Z A(2) .
Further we have
9, (8) <0 for keA®
hence there exists z ECQ suéh that
¢, (2) < 0 for keA®,
which implies
(64) A® C AcCy) .
It follows from the relations of (63) and (64) that the system of

equations
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6,(2) = 0, keAlC,) - A®

= )
keA(2)
Let U' be a union of the sets Cz N L which touch the set CV’

is solvable, since VLVL(Q) ¢k(§)v¢k = 0.

i.e.,

N -
u' = éﬁl{cl N L: C2 ntLn CV #£ o},

Then there exists a neighbourhood U of CV such that
_ N t
¢ = {zel: VL(z) < VL(CV) +8dlCcurCtr,
hence the system of equations

0 (2) = 0, keA(z) - A%,

is solvable in z for any 2z’ elU. It follows from Lemma 3.11 that
there exists an integer jo such that zj el for j 2 jo. Thus for

any j 2 j,, the vector z is a solution of the system if z’ is

J+l
replaced by zj. This implies that

A'('zjv)‘ C A(Ej-i-l) .

Thus by the same argument as is given in the proof of the previous

theorem, we have the desired result.
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4. CONSIDERATIONS FOR IMPLEMENTATION
In this section several remarks are made on practical tech-

niques for implementing our method.

A, STARTING APPROXIMATION

As may be seen from the preceding discussion, our method can
use profitably any (possibly infeasible) approximation to the
optimal solution. We suggest some tricks for incorporating these
a priori information.

1) If we have approximations x and y to the optimal solutions

of the primal and dual problems, then we should start our algo-

rithm (19) with

(65) 5, = PL@“) X

2) If we have an approximation to one of the primal and dual

problems, we should start it with

& or [®THse e)e
to .t .
(e”x/b"b)D ]

N
|

accordingly we have % or ¥.
3) If we have no a priori information about the optimal
solutions, we should either start it with z, = 0 or try to find a

0
better approximation by the following algorithm;

FR ALGORITHM: starting with 2 generate a sequence {zi} of vec-

tors by the iterative formula,
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&
|

o =V Vi (zg)y

Po T Por

n
n

i+l = Fg PPy
{(where ps is determined
to minimize the function
VL(zi-+ppi) by the similar
algorithm to Linear

Search Algorithm)

riv1 = YV (esgg)

2 2
81: = Hl”i+l”2/”f’i”2
Pig1 = Tyt BiPgs

which is obtained by applying the Fletcher-Reeves method [14] to

the function VL(z).

B. NUMERICAL ASSIGNMENT OF ACTIVE CONSTRAINTS

Since the finite termination property of our method is
achieved by the special definition (8) of active constraints,
care should be taken to protect against the incorrect assignment
of active constraints at each step of the iteration (19). Hence
in determining active constraints they should be tested against

some 'tolerance', more explicitly, the following definition

(67) Alz) = {k: ¢, (2) < e:m%x(lﬂicil, lnol)}
should be used instead of (8) where 3z = (Ci)'
m+n
¢k(z) = iilﬂict + L
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and £ is the maximum value such that machine computation of the
logical expression 1 + € = 1 is true. It 1is safer to choose a

larger number for £ than a smaller one.

C. SCALING OF MATRIX 4

In order to use the algorithms. effectively, we should equi-

librate the matrix A before the algorithms are applied.
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5. APPLICATION

In this section, it is pointed out briefly that a s;
linear equalities/inequalities can be solved in the similar way
to the method given in the preceding sections.

Given a system, transform it into a system of linear in-

equalities

¢i(z) 20, 1<1z%2k,

by converting every equality constraints to a pair of inequality
constraints, where wi(z) is a linear function in z. Then form

the function
_ Kk 2

and apply the modified Gauss-Newton method coupled with the
conjugate gradient method to the function in the same way as in
section 3. Thus we obtain a finitely terminating iterative

algorithm for solving a system of linear equalities/inequalities.
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Figure 2
Y, 1= 0
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