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Analogue of inverse scattering theory for the discrete Hill's

)

*
equation and exact solutions for the periodic Toda lattice

Etsuro Date and Shunichi Tanaka
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Recently Dubrovin and Its-Matveev developed an analogue
of the inverse scattering theory for the Hill's equation and have
given explicit form of the periodic potentials with the finite
number of gaps in the spectrum. The KdV equation is exactly
solved in that class of potentials leading to the effective
construction of the periodic N—solitonsz)’3).

In this note we describe briefly corresponging results for.
discrete Hill's equation and exact solutions of the periodic Toda

lattice. Details will appear elsewhere.

1. Spectral properties of the discrete Hill's equation

Consider the discrete Hill's equation

L u= Au,
(Lu) (n) = anu(n+l) + bnu(n) + an_lu(n—l), (1.1)
an>0; h+N 2n’ bn+N=bn'

*) At the time of the symposium, the second named author has given

an exposition of Refs. 1),2),3). Instead of reproducing the

contents of the talk, we give here discrete analogue of these results.
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We define a fundamental system of solutions of (1.1), y(n),

z(n), by the initial conditions

y (0) 1, y (1)
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z (0) 0, z (1)
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Then for n>0 y(n) is a polynomial in A of the form

_ n-1
y(n) = (Hj=0

-1,yn n-1 n-1
a. {27 =zl b.)A T}
J) ( J=0 J)
and z(n) is a polynomial in A of the form

n-1 -l;,,n-1 n-1 n-2
z(n) = (I} a, {2 -(Z5 b.)A e},
(n) ( §=0 j) ( j=1 j)
For n<0 similar expressions hold.

By the pericdicity of a. s bn’ we have

fy(n+Nﬂ {y(nﬂ
’ = M(A) |
lz(n+N) z(nﬂ
-~ N
Iy (N) ~ay_ .Y (N-1)
M) = | N-1 i
| z(N) —aN_lz(N—lﬁ .

We call M(}A) the monodromy matrix of the system (1.1),

Noting that det M is an analogue of Wronskian, we have det M=l;

(1.

(1.

(1.

(1.

(1.2).

Denote by y(k,n), z(k,n) the solutions of (1.1l), (1.2) in

which the coefficients a s bn are replaced by a ik’

the relations

y(k,n) y(k—l)z(k+n)

fk-1 T -1

z(k,n)

Il

y(k)z(k+n) - z(k)y(k+n)

- hold.

z(k-1)y (k+n),

Then

(1.

2)

3)

4)

5)

6)
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Using these relations we have

y(N)=a _ z(N-1) = y(k,N)-a,__jz(k,N-1), (1.7)

namely the trace of the monodromy matrix of the translated system
is equal to the original one. Denote (1.7) by A(A);

The roots of the equation

A()x)2 -4 =0 (1.8)

are all real and are ordered as

A <X2§K <o oA <Ay, <o <A <A <A

1 3 23-"23+1 2N-2-"2N~1 "2N"
The roots of the eguation
z(k,N) =0

are real and distinct. If we order them by
Ul(k) <U2 (k) <o .<UN_l(k) 14

we have uj(k)é?[kzj, A2j+l]'

Comparing the coefficients of XN_z of z(k,N), we have
N-1 N-1 ’
o b. = b, = I, (k). 1.9
j=0 Pj K =1 uj( ) (1.9)

Introducing the notations

_ -1 .2N
M= 277 2i0) A,

2N-1

and comparing the coefficients of X of A(A)2—4, we have

10 by = b (1.10)

We define Bloch eigenfunction of (1l.1l) by

~{ay_;z(N-1)+y () = (A (1) 2-) /2

xi(n) = y(n) + z(n) .

2Z(N)
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By the direct calculation using (1.5), (l1.6), we have

x+(k)x_(k) = z(k,N)/z(N). (1.11)

2. Hyperelliptic abelian integrals and the solution of

Jacobi's inversion problem
In what follows among roots of (1.8) simple roots play
important roles. Assuming their number to be 2g+2 and changing

the numbering, we denote simple roots by

A A<t g4

and double roots by x2j+1=A2j+2 (j=g+1l,¢++ ,N-1). We also change

the numbering for uj(k) so that the relations

Ny () gy 5=1,%+,9,

uj(k)=k = A

23+1 J=gtl, =+ ,N-1

29+2"
hold.

Consider the Riemann surface of the hyperelliptic curve

2 2g+2

= = R(A) = Hj 1 (X—lj).

This Riemann surface is realized by cross—connecting two copies
of the complex A-planes which are cut along the intervals

(AZj—l’ Azj), j=1,*++,gt+l. We mean by the upper sheet the sheet

on which R(X)l/2 is positive on (A ). For the point A &S

2g+2'°

the corresponding point on the other sheet is denoted by A'.

On this surface S we take a system of canonical cuts uj, R

LI 4

J
j:l,oo',g.



For uj we take a closed contour which starts at X goes on the

2!

upper sheet as far as A crosses to the lower sheet and ends

29+1’
at Xz. For Bj we take a closed contour which surrounds the cut
(A2j+l' A2j+2)' j=1,+**,g on the upper sheet. Bloch eigenfunctions

x+(k) and x_(k) can be regarded as the branch of the single-valued
function x(k) on S. By (1.11) and thé asymptotic properties of
xi(k) as A»»,»' .  we have

Theorem. x(k) has g simple zeros at uj(k) (j=1,+++,qg), each
of which denotes a point on S whose projection on the complex
plane is uj(k) (so uj(k)' is not zero of x(k)). It has g simple
poles at uj(O), has zero of k-th order at «' (on the lower sheet)

and has pole of k-th order at « (on the upper sheet).

Define.a base of the abelian differentials of the first kind

= y9-1 3 -1/2 =1 eee
W Zj=0 cmjk R(A) dAa, m=1, e

normalized by

IB- w = —ﬂiéjm, j,m=1,++¢,g.
J
Put
I g Ym T tjm' jem=l,cc0,g.
J
Then S 3 are real and the matrix (tjm) is a real symmetric
r

negative definite matrix.

Let T be the lattice in c" spanned by vectors:
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( tjl'.“’tjg)’
. j:llooc'g.
( 0,ee¢,mi,**+,0),

J

The complex torus J=Cn/F is called the Jacobian variety of the
hyperelliptic curve u2=R(A).
Making use of Theorem (see Akhiezer4)), we have

(k) u. (0)

ngl fuj W, kf:.wz + ngl fug Wy mod T (2.1)
0

where W is a fixed point on S.

We introduce Riemann theta function defined by

_ oo g g
6 (u) 'Zml""’mgz—w exp[ZZj=l m + Zj,kzl tjkmjmk]’

= ) < g
u (ul, ,ug)»C .
Solution of Jacobi's inversion problem permits us to express
symmetric polynomials of uj(k) by the right hand side of (2.1)

as rational function of theta functions. - Following Its—Matveevs)

we write first of them as

g = 1 1iz 9 +
Zj=l uj(k) m 1ZJ=1 fBjAw
g
+ . . D. oo
Zj=l cj,g—l jlogg(u( ) +kc+d)
g .
- . . D. )
Zj=l C],g—l Jloge(u( )+ (k+1) c+d) (2.2)
where
B —_ )\ e o @ A‘
u(r) = (fuowl, ,fuowg),



c = (—f:'wl,o..,-f:'wg) ,

d = ( dlr"'l dg)r

My (0) -1 1

d, =-z,9. s w, +2 gmi - 27

g
j k Mo 3 z t

k=1 “kj’

and D. denotes the partial differentiation with respect to the
j-th variable.

By (1.9), (1.10); we have

*
s 9
N FEARD (2.3)
pY o= p29t2
=1 3

(2.2) and (2.3) give explicit formula for the coefficients bk

in terms of the Riemann theta functions.

3. Integration of the periodic Toda lattice

The equation of motion of Toda lattices) has the form
Q =P, P = ~{exp(-(Q 1709 ))-exp(-(Q -0 _;))},

where the dot denotes the differentiation with respect to the

time variable t.

Putting
a = 2_lexp{-(Q -Q__.)/2} p_ = -2"1p
n n “n-1 ! n n-1'
these equations take the following forms
D = - s _ 2__2
a, = an(bn+l bn), bn = 2(an an_l).
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These eqguations are eguivalent to the evolution equation of linear

6)

operators

L=1[B, L]

BL - LB
where

(Bu) (n) = anu(n+l) - an_lu(n—l).

Using these expressions we have

. _ _ _ _ 2
y(n) = any(n+l)+(bO My (n) an_ly(n l)+2aN_1z(n),
. ' (3.1)
z(n) = —2y(n)+anz(n+l)+(k—bo)z(n)-an_lz(n—l).
From these formulas, we have
A(yy =0
i.e. Aj are independent of t.
So Riemann surface and the normalized differentials on it
introduced in §2 are also independent of t (namely they are
determined by the initial conditions). In the construction of
§2 dependency on t comes only through uj(O).
By (3.1), we have differential equation for uj(O):
. 1/2_. g : -1
.(0) = =-2R(u. (0 I . . (0) - 0 .3
s (0) (3 (00) 5 m F) Ly (1 (0) -1y (0)) (3.3)

Differentiating dj(t) with respect to t, inserting (3.3) and then

using the Lagrange's interpolation formula, we have d.=2c¢ i.e.

J nlg_l

dj(t) = dj(O) + ZCn t.

rg—l
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By (2.2), (2.3), we have

T _ 8 (u(w)+nc+d (t))
b (t) =& - Tir.d) g 2y~ 27lasat 1og .
J 8 (u(=)+(n+l) c+d(t))

Formulas for an(t), Pn(t) and Qn(t) are direct consequences of

this formula.

References
1)B.A. Dubrovin, Funct. Anal. Appl. 9 (1975),65.
2)B.A. Dubrovin and S.P. ﬁovikov, J. Exp. Theor. Phys. 67 (1974),2131.
3)A.R. Its and V.B. Matveey, Funct. Anal. Appl. 9 (1975), 69;
Theor. Math. Phys. 23 (1975), 51.
4)N.I. Akhiezer, Sov. Math. Doklady 2 (1961), 1409.
AS)M. Toda, Studies of a non-linear lattice, Physics Reports, 18C (1975).

6)H. Flaschka, Prog. Theor. Phys. 51 (1974), 703.



