<table>
<thead>
<tr>
<th>Title</th>
<th>On the Stability of Incompressible Viscous Fluid Motions Past Objects (非線形問題の解析 並列計算機上での数値解析)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>MASUDA, KYUYA</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1975), 258: 104-105</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1975-12</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/105782</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On the stability of incompressible viscous fluid motions past objects

by Kyuya MASUDA (Dept. of Math., Univ. of Tokyo, Komaba)

Let E be the exterior domain in 3-space. Let us consider the steady flow in E governed by

$$
\begin{align*}
-\nu \Delta w + (w \cdot \nabla) w + \nabla p, &= 0, \\
\nabla \cdot w &= 0
\end{align*}
$$

(1)

(2) $w(x) \to w^\infty$ $(|x| \to \infty)$

(3) $w(x) = b(x)$ $(x \in \partial E)$

where the viscousity coefficient ν is a positive constant, w^∞ is some fixed constant vector, b is some prescribed function on E.

R. Finn showed that if $w^\infty - b$ is "small" enough, then there exists a smooth solution w with

$$
\sup_{x \in E} |x| |w(x) - w^\infty| < \infty
$$

$$
\nabla w \in L^3(E)
$$
Given the disturbance \(u_0 \in L^2(E) \) to \(w \). Then the perturbed flow \(v \) is governed by

\[
\begin{align*}
\frac{\partial v}{\partial t} + \nabla \Delta v + (v \cdot \nabla) v - \nabla p &= 0, \\
\nabla \cdot v &= 0
\end{align*}
\]

\((4)\)

\[
\begin{align*}
\lim_{|x| \to \infty} v(x,t) &= w^a, \\
v(x,t) &= b(x) \quad (x \in \partial E, t > 0) \\
\lim_{t \to t_0} v(x,t) &= w(x) + u_0(x)
\end{align*}
\]

\((5)\)

Now our result is:

Assume that

(i) \(\sup_{x \in E} |x| | w(x) - w^a | < \frac{1}{2} \)

(ii) \(\nabla w \in L^3(E) \)

(iii) \(\nabla \cdot u = 0 \).

Then every weak solution \(v \) of \((4), (5)\) becomes analytic (in \(t \) and \(x \)) after some definite time \(T_0 \), and then converges to steady flow \(w \) uniformly in \(x \) on \(E \) like

\[
| v(x,t) - w(x) | \leq M | t |^{-\frac{1}{2}} \quad (t \to \infty)
\]

(\(M \); constant)