<table>
<thead>
<tr>
<th>Title</th>
<th>On Some Evolution Equations of Subdifferential Operators (非線形問題の解析)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>MARUO, KENJI</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1975), 258: 97-103</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1975-12</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/105783</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On some evolution equations of subdifferential operators

By Kenji Maruo

1. Introduction

In this paper we are concerned with nonlinear evolution equations of a form

\[\frac{du}{dt} + \partial \psi^t u(t) + A(t)u(t) \equiv f(t), \quad 0 \leq t \leq T \quad (1.1) \]

in a real Hilbert space H. Here for each fixed t, $\partial \psi^t$ is subdifferential of a lower semicontinuous convex function ψ^t from H into $(-\infty, \infty]$, $\psi^t \not\equiv \infty$ and $A(t)$ is a monotone, single valued and hemicontinuous operator which is perturbation in a sense. The effective domain of ψ^t defined by

\[\{u \in H : \psi^t(u) < \infty\} = D \]

is independent of t. We denote the inner product and the norm in H by (\cdot, \cdot) and $\| \cdot \|$ respectively. Let T be a positive constant.

We assume the following conditions for ψ^t and $A(t)$.

$A \ - \ (1)$ For every $r > 0$ there exist a positive constant $L_1(r)$ such that

\[|\psi^t(u) - \psi^s(u)| \leq L_1(r) |h(t) - h(s)| (\psi^t(u) + 1) \]

hold if $0 \leq s, t \leq T$, $u \in D$ and $\|u\| \leq r$, where $h(t)$ is continuous function with bounded total variation.

$A \ - \ (2)$ If $u(t) \in D$ is absolutely continuous on $[a, b]$ $(0 \leq a < b \leq T)$ then $A(t)u(t)$ is strongly measurable on $[a, b]$.

1
and for any fixed $t_0 \in [a, b]$ $A(t_0)u(t)$ is also strongly measurable on $[a, b]$. For any fixed $u \in D$, $A(t)u$ is continuous on $[0, T]$.

$A - (3)$ There are Riemann integrable functions $\omega^2_r(t)$ on $[0, T]$ and a constant $0 < k_r < 1/2$ such that

$$\|A(t)u\| \leq k_r \|\psi^t u\| + \omega^2_r(t) \quad \text{for any} \quad |u| \leq r.$$

$A - (4)$ If $u(t)$ is absolutely continuous and $|\psi^t u| + \|u(t)\| \leq r$, then $A(t)u(t) \leq \omega^2_r(t)$.

Under the above assumptions we consider the uniqueness and existence of the solution of (1-1) where the solution is defined as follows:

Definition 1-1: We say that $u(t)$ is a solution of (1-1) if and only if $u(t)$ is continuous on $[0, T]$ and absolutely continuous on $(0, T]$ and if (1-1) holds almost everywhere on $[0, T]$.

Theorem 1-1. Suppose that the assumptions stated above are satisfied. Then we hold the unique solution of (1-1) where $f \in L_2[0, T; H]$ and the initial date $u_0 \in \mathcal{D}$.

Remark 1-1. The continuity assumption $A-(1)$ is weaker than those of J. Watanabe [3] and H. Attouch and A. Damlamian [1].

2. The outline of the proof.

Using $\psi^0(a) \geq C\|a\| + D'$ and $A-(1)$, we get the following lemma.
Lemma 2.1 There exist constants C_1 and C_2 which are independent of t and α such that

$$\psi_t(\alpha) \geq C_1 \|\alpha\| + C_2$$

for any $\alpha \in H$.

We take a sequence $\{t_i\}_{i=1}^n$ such that $0 = t_0 < t_1 < \cdots < t_{n-1} < t_n = T$ and $t_i \in I$ for any $i = 0, 2, \cdots, n$ and $|t_i - t_{i-1}| \to 0$ as $n \to \infty$ for any $i = 1, 2, \cdots, n$.

We denote by

$$\psi^n_t(u) = \psi^{t_i}(u), \quad A_n(t) = A(t_i), \text{ for } t_i \leq t < t_{i+1}.$$

We consider the following evolution equations

$$\begin{cases}
\frac{d}{dt} u_i^i + (\psi^n_t + A_n(t))u_i^i(t) \geq f(t), & t_i \leq t < t_{i+1} \\
u_i^i(t_i) = u_{i-1}^i(t_i) \text{ and } u_0^i(0) = u_0 \in D \text{ for } i = 0, 1, \cdots, n-1 \text{ and } f(t) \in L^2[0, T : H].
\end{cases} \tag{2-1}
$$

The solution of (2-1) is defined inductively by the solution of a operator with constant coefficients. For the sake of simplicity we write $u_n^i(t) = u_i^i(t)$.

Using that $\{u_n^i(t)\}$ are the solutions of (2-1) and lemma 1 we get the following lemma.

Lemma 2.2 There is a constant γ independent of n and t such that

$$\|u_n^i(t)\| \leq \gamma.$$

On the other hand since we get
\[
\frac{d}{dt} \psi_n(u_n) + \|\frac{d}{dt} u_n\|^2 = (f(t) - A_n(t)u_n, \frac{d}{dt} u_n) \quad \text{a.e.}\ t
\]

from H. Brezis [2], \(u_n(t) \) is a strong solution of (2-1) and \(\lambda \)- (3) we see

\[
\psi_n(u_n(t)) + \delta \int_{t_{i-1}}^{t_i} \|\frac{d}{dt} u_n\|^2 dt \leq \psi_n(u_n(t_i))
\]

\[
+ \int_{t_{i-1}}^{t_i} C_\delta (\|f\| + w_t)^2 ds \quad (2-2)
\]

from our assumption \(\lambda \)- (3) where \(\delta \) and \(C_\delta \) are positive constants independent of \(n, t \) and \(t_i \). Combining (2-2) and \(\lambda \)- (1) we see

\[
\psi_n(u_n(t_{i+1})) \leq \psi_n(u_n(t_i)) \{1 + L_1(\gamma)|h(t_{i-1}) - h(t_i)|\} + \int_{t_i}^{t_{i+1}} C_\delta (f(s) + W(t_i))^2 ds
\]

\[
+ L_1(\gamma)|h(t_{i-1}) - h(t_i)|. \quad (2-3)
\]

We put

\[
K = \{ \int_0^T 2C_\delta \|f\|^2 ds + 2 \int_0^T w_\gamma^2(t)dt + L_1(\gamma)V(h) + |\psi^0(u_0)| + 1 \}
\]

then from (2-3) we see

\[
|\psi_n(u_n(t))| \leq 3Ke^{KL_1(\gamma)V(h)} \quad (2-4)
\]

where \(V(h) = \text{total variation of } h \text{ on } [0, T] \). Combining (2-3) and (2-4) we get the following lemma.

Lemma 2 - 3 We know

\[
|\psi_n(u_n(t))| + \int_0^t \|\frac{d}{dt} u_n\|^2 dt \leq C_3
\]
where \(C_3 \) is a constant independent of \(n \) and \(t \).

From the above lemma we know that there exists subsequence \(\{ \frac{d}{dt}u_n \} \) which is \(L_2 \)-weakly convergent. For the sake of simplicity we put \(u_n = u_{n_j} \). Thus we see that \(u_n(t) \) is weak convergence to \(u(t) \) and \(u(t) \) is absolutely continuous on \([0, T]\). On the other hand since \(u_n(t) \) is the solution of (2-1) we find

\[
\int_0^T \psi^S_n(v(s)) ds - \int_0^T \psi^S_n(u_n(s)) ds \geq \int_0^T (f(s) - A_n(s)u_n(s) - \frac{d}{ds}u_n(s), v(s) - u_n(s)) ds \geq
\]

\[
\int_0^T (f(s) - A_n(s)v(s) - \frac{d}{ds}v(s), v(s) - u_n(s)) ds +
\]

\[+ \frac{1}{2} \| u_0 - v(0) \|^2.
\]

Then

\[
\int_0^T (\psi^S(v(s)) - \psi^S(u(s))) ds \geq \int_0^T (f(s) - \Lambda(s)v(s) - \frac{d}{dt}v(s), v(s) - u(s)) ds + \frac{1}{2} \| u_0 - v(0) \|^2.
\]

Next we put \(v(t) = pu(t) + (1-p)w(t) \) where \(w(t) \in D \) and is absolutely continuous.

Thus we obtain the following inequality

\[
\int_0^T (\psi^S(w(s)) - \psi^S(u(s))) ds \geq \int_0^T (f(s) - \Lambda(s)u(s) - \frac{d}{dt}u(s), w(s) - u(s)) ds.
\]

Next for any fixed \(\xi \in D \) and \(0 \leq t_1 < t_2 \leq T \) we put
\[w(t) = \begin{cases}
\xi : t_1 + \epsilon \leq t \leq t_2 - \epsilon \\
p\psi(t_1) + q\xi : t = pt_1 + q(t_1 + \epsilon) \\
u(t) : 0 \leq t \leq t_1, \ t_2 \leq t \leq T \\
p\psi(t_2) + q\xi : t = pt_2 + (t_2 - \epsilon)q
\end{cases} \]

where \(p + q = 1 \), \(p > 0 \), \(q > 0 \) and \(\epsilon > 0 \).

If \(\epsilon \to 0 \) we get

\[
\int_{t_1}^{t_2} \psi^t(\xi)dt - \int_{t_1}^{t_2} \psi^t(u(t))dt \geq \int_{t_1}^{t_2} (f(t) - A(t)u(t) - \frac{d}{dt}u(t), \xi - u(t)) dt.
\]

For any Lebesgue points of \(\psi^t u(t), f(t), A(t)u(t), \frac{d}{dt}u(t) \), and \(u(t) \) we know

\[
\psi^t(\xi) - \psi^t u(t) \geq (f(t) - A(t)u(t) - \frac{d}{dt}u(t), \xi - u(t)).
\]

Considering that \(\partial \psi^t + A(t) \) is monotone operator we can show the uniqueness of (1-1). If \(u_0 \in D \) we can proved the theorem.

Next if \(u_0 \in \mathcal{D} \). We put \(u_{m,0} = (1 + 1/m\psi^0)^{-1}u_0 \). We denote by \(u_m(t) \) the solution of (1-1) of initial date \(u_{m,0} \).

Since \(\partial \psi^t + A(t) \) is monotone operator we see that \(u_m(t) \) is uniformly convergent on \([0, T] \) then \(\lim_{m \to \infty} u_m(t) = u(t) \).

Using that \(u_m(t) \) are strong solutions of (1-1) and A-(3) we know for any \(0 < \delta < T \),

\[
\int_{0}^{\delta} \psi^t(u_m(t))dt \leq C_4
\]
where C_4 is a constant independent of δ and m.

There exist $0 < \delta_m < \delta$ such that

$$\psi^m_r(u_m(\delta_m)) \leq \frac{1}{\delta} \int_0^\delta \psi^t_r(u_m(t)) dt \leq \frac{C_4}{\delta} = C_5.$$

We denote by $V_m(t)$ the solution of (1-1) for the initial date $V(\delta_m) = u_m(\delta_m) \in D$ on $[\delta_m, T]$. Then we find $V_m(t) = u_m(t)$ on $[\delta_m, T]$ from the uniqueness of the solution of (1-1).

On the other hand noting the method of Lemma 2-3 we get

$$|\psi_{m,n}^t(V_m^n(t))| \leq C_6 \text{ for } t \in [\delta_m, T]$$

where C_6 is independent of n and m.

Thus we get

$$\int_0^T \| \frac{dV_m}{dt}(t) \|^2 dt \leq \int_0^T \| \frac{dV_m}{dt}(t) \|^2 dt \leq C_7$$

Using the above same method on $[\delta, T]$ we can prove the Theorem.

Bibliography

groupes non linéaires, Israel. J. Math. 9 (1971), 123-144.