On some evolution equations of subdifferential operators

By Kenji Maruo

1. Introduction

In this paper we are concerned with nonlinear evolution equations of a form

$$\frac{du}{dt} + \partial \psi^{t} u(t) + A(t)u(t) \ni f(t), 0 \le t \le T \qquad (1.1)$$

in a real Hilbert space H. Here for each fixed t, $\vartheta\psi^{t}$ is subdifferential of a lower semicontinuous convex function ψ^{t} from H into $(-\infty, \infty]$, $\psi^{t} \ddagger \infty$ and A(t) is a monotone, single valued and hemicontinuous operator which is perturbation in a sense. The effective domain of ψ^{t} defined by $\{u \in H: \psi^{t}(u) < +\infty\} = D$ is independent of t. We denote the inner product and the norm in H by (,) and $\|$ respectively. Let T be a positive constant.

We assume the following conditions for ψ^{t} and A(t).

A - (1) For every r > 0 there exist a positive constant $L_1(r)$ such that

$$|\psi^{t}(u) - \psi^{s}(u)| \le L_{1}(r)|h(t) - h(s)|\{\psi^{t}(u) + 1\}$$

hold if $0 \le s$, $t \le T$, $u \in D$ and $||u|| \le r$, where h(t) is continuous function with bounded total variation.

A - (2) If $u(t) \in D$ is absolutely continuous on [a, b] $(0 \le a < b \le T)$ then A(t)u(t) is strongly measurable on [a, b]

and for any fixed $t_0 \in [a, b]$ $A(t_0)u(t)$ is also strongly measurable on [a, b]. For any fixed $u \in D$, A(t)u is continuous on [0, T].

A - (3) There are Riemann integrable functions $w_{r}^{2}(t)$ on [0, T] and a constant 0 < k_{r} < 1/2 such that

 $\|A(t)u\| \le k_r \|\partial \psi^t u\| + w_r(t)$ for any $\|u\| \le r$.

A -(4) If u(t) is absolutely continuous and $|\psi^{t}(u)| + \|u(t)\| \le r$, then A(t)u(t) $\le W_{r}(t)$.

Under the above assumptions we consider the uniqueness and existence of the solution of (1-1) where the solution is defined as follows:

Definition l-1: We say that u(t) is a solution of (1-1) if and only if u(t) is continuous on [0, T] and absolutely continuous on (0, T] and if (1-1) holds almost everywhere on [0, T].

Theorem 1 - 1. Suppose that the assumptions stated above are satisfied. Then we hold the unique solution of (1-1) where $f \in L_2[0, T; H]$ and the initial date $u_0 \in \bar{D}$.

Remark 1 -1. The continuty assumption A-(1) is weaker than those of J. Watanabe [3] and H. Attouch and A. Damlamian [1].

2. The outline of the proof.

Using $\psi^0(a) \ge C'\|a\| + D'$ and A-(1), we get the following lemma.

Lemma 2 - 1 There exist constants $\,^{\rm C}_{1}\,^{\rm and}\,^{\rm C}_{2}\,^{\rm which}$ are independent of t and $\,^{\rm C}_{1}\,^{\rm c}$ such that

$$\psi^{t}(\alpha) \geq C_{1} \|\alpha\| + C_{2}$$
 for any $\alpha \in H$.

We take a sequence $\{t_i\}_{i=1}^n$ such that $0 = t_0 < t_1 < \cdots < t_{n-1} < t_n = T$ and $t_i \in I$ for any $i = 0, 2, \cdots, n$ and $|t_i - t_{i-1}| \longrightarrow 0$ as $n \longrightarrow \infty$ for any $i = 1, 2, \cdots, n$. We denote by

$$\psi_{n}^{t}(u) = \psi_{n}^{t}(u), A_{n}(t) = A(t_{i}), \text{ for } t_{i} \leq t < t_{i+1}.$$

We consider the following evolution equations

$$\begin{cases} \frac{d}{dt}u_{n}^{i} + (\partial \psi_{n}^{t} + A_{n}(t))u_{n}^{i}(t) \ni f(t) & t_{i} \leq t < t_{i+1} \\ u_{n}^{i}(t_{i}) = u_{n}^{i-1}(t_{i}) & \text{and} & u_{n}^{0}(0) = u_{0} \in D & \text{for } i = 0.1 \cdots \\ \cdots n-1 & \text{and} & f(t) \in L^{2}[0, T : H]. \end{cases}$$
(2-1)

The solution of (2-1) is defined inductively by the solution of a operator with constant coefficients. For the sake of simplicity we wright $u_n(t) = u_n^i(t)$.

Using that $\{u_n(t)\}$ are the solutions of (2-1) and lemma 1 we get the following lemma.

Lemma 2 - 2 There is a constant γ independent of n and t such that

$$\|\mathbf{u}_{\mathbf{n}}(t)\| \leq \gamma$$
.

On the other hand since we get

$$\frac{d}{dt}\psi_n^{\dagger}(u_n) + \left\| \frac{d}{dt}u_n \right\|^2 = (f(t) - A_n(t)u_n, \frac{d}{dt}u_n) \quad \text{a.e.t}$$

from H. Brezis [2], $u_n(t)$ is a strong solution of (2-1) and A-(3) we see

$$\psi_{n}^{t}(u_{n}(t)) + \delta \int_{t_{i}}^{t} \left\| \frac{d}{dt} u_{n} \right\|^{2} dt \leq \psi_{n}^{t_{i}}(u_{n}(t_{i}))$$

$$+ \int_{t_{i}}^{t} c_{\delta}(\|f\| + w_{r})^{2} ds \qquad (2-2)$$

from our assumption A-(3) where δ and C_{δ} are positive conctants independent of n, t and t_i. Combining (2-2) and A-(1) we see

$$\begin{split} \psi_{n}^{t_{i}}(u_{n}(t_{i+1})) & \leq \psi_{n}^{t_{i}}(u_{n}(t_{i}))\{1+L_{1}(\gamma)|h(t_{i-1}) - h(t_{i})|\} \\ & + \int_{t_{i}}^{t_{i+1}} C_{\delta}(f(s) + W(t_{i}))^{2} ds \\ & + L_{1}(\gamma)|h(t_{i-1}) - h(t_{i})|. \end{split} \tag{2-3}$$

We put

$$K = \left\{ \int_{0}^{T} 2C_{\delta} \|f\|^{2} ds + 2 \int_{0}^{T} w_{\gamma}^{2}(t) dt + L_{1}(\gamma) V(h) + |\psi^{0}(u_{0})| + 1 \right\}$$

then from (2-3) we see

$$|\psi_n^{\mathsf{t}}(\mathbf{u}_n(\mathsf{t}))| < 3Ke^{KL_1(\gamma)V(h)}$$
 (2-4)

where V(h) = tolal variation of h on [0, T]. Combining (2-3) and (2-4) we get the following lemma.

Lemma 2 - 3 We know

$$|\psi_{n}^{t}(u_{n}(t))| + \int_{0}^{t} \frac{du_{n}}{dt}|^{2} dt \le C_{3}$$

where C_3 is a constant independent of n and t.

From the above lemma we know that there exists subsequence $\{\frac{d}{dt}u_n\}$ which is L_2 -weakly convergent. For the sake of simplicity we put $u_n = u_n$. Thus we see that $u_n(t)$ is weak convergence to u(t) and u(t) is absolutely continuous on [0, T]. On the other hand since $u_n(t)$ is the solution of (2-1) we find

$$\begin{split} \int_{0}^{T} \psi_{n}^{s}(v(s)) ds &- \int_{0}^{T} \psi_{n}^{s}(u_{n}(s)) ds \geq \int_{0}^{T} (f(s) - A_{n}(s)u_{n}(s) \\ &- \frac{d}{ds} u_{n}(s), \ v(s) - u_{n}(s)) ds \geq \\ \int_{0}^{T} (f(s) - A_{n}(s)v(s) - \frac{d}{ds}v(s), \ v(s) - u_{n}(s)) ds + \\ &+ 1/2 \|u_{0} - v(0)\|^{2}. \end{split}$$

Then

$$\int_0^T (\psi^s(v(s)) - \psi^s(u(s)))ds \ge \int_0^T (f(s) - A(s)v(s) - \frac{d}{dt}v(s),$$

 $v(s) - u(s) ds + 1/2||u_0 - v(0)||^2$.

Next we put v(t) = pu(t) + (1-p)w(t) where $w(t) \in D$ and is absolutely continuous.

Thus we obtain the following inequality

$$\int_{0}^{T} (\psi^{s}(w(s)) - \psi^{s}(u(s)))ds \ge \int_{0}^{T} (f(s) - A(s)u(s) - \frac{d}{dt}u(s),$$

$$w(s) - u(s))ds.$$

Next for any fixed $\xi \in D$ and $0 \le t_1 < t_2 \le T$ we put

$$w(t) = \begin{cases} \xi & : t_1 + \epsilon \le t \le t_2 - \epsilon \\ pu(t_1) + q\xi & : t = pt_1 + q(t_1 + \epsilon) \\ u(t) & : 0 \le t \le t_1, t_2 \le t \le T \\ pu(t_2) + q\xi & : t = pt_2 + (t_2 - \epsilon)q \end{cases}$$

where p + q = 1 p > 0, q > 0 and $\epsilon > 0$.

If $\epsilon \longrightarrow 0$ we get

$$\int_{t_1}^{t_2} \psi^{t}(\xi) dt - \int_{t_1}^{t_2} \psi^{t}(u(t)) dt \ge \int_{t_1}^{t_2} (f(t) - A(t)u(t) - \frac{d}{dt}u(t),$$

- u(t))dt.

For any Lebesque points of $\psi^t u(t)$, f(t) A(t)u(t), $\frac{d}{dt}u(t)$, and u(t) we know

$$\psi^{t}(\xi) - \psi^{t}u(t) \geq (f(t) - A(t)u(t) - \frac{d}{dt}u(t), \xi - u(t)).$$

Considering that $\vartheta\psi^{t}+A(t)$ is monotone opeator we can show the uniquniss of (1-1). If $u_{0}\in D$ we can proved the theorem.

Next if $u_0 \in \overline{D}$. We put $u_{m,0} = (1+1/m\partial\psi^0)^{-1}u_0$. We denote by $u_m(t)$ the solution of (1-1) of initial date $u_{m,0}$. Since $\partial\psi^t + A(t)$ is monotone operator we see that $u_m(t)$ is uniformly convergent on [0,T] then $\lim_{m\to\infty} u_m(t) = u(t)$.

Using that $u_m(t)$ are strong solutions of (1-1) and A-(3) we know for any $0 < \delta < T$,

$$\int_0^{\delta} \psi^{t}(u_{m}(t))dt \leq C_4$$

where C_4 is a constant independent of δ and m. There exist $0 < \delta_m < \delta$ $m = 1, 2, \cdots$ such that

$$\psi^{\delta_m}(u_m(\delta_m)) \leq \frac{1}{\delta} \int_0^{\delta} \psi^t(u_m(t)) dt \leq \frac{C_4}{\delta} = C_5.$$

We denote by $V_m(t)$ the solution of (1-1) for the initial date $V(\delta_m) = u_m(\delta_m) \in D$ on $[\delta_m, T]$. Then we find $v_m(t) = u_m(t)$ on $[\delta_m, T]$ from the uniqueness of the solution of (1-1). On the other hand noting the method of Lemma 2-3 we get

$$|\psi_n^{t_n}(V_m^n(t))| \le C_6$$
 for $t \in [\delta_m, T]$

where C_6 is independent of n and m. Thus we get

$$\int_{\delta}^{T} \left\| \frac{du_{m}}{dt}(t) \right\|^{2} dt \leq \int_{\delta_{m}}^{T} \left\| \frac{dv_{m}}{dt}(t) \right\|^{2} dt \leq C_{7}$$

Using the above same method on $[\delta, T]$ we can prove the Theorem.

Bibliography

- [1] H. Attouch et Damlamian: Problémes dévolution dans Les Hilbert et applications, to appear.
- [2] H. Brezis: Propriétés régularisantes de certains semi groupes non linéaires, Israel. J. Math. 9 (1971), 123-144.
- [3] J. Watanabe: On certain nonlinear evolution equations
 J. Math. Soc. Japan, 25 (1973), 446-463.