Caratheodory-type equations in a Banach space

$\label{eq:communications} \mbox{University of Elect} \mbox{\textbf{\it C}}\mbox{ommunications}$

We consider in a real Banach space E the initial value problem of an ordinary differential equation of Carathéodory type:

(1)
$$du/dt = f(t,u), u(0) = a.$$

We assume the following conditions are satisfied.

- (I) For each $x \in E$, the function f(.,x): $I \to E$ is strongly measurable, where I = [0,T] for a constant T > 0.

 For each $t \in I$, the function f(t,.) on E_s with the strong topology into E_w with the weak topology is continuous.
 - (II) For each $\rho > 0$, there exists $\gamma_{\rho} \in L^{1}(I;R)$ such that $|f(t,x)| \leqslant \gamma_{\rho}(t)$

whenever $t \in I$ and $|x| \leq p$.

In case E is finite-dimesional and f is continuous with respect to (t,x), Okamura [3] showed the following necessary and sufficient condition for the uniqueness of solutions of the initial value problem (1): If f is a continuous function on a domain $D \subset \mathbb{R}^{N+1}$ into \mathbb{R}^N , a necessary and sufficient condition for the uniqueness of solutions of du/dt = f(t,u), existing to the right of the initial value (t_0,u_0) for each $(t_0,u_0) \in D$, is that there exists a $\Phi \in C^1(\widehat{D};\mathbb{R})$, $D = \{(t,x_1,x_2); (t,x_i) \in D, i=1,2\}$, such that

(2)
$$\Phi(t; x_1, x_2) \geqslant 0$$
, $\Phi(t; x_1, x_2) = 0 \Leftrightarrow x_1 = x_2$

and

(3)
$$\frac{\partial \Phi}{\partial t}(t; x_1, x_2) + \sum_{i=1}^{2} \langle f(t, x_i), \operatorname{grad}_{x_i} \Phi(t; x_1, x_2) \rangle \leq 0$$
hold.

It may be natural that we introduce the Okamura's function $\mathbf{\Phi}$ in our case. Acturally Murakami [2] made use of the Okamura's function $\mathbf{\Phi}$ in the case of Banach spaces to give a sufficient condition for the existence and uniqueness of solutions of the initial value problem (1) when f is continuous with respect to (t,x). Also, Murakami [2] mentioned Carethéodory-type equations, but he did not enter into details. So we shall treat Carathéodory-type equations in detail to some extent.

Let E be a real Banach space. Let $\mathbf{\Phi}(t;x,y)$ be a real-valued function defined on I \mathbf{X} E \mathbf{X} E. Suppose $\mathbf{\Phi}$ satisfies the following conditions (i)-(iii):

- (i) $\Phi(t;x,y) \ge 0$ and $\Phi(t;x,x) = 0$ for all $t \in I$ and all $x,y \in E$.
- (ii) For any t \in I and any $\rho > 0$, if two sequences $\{x_n\}$ and $\{y_n\}$ in $B_{\rho} \equiv \{z \in E; |z| \leq \rho\}$ satisfies $\Phi(t; x_n, y_n) \to 0$ as $n \to \infty$, then $|x_n y_n| \to 0$ as $n \to \infty$.
- (iii) For any p>0, there exist a $\beta_p\in L^1(I;\mathbb{R})$ and a positive constant C_p such that

$$\begin{split} \left| \Phi(t_{1}; x_{1}, y_{1}) - \Phi(t_{2}; x_{2}, y_{2}) \right| \\ & \leq \int_{t_{1}}^{t_{2}} \beta_{p}(s) \, ds + C_{p}(|x_{1} - x_{2}| + |y_{1} - y_{2}|) \end{split}$$

holds whenever $t_1, t_2 \in I$, $t_1 \leq t_2$, and x_i , $y_i \in B_j$, j=1,2.

We define

$$\Phi'_{+}(t;x,y;a,b)$$

=
$$\liminf_{\xi \to \pm 0} \{\Phi(t+\xi;x+\xi a,y+\xi b) - \Phi(t;a,b)\} / \xi$$

for all t \in I and all x,y,a,b \in E.

Example. Let $\beta \in L^{1}(I;\mathbb{R})$. If we set

(4)
$$\Phi(t;x,y) = |x - y|^2 \exp(-2\int_0^t \beta(s) ds)$$

for all x,y ϵ E and a.a. t ϵ I, then Φ satisfies (i)-(iii) and

$$\Phi'_{\pm}(t;x,y;a,b)$$

(5)
$$= 2\{\langle a-b, x-y\rangle_{\pm} - \beta(t) | x-y|^2\} \exp(-2\int_0^t \beta(s) ds)$$

holds for all x,y,a and b \in E and a.a. t \in I. Here $\langle .,. \rangle_{\underline{t}}$ is defined by

$$\langle u, v \rangle_{\pm} = \pm \{ \sup \pm \langle u, v^* \rangle ; v^* \in F(v) \}$$

for all u,v & E, where F is the duality map of E into its dual E'.

We are concerned with the following condition imposed on ${\bf \Phi}$ and ${\bf f}$:

(III)
$$\Phi'_{(t;x,y;f(t,x),f(t,y))} \leq 0$$

holds for a.a. $t \in I$ and all $x,y \in E$.

Example. If Φ is given by (4), then (III) is reduced to the following condition:

$$\langle f(t,x) - f(t,y), x - y \rangle \leq \beta(t) |x - y|^2$$

holds for a.a. t ϵ I and all x,y ϵ E. See (5). Hence, if $\beta = 0$, (III) is equivalent to the condition:

(III') -f(t,.) is accretive for a.a. t € I.

Now we shall prove a main result.

Theorem 1. Let E be an arbitrary real Banach space. Suppose f satisfies (I)-(III) with a Φ having properties (i)-(iii) and, moreover, for each $t \in I$, the function $f(t,.): E_s \to E_s$ is locally uniformly continuous. Then, for any a \in E, there exist an $r \in (0,T]$ and a unique $u \in C([0,r];E)$ such that

(6)
$$u(t) = a + \int_{0}^{t} f(s, u(s)) ds$$

holds for all t \in [0,r].

<u>Proof.</u> Let a \in E and p > 0. By (II) there exists a function $\gamma \in L^{1}(I; \mathbb{R})$ such that

$$|f(t,x)| \leqslant Y(t)$$

whenever t \in I and $|x-a| \le \beta$. We choose an r \in (0,T] satisfying $\int_{r}^{r} y'(t) dt \le \beta$. For each integer n > 1/r, we define

(7)
$$u_{n}(t) = \begin{cases} a & (t \le 1/n) \\ a + \int_{\frac{1}{n}}^{t} f(s, u_{n}(s-n^{-1})) ds & (1/n \le t \le r). \end{cases}$$

Clearly we have $|u_n(t) - a| \leqslant p$ whenever n > 1/r and $t \leqslant r$. Let m, n > 1/r. By using (iii), we can verify easily that $\Phi(t; u_m(t), u_n(t))$ is absolutely continuous on $0 \leqslant t \leqslant r$. Hence we have

(8)
$$\Phi(t; u_m(t), u_n(t)) = \int_0^t \frac{d}{ds} \Phi(s; u_m(s), u_n(s)) ds$$

for t € [0,r]. Using (iii) again, we obtain

$$\frac{d}{ds}\Phi(s;u_m(s),u_n(s))$$

$$= \frac{d}{d\xi} \Phi(s+\xi; u_{m}(s) + \xi \cdot f(s, u_{m}(s-m^{-1})), u_{n}(s) + \xi \cdot f(s, u_{n}(s-n^{-1}))) \Big|_{\xi=0}$$

for almost all s if $du_{\mathbf{k}}(s)/ds = f(s,u_{\mathbf{k}}(s-k^{-1}))$ exists for k=m,n. Hence, by (III), we have

$$\frac{d}{ds} \Phi(s; u_{m}(s), u_{n}(s))$$

$$\leq \Phi'(s; u_{m}(s), u_{n}(s); f(s, u_{m}(s-m^{-1})), f(s, u_{n}(s-n^{-1})))$$

$$-\Phi'(s; u_{m}(s), u_{n}(s); f(s, u_{m}(s)), f(s, u_{n}(s)))$$

$$\equiv A(s; m, n)$$

for a.a. $s \in (\max(m^{-1}, n^{-1}), r)$. Then, by the assumption of the locally uniform continuity of f(s, .),

$$\lim_{m,n\to\infty} A(s;m,n) = 0$$

holds for almost all s. Then, by using (ii) and applying the Lebesgue-Fatou theorem to (8) and (7), it is verified that $u(t) = \lim_{n\to\infty} u_n(t)$ exists for all $t \in [0,r]$ and u satisfies (6).

The uniqueness of solutions is shown by a standard argument.

we proved,

We can prove the following result in the same manner as the

preceding theorem, noticing that the duality map F is single
valued and locally uniformly continuous if the dual space E' of E

is uniformly convex. See Kato[1], Lemma 1.2.

Theorem 2. Suppose E' is uniformly convex and f satisfies (I)-(III). Then the conclusion of Theorem 1 holds, if E is separable.

The author thanks Professor H. Brézis for a short but valuable conversation.

References

- [1] T. Kato, Nonlinear semigroups and evolution equations,J. Math. Soc. Japan, 19 (1967), 508-520.
- [2] H. Murakami, On non-linear ordinary and evolution equations, Funkcialaj Ekvacioj, $\underline{9}$ (1966), 151-162.
- [3] H. Okamura, Introduction to the theory of differential equations (in Japanese), Kawade Shobo, 1950.