<table>
<thead>
<tr>
<th>Title</th>
<th>New Results Concerning Monotone Operators and Nonlinear Semigroups (非線形問題の解析 数学的解析の応用)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>BREZIS, HAIM</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 258: 2-27</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1975-12</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/105789</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
New results concerning monotone operators
and nonlinear semigroups

Haïm BREZIS

Our purpose is to describe here some recent developments in three different directions.
In §I we discuss a property of the range \(R(A+B) \) of the sum of two monotone operators. Surprisingly, it turns out that in "many" cases \(R(A+B) \) is "almost" equal to \(R(A)+R(B) \). A number of applications to nonlinear partial differential equations are given.
In §II we prove some estimates showing that \((I+ta)^{-1} \) and \(S(t) \) have the same modulus of continuity at \(t=0 \) \((S(t) \text{ denotes the semigroup generated by } -A) \). Next we present some consequences.
In §III we give a very general form of the convergence theorem of Trotter - Kato - Neveu type for nonlinear semigroups.

§I \("R(A+B) \cong R(A)+R(B)" \) and applications

Let \(H \) be a real Hilbert space and let \(A \) and \(B \) be maximal monotone operators such that \(A+B \) is again maximal monotone.
We say that two subsets \(K_1 \) and \(K_2 \) of \(H \) are almost equal \((K_1 \approx K_2) \) if \(K_1 \) and \(K_2 \) have the same closure and the same interior. We prove here, under various assumptions, that
\(R(A + B) \cong R(A) + R(B) \); we discuss here only the simplest forms (for more elaborate results see [7]).

Theorem 1 Suppose A and B are subdifferentials of convex functions. Then \(R(A + B) \cong R(A) + R(B) \).

Proof First we prove that \(\overline{R(A + B)} = \overline{R(A) + R(B)} \); it is sufficient to verify that \(R(A) + R(B) \subseteq \overline{R(A + B)} \). Given \(f \in R(A) + R(B) \), there exist \(\xi \in D(A) \) and \(\eta \in D(B) \) such that \(f \in A\xi + B\eta \). The equation

\[
(1) \quad \varepsilon u_\varepsilon + Au_\varepsilon + Bu_\varepsilon \ni f
\]

has a unique solution \(u_\varepsilon \). The conclusion follows provided we show that \(\varepsilon u_\varepsilon \to 0 \) as \(\varepsilon \to 0 \). Let \(x \in D(A) \cap D(B) \) be fixed. Since A and B are cyclically monotone (see [21]) we have

\[
(2) \quad (Au_\varepsilon, u_\varepsilon - x) + (Ax, x - \xi) + (A\xi, \xi - u_\varepsilon) \geq 0
\]

\[
(3) \quad (Bu_\varepsilon, u_\varepsilon - x) + (Bx, x - \eta) + (B\eta, \eta - u_\varepsilon) \geq 0
\]

and therefore by adding (2) and (3) we obtain

\[
(f - \varepsilon u_\varepsilon, u_\varepsilon - x) + C - (f, u_\varepsilon) \geq 0,
\]

where \(C \) is independent of \(\varepsilon \). Hence

\[
\varepsilon |u_\varepsilon|^2 - \varepsilon (u_\varepsilon, x) \leq C
\]

and therefore \(\sqrt{\varepsilon} |u_\varepsilon| \) remains bounded as \(\varepsilon \to 0 \).

Next we prove that \(\text{Int}[R(A) + R(B)] = \text{Int}[R(A + B)] \). It is sufficient to check that \(\text{Int}[R(A) + R(B)] \subseteq R(A + B) \). Let \(f \in \text{Int}[R(A) + R(B)] \), so that a ball \(B(f, \rho) \) is contained in \(R(A) + R(B) \). For every \(h \in H \) with \(|h| < \rho \), there exist \(\xi \)
and \(\eta \) (depending on \(h \)) such that \(f + h \in A \xi + B \eta \). Going back to (2) and (3) and adding them we obtain now

\[
(f - \varepsilon u_\varepsilon, u_\varepsilon - x) + C(h) - (f + h, u_\varepsilon) \geq 0
\]

where \(C(h) \) depends on \(h \), but is independent of \(\varepsilon \).

Hence \((h, u_\varepsilon) \leq C(h) \) for every \(h \in H \) with \(|h| < \rho \). It follows from the uniform boundedness principle that \(\{u_\varepsilon\} \) remains bounded as \(\varepsilon \to 0 \). Passing to the limit in (1) we conclude by standard methods that \(f \in R(A + B) \).

Theorem 2 We suppose now that only \(A \) is the subdifferential of a convex function, but \(D(B) \subset D(A) \). Then \(R(A + B) \approx R(A) + R(B) \).

Proof We proceed as in the proof of Theorem 1.

First let \(f \in R(A + B) \) i.e. \(f \in A \xi + B \eta \); let \(u_\varepsilon \) be the solution of (1). We have

\[
\begin{align*}
(4) \quad (Au_\varepsilon, u_\varepsilon - \eta) &+ (A \eta, \eta - \xi) + (A \xi, \xi - u_\varepsilon) \geq 0 \\
(5) \quad (Bu_\varepsilon, u_\varepsilon - \eta) &+ (B \eta, \eta - u_\varepsilon) \geq 0.
\end{align*}
\]

By adding (4) and (5) we obtain

\[
(f - \varepsilon u_\varepsilon, u_\varepsilon - \eta) + C - (f, u_\varepsilon) \geq 0
\]

and hence

\[
\varepsilon |u_\varepsilon|^2 - \varepsilon (u_\varepsilon, \eta) \leq C'.
\]

Next suppose \(f \in \text{Int}[R(A) + R(B)] \); we obtain now, as in the proof of Theorem 1

\[
(f - \varepsilon u_\varepsilon, u_\varepsilon - \eta) + C(h) - (f + h, u_\varepsilon) \geq 0
\]

i.e. \((h, u_\varepsilon) \leq C'(h) \).

Theorem 3 Suppose \(A \) is a subdifferential of a convex
function φ and let B be a maximal monotone operator such that

$$\varphi((I+\lambda B)^{-1}x) \leq \varphi(x) \quad \forall \lambda > 0, \forall x \in D(\varphi).$$

Then $R(A+B) \simeq R(A) + R(B)$.

Remark We know (see [4]) that (6) implies that $A+B$ is maximal monotone.

Proof Let $f \in R(A) + R(B)$ and let u_ε be the solution of (1). It follows easily from (6) that $\varepsilon|u_\varepsilon|$, $|A u_\varepsilon|$ and $|B u_\varepsilon|$ remain bounded as $\varepsilon \to 0$. Next we have

$$(Au_\varepsilon - A \xi, u_\varepsilon - \xi) \geq 0$$

and

$$(Bu_\varepsilon - B \eta, u_\varepsilon - \eta) \geq 0.$$

Hence, by adding (7) and (8) we obtain

$$(f - \varepsilon u_\varepsilon, u_\varepsilon) - (f, u_\varepsilon) + C \geq 0$$

i.e. $\varepsilon|u_\varepsilon|^2 \leq C$. Suppose now that $f \in \text{Int}[R(A) + R(B)]$, with the same argument as above we have

$$(f - \varepsilon u_\varepsilon, u_\varepsilon) - (f + h, u_\varepsilon) + C(h) \geq 0$$

i.e. $(h, u_\varepsilon) \leq C(h)$ for $|h| < \rho$.

Some applications

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with smooth boundary $\partial \Omega$. Let $\beta : \mathbb{R} \to \mathbb{R}$ be a monotone nondecreasing continuous function such that $\beta(0) = 0$. Consider the equation (for a given $f \in L^2(\Omega)$):

$$-\Delta u + \beta(u) = f \text{ on } \Omega, \quad \frac{\partial u}{\partial n} = 0 \text{ on } \partial \Omega.$$

Theorem 4 A necessary condition for the existence of a
solution of (9) is that \(\frac{1}{|\Omega|} \int_{\Omega} f(x)dx \in R(\beta) \). A sufficient condition is that \(\frac{1}{|\Omega|} \int_{\Omega} f(x)dx \in \text{Int } R(\beta) \).

Proof The necessary condition is clear by integrating (9) on \(\Omega \). In order to prove the sufficient condition we apply Theorem 1 in \(H = L^2(\Omega) \) with

\[
A = -\Delta, \quad D(A) = \left\{ u \in H^2(\Omega) ; \quad \frac{\partial u}{\partial n} = 0 \quad \text{on} \quad \partial \Omega \right\}
\]

\[
B = \beta, \quad D(B) = \left\{ u \in L^2(\Omega) ; \quad \beta(u) \in L^2(\Omega) \right\}.
\]

Both \(A \) and \(B \) are subdifferentials of convex functions; also \(A + B \) is maximal monotone. It is well known that \(R(A) = \left\{ f \in L^2(\Omega) ; \int_{\Omega} f(x)dx = 0 \right\} \). Finally if \(\frac{1}{|\Omega|} \int_{\Omega} f(x)dx \in \text{Int } R(\beta) \), then \(f \in \text{Int}[R(A) + R(B)] \). Indeed for \(g \in L^2(\Omega) \) we have

\[
g = (g - \frac{1}{|\Omega|} \int_{\Omega} g(x)dx) + \frac{1}{|\Omega|} \int_{\Omega} g(x)dx.
\]

And so it is clear that \(g \in R(A) + R(B) \) as soon as

\[
\left| \frac{1}{|\Omega|} \int_{\Omega} g(x)dx - \frac{1}{|\Omega|} \int_{\Omega} f(x)dx \right| \leq |\Omega|^{-\frac{1}{2}} \| f - g \|_{L^2} \]

is small enough.

Remark Theorem 4 is related to a number of results of Schatzman [22], Hess [13], Landesman - Lazer [17], Nirenberg [19] etc. The method used in the proofs of Theorems 1 - 3 can be easily extended to include most results known about "semi coercive" problems.

Let \(\mathcal{H} \) be a Hilbert space and let \(\varphi \) be a convex function on \(\mathcal{H} \). Given \(f \in L^2(0, T; \mathcal{H}) \) consider the equation
\[\frac{du}{dt} + A \varphi(u) \in f \text{ on } (0, T), \quad u(0) = u(T). \]

Theorem 5 A necessary condition for the existence of a solution of (10) is that \(\frac{1}{T} \int_0^T f(t) dt \in R(A \varphi) \). A sufficient condition is that \(\frac{1}{T} \int_0^T f(t) dt \in \text{Int } R(A \varphi) \).

Proof Since \(R(A \varphi) \) is convex, the necessary condition follows from the integration of (10). For the sufficient condition we apply Theorem 3 in \(H = L^2(0, T; \mathcal{H}) \) with \(A = A \varphi \) i.e. \(f \in Au \) provided \(f, u \in H \) and \(f(t) \in A \varphi(u(t)) \) a.e. and with \(B = \frac{d}{dt} \), \(D(B) = \{ u \in H, \quad \frac{du}{dt} \in H \text{ and } u(0) = u(T) \} \). It is well known that \(A \) is a subdifferential of a convex function in \(H \), that \(B \) is maximal monotone and that (6) holds. The assumption
\[\frac{1}{T} \int_0^T f(t) dt \in \text{Int } R(A \varphi) \] implies that \(f \in \text{Int}[R(A) + R(B)] \).

Indeed, note that \(R(B) = \{ f \in H; \quad \int_0^T f(t) dt = 0 \} \). For \(g \in H \) we can write
\[g = (g - \frac{1}{T} \int_0^T g(t) dt) + \frac{1}{T} \int_0^T g(t) dt \in R(A) + R(B) \]
provided \(\| g - f \|_H \) is small enough.

Theorem 6 Let \(H \) be a Hilbert space and let \(K \) be a maximal monotone operator in \(H \) with \(D(K) = H \). Let \(F \) be the subdifferential of a convex function on \(H \) with \(D(F) = H \). Then \(R(I + KF) = H \).

Proof Given \(f \in H \) we want to solve \(u + KFu = f \) i.e.
$-K^{-1}(f - u) + Fu \ni 0$. We apply Theorem 2 with $A = F$ and $Bu = -K^{-1}(f - u)$ so that B is maximal monotone; it follows that $R(A + B) \ni R(A) + R(B)$. However $R(B) = -D(K) = H$ and therefore $R(A + B) = H$.

Remark Results related to Theorem 6 were obtained in [6].

§ II.1 Comparative behavior of $(I + tA)^{-1}$ and $S(t)$ near $t = 0$

1. The Hilbert space case

Suppose H is a Hilbert space and let A be a maximal monotone operator; let $S(t)$ be the semigroup generated by $-A$ in the sense of Kato-Komura (see e.g. [23] or [4]).

For $x \in \overline{D(A)}$ and $y \in D(A)$ we have

$$|x - S(t)x| \leq 2|x - y| + |y - S(t)y| \leq 2|x - y| + t|A^0y|.$$

Choosing $y = J_\lambda x = (I + \lambda A)^{-1}x$ we get

$$|x - S(t)x| \leq (2 + \frac{t}{\lambda})|x - J_\lambda x|$$

and in particular, for $\lambda = t$, we obtain

$$|x - S(t)x| \leq 3|x - J_t x|.$$

In case $A = \partial \varphi$ we can show (see [5]) that

$$|x - J_t x| \leq (1 + \frac{1}{\sqrt{2}})|x - S(t)x|$$

(the best constants are not known).

For general monotone operators an inequality of the kind (13) does not hold (consider for example in $H = \mathbb{R}^2$, A = a rotation
by $\pi/2$). However one can obtain a "substitute" for (13) in the general case as follows:

Theorem 7 Let A be a general maximal monotone operator, then we have

$$|x - J_t x| \leq \frac{2}{t} \int_0^t |x - S(\tau)x| \, d\tau, \quad \forall x \in \overline{D(A)}, \quad \forall t > 0. \tag{14}$$

Remark It is clear that the constant 2 in (14) can not be improved. Otherwise we would have for $x \in D(A)$, $|x - J_t x| \leq \frac{C}{t} \int_0^t |A^0 x| \, d\tau$ and as $t \to 0$, $|A^0 x| \leq \frac{C}{2} |A^0 x|$ with $C < 2$.

Proof Clearly, it is sufficient to prove (14) for $x \in D(A)$. Let $u(t) = S(t)x$; by the monotonicity of A, we have for $v \in D(A)$

$$\langle Av + \frac{du}{dt}(t), v - u(t) \rangle \geq 0. \tag{15}$$

Integrating (15) on $(0, t)$ we obtain

$$\frac{1}{2} |u(t) - v|^2 - \frac{1}{2} |x - v|^2 \leq \int_0^t \langle Av, v - u(\tau) \rangle \, d\tau = t\langle Av, v - x \rangle + \int_0^t \langle Av, x - u(\tau) \rangle \, d\tau. \tag{16}$$

Thus $\frac{1}{2} |u(t) - v|^2 - \frac{1}{2} |x - v|^2 \leq t\langle Av, v - x \rangle + |Av| \int_0^t |x - u(\tau)| \, d\tau$.

Choosing $v = J_t x$ we get

$$\frac{1}{2} |u(t) - J_t x|^2 - \frac{1}{2} |x - J_t x|^2 \leq -|x - J_t x|^2 + \frac{|x - J_t x|}{t} \int_0^t |x - u(\tau)| \, d\tau,$$

and (14) follows.
Remark Combining (12) and (14) we see that $|x - J_t x|$ and $|x - S(t)x|$ have the same modulus of continuity at $t = 0$.

Also, using Hardy's inequality we can deduce that for $1 \leq \alpha > 0$ and $1 \leq p \leq \infty$

$$\left\| \frac{x - S(t)x}{t^\alpha} \right\|_{L^p_*} \leq 3 \left\| \frac{x - J_t x}{t^\alpha} \right\|_{L^p_*}$$

and

$$\left\| \frac{x - J_t x}{t^\alpha} \right\|_{L^p_*} \leq \frac{2}{1 + \alpha} \left\| \frac{x - S(t)x}{t^\alpha} \right\|_{L^p_*}$$

where $L^p_* = L^p([0, 1], H; \frac{dt}{t})$. These inequalities are useful in the study of nonlinear interpolation classes (see [3]).

In a "similar spirit" we have the following

Theorem 8 Let A be a general maximal monotone operator.

For $x \in D(A)$, $\lambda > 0$ and $t > 0$ we set

$$y_{\lambda, t} = (I + \frac{\lambda}{t}(I - S(t)))^{-1} x.$$

Then

$$|y_{\lambda, t} - J_\lambda x|^2 \leq |x - J_\lambda x| \frac{2}{t} \int_0^t |x - S(\tau)x| d\tau.$$

Remark Let $\omega(t) = \sup_{0 \leq \tau \leq t} |x - S(\tau)x|$. By a result of Kato [14] (see also [4] Lemma 4.2) we know that for every integer n

$$|y_{\lambda, t} - y_{\lambda, t/n}|^2 \leq 2 \omega(t) |y_{\lambda, t/n} - x|.$$

Using the fact that $y_{\lambda, s} \to J_\lambda x$ as $s \to 0$ (see e.g. [4] Proposition 4.1) we obtain as $n \to \infty$

$$|y_{\lambda, t} - J_\lambda x|^2 \leq 2 \omega(t) |J_\lambda x - x|.$$

Such an inequality follows also directly from (17).
\textbf{Proof} \ We apply (16) with x replaced by $y_{\lambda, t}$ and v by $J_{\lambda}x$. Thus

\begin{equation}
\frac{1}{2} \left| S(t)y_{\lambda, t} - J_{\lambda}x \right|^2 - \frac{1}{2} \left| y_{\lambda, t} - J_{\lambda}x \right|^2 \\
\leq \int_0^t \left(\frac{x - J_{\lambda}x}{\lambda}, J_{\lambda}x - S(\tau)y_{\lambda, t} \right) \, d\tau.
\end{equation}

However, $S(\tau)y_{\lambda, t} = (1 + \frac{\tau}{\lambda})y_{\lambda, t} - \frac{\tau}{\lambda}x$ and so

\begin{equation}
\left| S(t)y_{\lambda, t} - J_{\lambda}x \right|^2 \geq \left| y_{\lambda, t} - J_{\lambda}x \right|^2 + \frac{2\tau}{\lambda} (y_{\lambda, t} - J_{\lambda}x, y_{\lambda, t} - x).
\end{equation}

On the other hand

\begin{equation}
(x - J_{\lambda}x, J_{\lambda}x - S(\tau)y_{\lambda, t}) = -\left| x - J_{\lambda}x \right|^2 + (x - J_{\lambda}x, x - S(\tau)y_{\lambda, t}) \\
\leq -\left| x - J_{\lambda}x \right|^2 + |x - J_{\lambda}x|(|x - S(\tau)x| + |x - y_{\lambda, t}|).
\end{equation}

We deduce from (19), (20) and (21) that

\[\frac{\tau}{\lambda} (y_{\lambda, t} - J_{\lambda}x, y_{\lambda, t} - x) \leq -\frac{\tau}{\lambda} |x - J_{\lambda}x|^2 + \frac{\tau}{\lambda} |x - J_{\lambda}x| |x - y_{\lambda, t}| \\
+ \frac{|x - J_{\lambda}x|}{\lambda} \int_0^t |x - S(\tau)x| \, d\tau. \]

Therefore

\[|x - J_{\lambda}x|^2 + (y_{\lambda, t} - J_{\lambda}x, y_{\lambda, t} - x) \leq |x - J_{\lambda}x| |x - y_{\lambda, t}| \\
+ |x - J_{\lambda}x| \frac{\tau}{\lambda} \int_0^t |x - S(\tau)x| \, d\tau \]

i.e. $|a|^2 + (b-a, b) \leq |a| |b| + |x - J_{\lambda}x| \frac{\tau}{\lambda} \int_0^t |x - S(\tau)x| \, d\tau$

with $a = x - J_{\lambda}x$ and $b = x - y_{\lambda, t}$. Hence

\[\frac{1}{2} |a-b|^2 = \frac{1}{2} |a|^2 + \frac{1}{2} |b|^2 - (a,b) \leq \\
- \frac{1}{2} |a|^2 - \frac{1}{2} |b|^2 + |a| |b| + |x - J_{\lambda}x| \frac{\tau}{\lambda} \int_0^t |x - S(\tau)x| \, d\tau \]

and

\[\frac{1}{2} |a-b|^2 \leq |x - J_{\lambda}x| \frac{\tau}{\lambda} \int_0^t |x - S(\tau)x| \, d\tau. \]
II.2 The Banach space case

Let X be a general Banach space and let A be an m-accretive operator on X. Let $S(t)$ be the semigroup generated by $-A$ in the sense of Crandall-Liggett (see [10] or [23]). Clearly we have as in §II.1

$$
\|x - S(t)x\| \leq (2 + \frac{t}{\lambda})\|x - J_\lambda x\|.
$$

We don't know whether the exact analogue of (14) holds true. However we can prove the following

Theorem 9 For every $x \in D(A)$, $t > 0$ and $\lambda > 0$ we have

$$
\|x - J_\lambda x\| \leq (1 + \frac{\lambda}{t})\frac{2}{\lambda}\int_0^t \|x - S(\tau)x\| d\tau
$$

and in particular

$$
\|x - J_\tau x\| \leq \frac{4}{\tau}\int_0^t \|x - S(\tau)x\| d\tau.
$$

Proof As usual we denote for $x, y \in X$

$$
\tau(x, y) = \lim_{\lambda \downarrow 0} \frac{1}{\lambda} (\|x + \lambda y\| - \|x\|) = \inf_{\lambda > 0} \frac{1}{\lambda} (\|x + \lambda y\| - \|x\|).
$$

The analogue of (16) becomes now (see [10] or [2] for equivalent forms):

$$
\|S(t)x - v\| - \|v - x\| \leq \int_0^t \tau(v - S(s)x, Av) ds
$$

for every $v \in D(A)$.

However we have for every $\lambda > 0$

$$
\tau(v - S(s)x, Av) \leq \frac{1}{\lambda} (\|v - S(s)x + \lambda Av\| - \|v - S(s)x\|).
$$

If we choose in (26) $v = J_\lambda x$ we obtain
(27) \(\tau (J_{\lambda} x - S(s)x, A_{\lambda} x) \leq \frac{1}{\lambda} (\|x - S(s)x\| - \|J_{\lambda} x - S(s)x\|) \)

and by (25) we get

(28) \(\|S(t)x - J_{\lambda} x\| - \|J_{\lambda} x - x\| \leq \frac{1}{\lambda} \int_0^t (\|x - S(s)x\| - \|J_{\lambda} x - S(s)x\|) ds. \)

But \(-\|J_{\lambda} x - S(s)x\| \leq \|x - S(s)x\| - \|x - J_{\lambda} x\| \) and therefore (28) leads to

\[-\|x - S(s)x\| \leq \frac{1}{\lambda} \int_0^t \|x - S(s)x\| ds + \frac{1}{\lambda} \int_0^t (\|x - S(s)x\| ds - \frac{t}{\lambda} \|x - J_{\lambda} x\| \]

i.e.

(29) \(\|x - J_{\lambda} x\| \leq \frac{\lambda}{t} \|x - S(t)x\| + \frac{2}{\lambda} \int_0^t \|x - S(s)x\| ds. \)

Finally note that

(30) \(\|x - S(t)x\| \leq \frac{2}{\lambda} \int_0^t \|x - S(s)x\| ds; \)

indeed

\[\|S(t)x - \frac{1}{t} \int_0^t S(s)x ds\| \leq \frac{1}{t} \int_0^t \|S(t)x - S(s)x\| ds \]

\[\leq \frac{1}{t} \int_0^t \|S(t-s)x - x\| ds = \frac{1}{t} \int_0^t \|S(s)x - x\| ds, \]

and so

\[\|x - S(t)x\| \leq \|x - \frac{1}{t} \int_0^t S(s)x ds\| + \frac{1}{t} \int_0^t \|S(s)x - x\| ds \leq \frac{2}{\lambda} \int_0^t \|x - S(s)x\| ds. \]

Combining (29) and (30) we obtain (23).

Remarks:

1) I would like to thank Prof. M. Crandall, Y. Konishi and I. Miyadera for stimulating discussions concerning Theorem 9.

After our first result was obtained \(\|x - J_{\lambda} x\| \leq \frac{2}{\lambda} \int_0^{2t} \|x - S(\tau)x\| d\tau \),

I. Miyadera showed that \(\|x - J_{\lambda} x\| \leq \frac{6}{\lambda} \int_0^t \|x - S(\tau)x\| d\tau \) and
Y. Konishi got \[\|x - J_t x\| \leq \frac{4}{7} \int_0^t \|x - S(\tau)x\| d\tau. \]

2) Using (22) and (23) one can prove directly the following result of M. Crandall [9]:

\[\lim_{t \downarrow 0} \sup_{\lambda} \|x - S(t)x\| = \lim_{\lambda \downarrow 0} \frac{\|x - J_\lambda x\|}{\lambda}. \]

Indeed let \(\alpha = \lim_{t \downarrow 0} \sup_{t} \|x - S(t)x\| \); and so \(\forall \varepsilon > 0 \exists \delta > 0 \) such that \(0 < t < \delta \)

\[\|x - S(t)\| \leq t(\alpha + \varepsilon). \]

From (23) we have for \(0 < t < \delta \) and every \(\lambda > 0 \)

\[\|x - J_\lambda x\| \leq (1 + \frac{\lambda}{t}) \frac{2}{t} (\alpha + \varepsilon) \int_0^t \tau d\tau = (\lambda + t)(\alpha + \varepsilon). \]

It follows that \(\|x - J_\lambda x\| \leq \lambda(\alpha + \varepsilon) \) for every \(\lambda > 0 \) and \(\varepsilon > 0 \). Next let \(\beta = \lim_{\lambda \downarrow 0} \frac{\|x - J_\lambda x\|}{\lambda} \); and so \(\forall \varepsilon > 0 \exists \delta > 0 \) such that for \(0 < \lambda < \delta \)

\[\|x - J_\lambda x\| \leq \lambda(\beta + \varepsilon). \]

From (22) we get for \(0 < \lambda < \delta \) and every \(t > 0 \)

\[\|x - S(t)x\| \leq (2 + \frac{\lambda}{\lambda}) \lambda(\beta + \varepsilon) = (t + 2\lambda)(\beta + \varepsilon). \]

Hence \(\|x - S(t)x\| \leq t\beta \) for every \(t > 0 \).

3) In general for \(x \in \overline{D(A)} \), \(\frac{\|x - S(t)x\|}{\|x - J_t x\|} \) does not necessarily converge to 1 as \(t \to 0 \).

Consider for example in \(H = \mathbb{R} \), \(Au = \frac{-1}{u} \) for \(u > 0 \) and \(Au = \phi \) for \(u \leq 0 \). In this case \(J_t 0 = \sqrt{t} \) and \(S_t 0 = \sqrt{2t} \) (slightly more complicated examples were built previously by A. Plant and L. Veron).

4) In view of the example built by Crandall-Liggett in [11]
one can not expect to extend Theorem 8 to Banach spaces (or even to \mathbb{R}^3 with some Banach norm) since $y_{\lambda,t}$ does not necessarily converge to a limit as $t \to 0$.

II.3 An application to the characterization of compact semi-groups.

Let A be an m-accretive operator in a general Banach space X and let $S(t)$ be the semigroup generated by $-A$.

Theorem 10. The following properties are equivalent.

(31) For every $t > 0$, $S(t)$ is compact i.e. $S(t)$ maps bounded sets of $\overline{D(A)}$ into compact sets of X

\begin{align*}
(32a) \quad & \text{For every } \lambda > 0, \quad (I + \lambda A)^{-1} \quad \text{is compact i.e.} \\
& \text{maps bounded sets of } X \quad \text{into compact sets of } X \\
(32b) \quad & \text{For every bounded set } B \text{ in } \overline{D(A)} \quad \text{and every } t_0 > 0 \\
& \text{the mappings } t \mapsto S(t)x \quad \text{are equicontinuous at } t = t_0 \\
& \text{as } x \in B.
\end{align*}

Remarks

1) Theorem 10 is due to A. Pazy [20] in the linear case and to Y. Konishi [15] in the nonlinear Hilbert case (his proof relies on a consequence of (18) and could not be extended to Banach spaces)

2) It is obvious that (32a) is equivalent to

(32a') \quad (I + A)^{-1} \quad \text{is compact}

and also to

(32a'') \quad \text{For every } M > 0 \text{ the set }
\\{ x \in D(A); \| x \| \leq M \text{ and } \| y \| \leq M \text{ for some } y \in Ax \} \\

is relatively compact in X.

Proof (31) \implies (32a)

Let λ be fixed and let $x \in X$; we have for every $t \geq 0$
\[
\| J_\lambda x - S(t)J_\lambda x \| \leq t\| A_\lambda x \| = \frac{t}{\lambda} \| x - J_\lambda x \|.
\]

Let B be a bounded set in X; given $\varepsilon > 0$, choose t_0 so small that
\[
\frac{t_0}{\lambda} \| x - J_\lambda x \| < \varepsilon/2 \text{ for } x \in B.
\]

Since $J_\lambda(B)$ is bounded in $D(A)$, it follows from (31) that $S(t_0)J_\lambda(B)$ is relatively compact. Thus $S(t_0)J_\lambda(B)$ can be covered by a finite union $\bigcup_i B(x_i, \varepsilon/2)$. Hence $J_\lambda(B) \subseteq \bigcup_i B(x_i, \varepsilon)$ and consequently $J_\lambda(B)$ is precompact.

(31) \implies (32b)

Using (31) we have only to prove that the mappings $t \mapsto S(t)x$ are equicontinuous at $t = \frac{t_0}{2}$ as $x \in K$, K compact
\[
(K = S(\frac{t_0}{2})B). \text{ This follows directly from the fact that for each fixed } x, \ t \mapsto S(t)x \text{ is continuous and that } x \mapsto S(t)x \text{ is a contraction.}
\]

(32a) + (32b) \implies (31)

Fix a $t_0 > 0$ and let B be a bounded set in $D(A)$. By (32b), for every $\varepsilon > 0$ there exists $\delta > 0$ such that
\[
\| S(t)x - S(t_0)x \| < \varepsilon \text{ for } |t - t_0| \leq \delta \text{ and } x \in B.
\]

We deduce from (23) that for $x \in B$ and $\lambda > 0$,
\[
\| S(t_0)x - J_\lambda S(t_0)x \| \leq (1 + \frac{\lambda}{\varepsilon}) \frac{2}{t} \int_0^t \| S(t_0)x - S(t + t_0)x \| d \tau
\]
\[\leq (1 + \frac{\lambda}{t}) 2\varepsilon \quad \text{for every } 0 < t \leq \delta. \]

In particular for \(0 < \lambda \leq \delta \) and \(x \in B \) we have

\[\|S(t_0)x - J_{\lambda}S(t_0)x\| \leq 4\varepsilon. \]

Since \(J_{\delta}S(t_0)B \) is relatively compact it can be covered by a
finite union \(\bigcup_i B(x_i, \varepsilon) \). Hence \(S(t_0)B \) can also be covered
by a finite union of balls of radius \(5\varepsilon \) and thus \(S(t_0)B \) is
precompact.

Remark Suppose \(H \) is a Hilbert space, \(\varphi \) is a convex func-
tion on \(H \) and let \(A = \partial \varphi \). In this case (31) is equivalent to
(32a) since (32b) is satisfied automatically. Indeed we have

\[|S(t)x - S(t_0)x| = |S(t - \frac{t_0}{2})y - S(\frac{t_0}{2})y| \leq |t - t_0| |A^o y| \]

where \(y = S(\frac{t_0}{2})x \). On the other hand (see e.g. [4] Théorème
3.2) we know that

\[|A^o S(\frac{t_0}{2})x| \leq |A^o v| + \frac{2}{t_0} |x - v| \quad \text{for every } v \in D(A). \]

Therefore the mappings \(t \mapsto S(t)x \) are equicontinuous at \(t = t_0 \)
as \(x \) remains bounded.

In this case property (32a) is also equivalent to

(32a'') For every \(M \) the set

\[\{ x \in D(\varphi); \ |x| \leq M \text{ and } \varphi(x) \leq M \} \]
is relatively compact in \(H \).

Indeed (32a'') \(\implies \) (32a''):

Let \(E = \{ x \in D(A); \ |x| \leq M \text{ and } |A^o x| \leq M \}; \) for a fixed \(v_0 \in D(\varphi) \) we have
\(\varphi(v_0) - \varphi(x) \geq (A^o x, v_0 - x) \)

and so \(\varphi(x) \leq \varphi(v_0) + M(|v_0| + M) = M' \) when \(x \in E \).

Conversely (32a) \(\implies (32a'''') \):

Let
\[
F = \{ x \in D(\varphi); \quad |x| \leq M \quad \text{and} \quad \varphi(x) \leq M \};
\]

for \(x \in F \) we have
\[
\varphi(x) - \varphi(J_\lambda x) \geq (A_\lambda x, x - J_\lambda x) = \frac{1}{\lambda} |x - J_\lambda x|^2.
\]

Therefore, since \(\varphi \) is bounded below by some affine function, we get for \(x \in F \),
\[
\frac{1}{\lambda} |x - J_\lambda x|^2 \leq M + C_1 |J_\lambda x| + C_2 \leq M + C_1 |x - J_\lambda x| + C_1 M + C_2.
\]

Thus
\[
|x - J_\lambda x| \leq \sqrt{\frac{\lambda(C_3 \lambda + C_4)}{\lambda_0 (C_3 \lambda_0 + C_4)}} \quad \text{for} \quad x \in F.
\]

Given \(\varepsilon > 0 \) we choose \(\lambda_0 > 0 \) so small that \(\sqrt{\frac{\lambda_0 (C_3 \lambda_0 + C_4)}{\lambda (C_3 \lambda + C_4)}} < \varepsilon \). Since \(J_\lambda (F) \) is relatively compact, it can be covered by a finite union \(\bigcup_i B(x_i, \varepsilon) \) and then \(F \subset \bigcup_i B(x_i, 2\varepsilon) \).

§ III. A convergence theorem for nonlinear semigroups

Let \(H \) be a Hilbert space; let \(\{A_n\}_{n \geq 1} \) and \(A \) be maximal monotone operators. Let \(\{S_n(t)\}_{n \geq 1} \) and \(S(t) \) be the corresponding semigroups.

Our next result is a nonlinear version of the Theorem of Trotter-Kato-Neveu. A number of related results have been obtained previously by Miyadera-Oharu [18], Brezis-Pazy [8], Benilan [1], Goldstein [12], Kurtz [16] etc...

Theorem 11. The following properties are equivalent.
\(\forall x \in \mathcal{D}(A), \ \forall \lambda > 0 \ (I + \lambda A_n)^{-1} x \rightarrow (I + \lambda A)^{-1} x \)

\(\forall x \in \mathcal{D}(A) \ \exists x_n \in \mathcal{D}(A_n) \) such that \(x_n \rightarrow x \) and
\(A_n^o x_n \rightarrow A^o x \)

\(\forall x \in \mathcal{D}(A) \ \exists x_n \in \mathcal{D}(A_n) \) such that \(x_n \rightarrow x \) and \(\forall t \geq 0 \)
\(S_n(t)x_n \rightarrow S(t)x \).

In addition the convergence in (33) (resp. (35)) is uniform for bounded \(\lambda \) (resp. bounded \(t \)).

The proof of Theorem 11 is divided into four parts

Part A \((33) \Rightarrow (34) \)

Part B \((34) \Rightarrow (33) \)

Part C \((33) \Rightarrow (35) \)

Part D \((35) \Rightarrow (33) \).

Part A \((33) \Rightarrow (34) \)

Let \(x \in \mathcal{D}(A) \); given \(\varepsilon > 0 \) there is a \(\lambda > 0 \) such that
\[
|x - (I + \lambda A)^{-1} x| < \varepsilon / 2 \\
|A_n^o x - A^o x| < \varepsilon / 2.
\]

Next, by (33) there is an integer \(N \) such that for \(n \geq N \)
\[
| (I + \lambda A_n)^{-1} x - (I + \lambda A)^{-1} x | < \varepsilon / 2 \\
| (A_n^o x - A^o x) | < \varepsilon / 2.
\]

Combining these estimates we see that given \(\varepsilon > 0 \) there is an integer \(N(\varepsilon) \) and sequences \(u_n(\varepsilon) = (I + \lambda A_n)^{-1} x \) and
\[f_n(\varepsilon) = (A_n^o x) \] such that \([u_n(\varepsilon), f_n(\varepsilon)] \in \mathcal{G}(A_n) \) and for \(n \geq N(\varepsilon) \), \(|u_n(\varepsilon) - x| < \varepsilon \), \(|f_n(\varepsilon) - A^o x| < \varepsilon \). Let \(N_k = N(\frac{1}{k}) \); we can always assume that \(N_k \) is increasing to \(\infty \).
We define the sequences \(x_n \) and \(g_n \) by \(x_n = u_n(\frac{1}{k}) \) and \(g_n = f_n(\frac{1}{k}) \) for \(N_k \leq n < N_{k+1} \). Therefore \([x_n, g_n] \in G(A_n) \) and for \(N_k \leq n < N_{k+1} \) we have \(|x_n - x| < \frac{1}{k} \) and \(|g_n - A^o x| < \frac{1}{k} \).

Consequently \(x_n \rightarrow x \) and \(g_n \rightarrow A^o x \); we are going to prove now that \(A^o_{n_j} x_{n_j} \rightarrow A^o x \). Indeed \(|A^o_{n_j} x_{n_j}| \leq |g_n| \) and thus for a subsequence we get \(A^o_{n_j} x_{n_j} \rightarrow h \). Let \(v \in D(A) \); by the monotonicity of \(A_n \) we have

\[
((A_n)\lambda v - A^o_{n_j} x_{n_j}, (1+\lambda A_n)^{-1}v - x_n) \geq 0.
\]

At the limit as \(n_j \rightarrow \infty \) we obtain

\[
(A_{\lambda v}^o h, (I+\lambda A)^{-1}v - x) \geq 0.
\]

Next we pass to the limit as \(\lambda \rightarrow 0 \):

\[
(A^o v - h, v - x) \geq 0 \quad \forall v \in D(A).
\]

Therefore \(h \in Ax \) (see e.g. [4] Proposition 2.7). Since on the other hand \(|h| \leq |A^o x| \) we have \(h = A^o x \). By the uniqueness of the limit, and the fact that \(\limsup |A^o_{n_j} x_{n_j}| \leq |A^o x| \) we conclude that \(A^o_{n_j} x_{n_j} \rightarrow A^o x \).

Part B \((34) \Rightarrow (33) \)

Without loss of generality we may assume that \(\lambda = 1 \). Let \(x \in D(A) \) and let \(u_n = (I+A_n)^{-1}x \). Given \(y \in D(A) \), let \(y_n \in D(A_n) \) be the sequence given by (34) so that \(y_n = (I+A_n)^{-1}(y_n + A^o_n y_n) \). Therefore \(|u_n - y_n| \leq |x - y_n - A^o y_n| \) and thus \(u_n \) is bounded. For a subsequence \(u_{n_j} \rightarrow u \); by the monotonicity of \(A_n \) we have

\[
(x - u_n - A^o y_n, u_n - y_n) \geq 0.
\]

Passing to the limit in (36) we obtain
(37) \[(x - u - A\ast y, u - y) \geq 0 \quad \forall y \in D(A).\]

In (37) we choose \(y = (I + \lambda A)^{-1}u \) and so
\[(x - u, u - J\lambda u) \geq \lambda (A\ast J\lambda u, A\lambda u) \geq 0.\]

As \(\lambda \to 0 \) we see that
\[(x - u, u - \text{Proj}_{D(A)} u) \geq 0.\]

On the other hand since \(x \in D(A) \) we have
\[(\text{Proj}_{D(A)} u - x, u - \text{Proj}_{D(A)} u) \geq 0\]
and consequently \(u = \text{Proj}_{D(A)} u \) i.e. \(u \in D(A) \). Going back to
(37) we deduce now from [4] Proposition 2.7 that \(x - u \in Au \) i.e.
\(u = (I+A)^{-1}x \). By the uniqueness of the limit we have in fact
\(u_n \to (I+A)^{-1}x \).

It follows from (36) that for every \(y \in D(A) \)
\[\limsup |u_n|^2 \leq (x, u-y) + (u, y) + (A\ast y, y-u).\]

In particular if we take \(y = u \) we get
\[\limsup |u_n|^2 \leq |u|^2 \quad \text{and thus} \quad u_n \to u.\]

The convergence in (33) is uniform in \(\lambda \) as \(\lambda \) remains bounded:

Without loss of generality we may assume that \(x \in D(A) \) and let
\(x_n \in D(A_n) \) with \(x_n \to x \) and \(A_n x_n \to A\ast x \). We have
\[|((I+\lambda A_n)^{-1}x_n - (I+\mu A_n)^{-1}x_n| \leq |\lambda - \mu| |A_n x_n|.\]

Therefore the functions \(f_n(\lambda) = (I+\lambda A_n)^{-1}x_n \) are uniformly
lipschitz continuous on \([0, +\infty)\). Since they converge simply to
\((I+\lambda A)^{-1}x \) as \(n \to +\infty \), we conclude that the convergence is
uniform in \(\lambda \) as \(\lambda \) remains in a bounded interval.

Part C \((33) \Rightarrow (35)\)

Without loss of generality we may assume that \(x \in D(A) \). By (34)
we have a sequence \(x_n \in D(A_n) \) such that \(x_n \to x \) and \(A_n^\circ x_n \to A^\circ x \). We are going to prove that \(S_n(t)x_n \to S(t)x \). It is known (see e.g. [4] Corollaire 4.4) that

\[
|S_n(t)x_n - (I + \frac{t}{k} A_n)^{-k} x_n| \leq \frac{2t}{\sqrt{k}} |A_n^\circ x_n| \leq \frac{2tM}{\sqrt{k}}
\]

and

\[
|S(t)x - (I + \frac{t}{k} A)^{-k} x| \leq \frac{2t}{\sqrt{k}} |A^\circ x| \leq \frac{2tM}{\sqrt{k}}
\]

where \(M = \operatorname{Sup}_n |A_n^\circ x_n| \). Given \(\varepsilon > 0 \), we first fix \(k \) large enough so that \(\frac{2tM}{\sqrt{k}} < \varepsilon \). Next observe, by induction, that for every integer \(N \) and for every sequence \(u_n \to u \) with \(u \in \overline{D(A)} \), then \((I + \lambda A_n)^{-N} u_n \to (I + \lambda A_n)^{-N} u \), as \(n \to +\infty \). Thus

\[
|S_n(t)x_n - S(t)x| \leq 2\varepsilon + |(I + \frac{t}{k} A_n)^{-k} x_n - (I + \frac{t}{k} A)^{-k} x| \leq 3\varepsilon
\]

provided \(n \) is large enough.

Finally (35) holds true uniformly in \(t \) as \(t \) remains bounded since (33) holds true uniformly in \(\lambda \) as \(\lambda \) remains bounded.

Part D \((35) \Rightarrow (33)\)

The proof relies on the following

Lemma 1 Suppose (35) holds. Let \(f_n \in \overline{D(A_n)} \) be such that \(f_n \to f \) and \(f \in \overline{D(A)} \). Then \(\forall \lambda > 0, \forall t > 0 \)

\[
u_n = (I + \frac{\lambda}{t}(I - S_n(t)))^{-1} f_n \to u = (I + \frac{\lambda}{t}(I - S(t)))^{-1} f.
\]

Proof of Lemma 1 By (35) there exists a sequence \(x_n \in \overline{D(A_n)} \) such that \(x_n \to u \) and \(S_n(t)x_n \to S(t)u \). Writing the monotonicity of \(I - S_n(t) \) we have

\[
((u_n - S_n(t)u_n) - (x_n - S_n(t)x_n), u_n - x_n) \geq 0
\]
and therefore

\[
\left(\frac{u - u_n}{\lambda} + \delta_n, u_n - x_n \right) \geq 0
\]

where

\[
\delta_n = \frac{f_n - f}{\lambda} + \frac{u - x_n}{t} + \frac{S_n(t)x_n - S(t)u}{t}
\]

and \(\delta_n \to 0 \).

Hence

\[
\frac{1}{\lambda} |u_n - u|^2 \leq |\delta_n||u_n - u| + |\delta_n||u - x_n| + \frac{1}{\lambda} |u - u_n||u - x_n|
\]

and consequently \(u_n \to u \) as \(n \to \infty \).

Lemma 2. Let \(x_n \in D(A_n) \) be a sequence such that \(x_n \to x \) with \(x \in D(A) \) and \(S_n(t)x_n \to S(t)x \) for every \(t \geq 0 \). Then for every \(T \) there exists a constant \(K \) such that \(|(I + \lambda A_n)^{-1} x_n| \leq K \) and \(|S_n(t)x_n| \leq K \) for every \(0 < \lambda < T \), for every \(0 < t < T \) and every \(n \).

Proof of Lemma 2. Let \(M = \sup_{0 \leq t \leq 1} |S(t)x| \) and let

\[
E_n = \{ t \in [0, 1]; |S_p(t)x_p| \leq M + 1 \text{ for every } p \geq n \}
\]

Clearly \(E_n \) is closed and \(\bigcup_{n=1}^{\infty} E_n = [0, 1] \); it follows from Baire's theorem that \(\text{Int} E_N \neq \emptyset \) for some \(N \). Let \([t_0, t_0 + h] \subset E_N \) so that

\[
|S_p(t)x_p| \leq M + 1 \text{ for } n \geq N \text{ and } t_0 \leq t \leq t_0 + 1.
\]

It follows from Theorem 9 that

\[
|S_n(t_0)x_n - (I + \lambda A_n)^{-1} S_n(t_0)x_n| \leq (1 + \frac{\lambda}{h}) \frac{2}{h} \int_0^h |S_n(t_0)x_n - S_n(t_0 + \tau)x_n| d\tau.
\]

Choosing \(n \geq N \) we get

\[
|(I + \lambda A_n)^{-1} x_n| \leq |x_n - S_n(t_0)x_n| + |S_n(t_0)x_n| + \frac{2}{h} (1 + \frac{\lambda}{h}) 2(M + 1) h
\]

- 22 -
\[\leq |x_n| + 2(M+1) + 4(1+\frac{\lambda}{n})(M+1). \]

We conclude by using the fact that
\[|x_n - S_n(t)x_n| \leq 3|x_n - (I + tA_n)^{-1}x_n|. \]

Proof of (35) \(\Rightarrow \) (33). In what follows \(\lambda \) is fixed. Using Theorem 8 we get
\[
| (I + \frac{\lambda}{t}(I - S_n(t)))^{-1}x_n - (I + \lambda A_n)^{-1}x_n |^2
\leq |x_n - (I + \lambda A_n)^{-1}x_n| \cdot \frac{2}{t} \int_0^t |x_n - S_n(\tau)x_n| \, d\tau
\]
and
\[
| (I + \frac{\lambda}{t}(I - S(t)))^{-1}x - (I + \lambda A)^{-1}x |^2
\leq |x - (I + \lambda A)^{-1}x| \cdot \frac{2}{t} \int_0^t |x - S(\tau)x| \, d\tau.
\]
Let \(P = 2|x - (I + \lambda A)^{-1}x| + 2 \sup_n |x_n - (I + \lambda A_n)^{-1}x_n| < \infty \) (by Lemma 2). We have
\[
\frac{1}{t} \int_0^t |x_n - S_n(\tau)x_n| \, d\tau \leq |x_n - x| + \frac{1}{t} \int_0^t |x - S(\tau)x| \, d\tau + \frac{1}{t} \int_0^t |S(\tau)x - S_n(\tau)x_n| \, d\tau
\]
and so
\[
| (I + \lambda A_n)^{-1}x_n - (I + \lambda A)^{-1}x | \leq |(I + \frac{\lambda}{t}(I - S_n(t)))^{-1}x_n - (I + \frac{\lambda}{t}(I - S(t)))^{-1}x | + \sqrt{P|x_n - x| + 2 \frac{P}{t} \int_0^t |x - S(\tau)x| \, d\tau + \frac{P}{t} \int_0^t |S(\tau)x - S_n(\tau)x_n| \, d\tau}
\]
\[= X_1 + X_2 + X_3 + X_4. \]

Given \(\epsilon > 0 \) we choose first \(t > 0 \) small enough so that \(X_4 < \epsilon \)
and then we choose \(n \) large enough so that \(X_1 + X_3 + X_4 < \epsilon \) (we use here Lemma 1 to make \(X_1 \) small and Lemma 2 combined with Lebesgue's Theorem to make \(X_2 \) small).
References

Dept. de Mathématiques
Université de Paris VI
4 pl. Jussieu
75230 Paris 5e