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New results concerning monotone operators

and nonlinear semigroups

HaYm BREZIS

Our purpose is to describe here some recent developments
in three different directions.
In §I. we discuss a property of the range R(A+B) of the sum
of two monotone operators. Surprisingly, it turns out that in
"many" cases R(A+B) is "almost" equal té R(A)+R(B). A
number of applications to nonlinear partial differential
equations are given.
In §II we prove some estimates showing that (I+-LA)-1 and
S(t) have the same modulus of continuity at t = 0 (S(t) de-
notes the semigroup generated by -A). Next we present some
consequences.
In §III we give a very general form of the convergence theorem

of Trotter - Kato - Neveu type for nonlinear semigroups.

81 "R(A+B) XR(A)+R(B)" and applications

Let H be a real Hilbert space and let A and B be
maximal monotone operators such that A+B 1is again maximal
monotone.

We say that two subsets K1 and K2 of H are almost equal

(Klsz) if Kl and K2 have the same closure and the same

interior. We prove here, under various assumptions, that



R(A+B) = R(A) +R(B); we discuss here only the simplest forms

(for more elaborate results see [7]).

Theorem 1 Suppose A and B are subdifferentials of convex

functions. Then R(A+B) = R(A)+R(B).

Proof First we prove that R(A+B) = R(A)+R(B)r; it is suf-
ficient to verify that R(A) +R(B) c m. Given f € R(A) +
R(B), there exist Ee D(A) and 7 € D(B) such that f €
Ag +B7% . The equation A

(1) gu, + Au, + Bue 5 £

has a unique solution Ug- The conclusion follows provided we

show that Eu, —> 0 as & —>0. Let x € D(A) N D(B) be

fixed. Since A and B are cyclically monotone (see [21])

we have
(2) (Aue, ue-x)+(Ax,x-§)+(A§, g-ue);o
(3) (Bue, ue-x)+(Bx,x-)Z)+(B>z, )Z-uE)QO

and therefore by adding (2) and (3) we obtain

(f-eue, ue-x) + C - (f, ua) 2 0,
where C is independent of ¢ . Hence

«Elus_l2 - e(ug, x) g C'

and therefore \[§|u,| remains bounded as € —>0.
Next we prove that Int[R(A)+R(B)] = Int[R(A+B)]. It is
sufficient to check that Int[R(A)+R(B)] ¢ R(A+B). Let
f € Int[R(A) +R(B)], so that a ball B (£, f) is contained in

R(A)+R(B). For every he H with |h] <J°, there exist ¥
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and 7 (depending on h) such that f+h € A% +B)Z . Going
back to (2) and (3) and adding them we obtain now

(f - EuE, ug -x) + C(h) - (£+h, us) 2 0
where C(h) depends on h, but is independent of £
Hence (h, ue) £ C(h) for every h e H with |h] <:f . It
follows from the uniform boundedness principle that {ua}
remains bounded as € —» 0. Passing to the limit in (1) we

conclude by standard methods that £ € R(A+B).

Theorem 2 We suppose now that only A is the subdifferential

of a convex function, but D(B) ¢ D(A). Then R{A+B) == R(A)+R(B).

Proof We proceed as in the proof of Theorem 1.
First let £ € R(A+B) i.e. fe€A §-FBQ ; let ug be the
solution of (1). We have
(4) (Aue_’ ua'.’2)+ (AQ’Q’E)"’(AE,;"JE);O
(S) (Bu£: ue-72)+ (B7z ’ ’Z-uE) 2 0.
By adding (4) and (5) we obtain

(f - €u, ue-q) + C - (f,ue) 20
and hence

2 '
avlual E(u, M) < C'. |
Next suppose £ € Int[R(A)+R(B)]; we obtain now, as in the
proof of Theorem 1 |
(f-eue,u£—7)+wxh)-(f+h,u£)2 0

i.e. (h, u£) < C'(h).

Theorem 3 Suppose A 1is a subdifferential of a convex



function rf and let B be a maximal monotone operator such
that \

1 y y
(6) Cf((l+/\B) x) £ p(x) A>0, Vxen(p).

rhen R(A+B) X R(A)+R(B).

Remark We know (see [4]) that (6) implies that A+B is
Remarx

maximal monotone.

Let f € R(A)+R(B) and let u, be the solution of

Proof £

(1). It follows easily from (6) that ajuel s lAuE} and
|Bug | remain bounded as £ — 0. Next we have
(7) (Aue'AE’u£-€);o
(8) (Bug -Bn, ug-n7)2 0.
Hence, by adding (7) and (8) we obtain
(f - gue, ua) - (£, U’E) +C20
i.e. £|UE|2$ C. Suppose now that £ € Int[R(A)+R(B)],
with the same argument as above we have
(f - Eue, u£) - (f+h, u£) + Cth) 20

i.e. (h, ug) €£C(h) for |h]| < p.

Some applications

Let f)cC (RN be a bounded domain with smooth boundary

(s

dfL. Let A : IR —>R be a monotone nondecreasing continuous
t

function such that /3(0) = 0. Consider the equation (for a

given f g LZ(.Q_)):

(9) -Au+ﬂ(u)=f on fL, -%%=O on JfL

Ihio_r_e&_{t A necessary condition for the existence of a



b
solution of (9) is that T%F J}Lf(x)dx € R(:ﬁ). A sufficient

1
diti i that —— d Int R .
condition is tha 2] Jﬁ.f(x) x € In (ﬂ]

Proof The necessary condition is clear by integrating (9) on
SL . 1In order to prove the sufficient condition we apply Theorew

1 in H = LZ(KL) with

LY

A

-4, D(A)={ue HZ(Q); 2 =0 on QQ}

n

[\

2 2
B=f, D® ={fuel7(n); pweli()}.
Both A and B are subdifferentials of convex functions; also

A+B 1is maximal monotone. It is well known that R(A) =
2 . . 1
PE € L(Q); f(x)dx = 0}. Finally if —— | f(x)dx €
A W2 Jy

Int R(B), then £ € Int[R(A)+R(B)]. Indeed for g ¢ L2 Q)
we have

= ..--1-— L
g = (g oY jag(X)dX)+ o &g(x)dx .

And so it is clear that g € R(A) +R(B) as soon as

1 R
|5 j&g(x)dx g ), o |<ia

-

"f-—g“ 9 is small enough.
L

Remark  Theorem 4 is related to a number of results of Schatzman
[22], Hess [13], Landesman - Lazer [17], Nirenberg [19] etc...
The method used in the proofs of Theorems 1 -3 can be easily
extended to include most results known about '"semi coercive"

problems.

Let Je be a Hilbert space and let <? be a convex
function on Jﬁk. Given f €& LZ(O, T, gﬁ) consider the

equation



-J

du

(10) at + 373(\1) 3 £ on (0, T), u(0) = u(T)

Theorem 5 A necessary condition for the existence of a solution
Theorem 2

T
of (10) is that ,‘I.l—J f(t)dt e R(Qjo). A sufficient condition is
0

T
1
that TJO f(t)dt € Int R( 9?).

Proof Since R( 37:) is convex, the necessary condition follows
from the integration of (10). For the sufficient condition we

apply Theorem 3 in H = LZ(O, T; ) with A = 970 i.e. f & Au

provided £, u € H and £(t) ¢ 3?(u(t)) a.e. and with B = Eld? ,
p@) ={uen, S2ecH and u(0) = w(T)}. It is well known

that A 1is a subdifferential of a convex function in H, that

B is maximal monotone and that (6) holds. The assumption

T
%g f(t)dt € Int R(Q?) implies that £ € Int[R(A)+R(B)].
0

T

Indeed, note that R(B) = {fe H; J‘ f(t)de = O}. For gg¢ H

0
we can write

(T (T
g = (g ‘-fjo g(t)de) + ffo g(t)dt € R(A) +R(B)

provided ||g -f]]H is small enough.
Theorem 6 Let H be a Hilbert space and let K be a maximal
monotone operator in H with D(K) = H. Let F be the subdif-

ferential of a convex function on H with D(F) = H. Then

Proof Given f € H we want to $olve u+KFu = f i.e.



¥
-K-l(f-u) + Fu 2 0. We apply Theorem 2 with A =F and
Bu = -Kq(f-u) so that B 1is maximal monotone; it follows
that R(A+B) = R(A) +R(B). However R(B) = -D(K) = H and

therefore R(A+B) = H.

Remark Results related to Theorem 6 were obtained in [6].

§ II1.1 Comparative behavior of (]L-i-tA)"1 and S(t) near

t =20

1. The Hilbert space case

Suppose H 1is a Hilbert space and let A be a maximal
monotone operator; let S(t) be the semigroup generated by
-A in the sense of Kato - Komura (see e.g. [23] or [4]).

For x € BYKT and y € D(A) we have
|x-S(O)x| < 2|x-y| + |y -s(t)y] £ 2|x-y|+ t|A°y] .

Choosing y = ka = (I+ AA) —]'x we get

L
(11) |x - S(t)x | é(2+x)|x-J)\x]
and in particular, for A = t, we obtain
(12) ]x -S(t)x]| € 3]x'-th| .

In case A = Qc)o we can show (see [5]) that

(13) \x-th]é(l+——;—)\x-S(t)x‘

=

(the best constants are not known).

For general monotone operators an inequality of the kind (13)

2 : .
does not hold (consider for example in H =JR™, A = a rotation



by 7C/2). However one can obtain a "substitute" for (13) in

the general case as follows:

Theorem 7 Let A be a general maximal monotone operator;
Theorem /

then we have

t

(14) lX-JtXIS%‘flx-S(T)x,dt, Yxe D@, Ye > o0.
0

Remark It is clear that the constant 2 in (14) can not be

improved. Otherwise we would have for x € D(A), |x- J X | <
¢ C , C

%J t|A°xldT =§-|A°x)t and as t — 0, lA°xlé§|A°xl
0

with C < 2.

Proof Clearly, it is sufficient to prove (14) for x & D(A).

Let u(t) = S(t)x; by the monotonicity of A, we have for

v € D(A)

(15) (Av+%%(t), v-u(t)) >0 .

Integrating (15) on (0, t) we obtain
1 2 1 2 t

(16) 'é-[u(t) -v|© - :2"|X‘V\ SI (Av, v-u(t))dT =
0

t
= t(Av, v -x) +J (Av, x -~u(T))dT .
0

1 2 1 2 | ¢
Thus \5 u(t) -vl - Elx-vl < t(Av, v -x) + ,AVII |x -u(T)|dT.
0

Choosing v = J.x we get

1 }x-J x| rt
Elu(t)-th }2 -%_-Ix-th|2§ -lx-th|2+‘—"E‘t—-—f | x-u(g))dT,
0

and (14) follows.



Remark Combining (12) and (14) we see that |x -th] and

\x -5(t)x| have the same modulus of continuity at t = 0.
Also, using Hardy's inequality we can deduce that for 12 o > 0
and 1 ¢ p < ™ |
x=-J x
x-S(t)x t and
* *
s =S

ot p 1 +o( P

t Ly Ly
where Li = Lp([O, 1], H; %?) . These inequalities are useful

in the study of nonlinear interpolation classes (see [3]).

In a "similar spirit'" we have the following

Theorem 8 Let A be a general maximal monotone operator.

For x€ DA), A > 0 and t > 0 we set

- a+da-sen

It
Then
(17) \ykt-J' ]x-J1q —J~‘x-S(t)x'dt.
Remark Let w(t) = Sup Ix S(t)x| . By a result of Kato

0<Tgt

[14] (see also [4] Lemma 4.2) we know that for every integer n

2 .
\YA’t -yk’t/nl <€ 2 w(t) \y)\,t/n -x|.

Using the fact that y —»J x as s —> 0 (see e.g.

A>S A
Proposition 4.1) we obtain as n —% 0o

(18) ly)\,t'J)‘x\z{- 2 w(t) \Jxx—x!

Such an inequality follows also directly from (17).

(4]
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proof We apply (16) with x replaced by y’\’t and v by
J‘Lx. Thus
1 2 1 2
19 FIs®@y, -3 x]7 - 2]y, - 3x]
< t x-J)\x
\-{0 (""X"'—, J/\x-S(t)yk’t)dt .
wever S(t)y = (1+'t‘)y -£%x  and so
Ho At X"
20) |s(t) -J x] —J x'2+£§( -J - X)
( YA £ ' R IR .

On the other hand
N 2
(21) JAx, J;x S(T)YA,t) = -|x Jhxj +(x-J)\x, x—S(‘r)y’\,t)
< -|x—J}\x] + lx-J)\xl('x-S(r)xl-i- IX-YA,t')'
We deduce from (19), (20) and (21) that
t t 2t
X(y)‘,t-‘])\x A, %) € - Xlx-J,x| +:\flx=-J)\xHx-y)"tl

x-J,x| rt
+———R———j0 Ix-S(‘c)Xl dt

Therefore
| x-J x\2+( -J.x -x)' -J. x| |x-
A SN SR A KN RS AL B Iy, el

t
1
+ |x-J)\x! 't‘jo .x—S(‘t)xldt

: 2 £
l1.e. \a| + (b-a, b) £ |a]Ib] + |X-JAX‘%f |x-S(t)x|dT
0

with a =x-J x and b =

A x -y, .. Hence
glab)? = a4 lpi2 - @)
-%-| af- |b| + lal Ibl + |x-J, x| —f | x-s(T)x| dT
and %\ b < < |x-J x‘—j- |x-S(T)x| dT.

- 10 -
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11.2 The Banach space case

Let X be a general Banach space and let A be an m-ac-
cretive operator on X. Let S(t) be the semigroup generated-
by =-A 1in the sense of Crandall - Liggett (see [10] or [23]).

Clearly we have as in §II.1
t
(22) Nx-se)xll & @+3))x-J,x]| .

We don't know whether the exact analogue of (14) holds true.

However we can prove the following
Theorem 9 For every x € D(A), t> 0 and A >0 we have
| A 2 (°
(23) hx -3 x) < (1+g)‘t'_( Ix -s(z)x) dtT
40
and in particular
, . .
(24) Ix-3xl <t J lix - S (T)x] dT
0
Proof As usual we denote for x, y € X
.1 . 1
TG, y) = Lim> (x+ayl - Ixl) = inf = (lix+Ayll - lIx() -
A0 A0 A

The analogue of (16) becomes now (see [10] or [2] for equiva-

lent forms):
t
(25) “S(t)x-—vl\- lv - x| € I T (v -S(s)x, Av)ds
0
for every v € D(A).
However we have for every A2 0
(26)  T(v-S(s)x, Av) < -}\(“v-S(s)x+AAvH—"!!v-S(s)x“) :

If we choose in (26) v = {kx we obtain



(27) T(J)\x -S(s)x, AAx) < ;]{-(”x-S(s)xn—ngxx-S(s)x!!)
and by (25) we get
t
(28) “S(t)x - J,\x ] Jx-x|g ifo (hx-S(s)x || - IIJ)\x-S(S)xll)ds.

But "“J)LX"S(S)X" < HX-S(s)x"-"x-JAxu and therefore (28)

leads to

t t
- x-S (s)x|lg i‘fo“x-S(s)x"ds+%fo (J]Jx-s (s)xilds —}%ﬂx-JAx"
i.e.

t
(29) x - J)\xll < % J|x-S(t)x||+ %fo | x-S(s)x]||ds .

Finally note that

2 t
(30) l|x - S(E)x| < 7[{) Ix - S(s)x[[ds
indeed
1t 1 (*
\‘S(t)x-;[ S(s)xds" $ -t—[ l|s(t)x - S(s)x||ds
0 : 0
1 (t 1 (¢t
€ EJ() )IS(!;-s)x -x||ds = Ejo IS (s)x -x||ds
and so

| 1t 1t 2 (¢
Nx-s(t)x||<||x- E‘L){S(s)x ds" + 't-fo HS (s)x-x "ds < EJ‘O |[x-S(s)x||ds.

Combining (29) and (30) we obtain (23).

Remarks:
1) I would like to thank Prof. M. Crandall, Y. Konishi and
I. Miyadera for stimulating discussions concerning Theorem 9.

2t
After our first result was obtained (nx-th“s%-f Il x-S (x)x||dT),
0

t
. i : - 6
I. Miyadera showed that ||x Jexll< E—J;) Ix -s(T)x)ldT and

- 12 -



14

4

t
Y. Konishi got Ix-J x|l < —J \x -S(T)xlldT .
t t 0

2) Using (22) and (23) one can prove directly the following

result of M. Crandall [9]:

_ IIx - J, ||
lim supl'\l{—sﬁ:-mIl = lim + .

ty0 t A0
Indeed let &® = lim sup llx-tS: x|l ; and so Vg > 0 35 > 0
ty0

such that 0 <t < §

lx -s(e)|| € t(x+€).

From (23) we have for 0 <t <« § and every A\ >0
A2 t
ux-J}\xllé(1+E)E(oL+ )| Tdt = (A+t)(x+g).
0

It follows that ||x - JXX |l € A(x+E) for every A >0 and

= -Jxxu y
€ >0. Next let f8=1lim ——=—; and so £>0 35 >0
AY0 A

such that for 0 < )\ < &
NX‘-J)‘X” < /\((3‘*‘5)'
From (22) we get for 0 <A< S and every t >0

hx - S(E)xl € @+FIA(B+E) = (£+2N)(B+E).

Hence ||x -S(t)x|| tp for every t > 0.

— - S(t)
3) 1In general for x & D(4), lx - 5(t)x|

does not necessarily7
|x - J X | —_—

converge to 1 as t — 0.
Consider for example in H =IR, Au = -L—ll- for u> 0 and Au = ¢
for u g 0. In this case JtO = J_t_ and StO = /2t (slightly

more complicated examples were built previously by A. Plant and

L. Veron).

4) In view of the example built by Crandall - Liggett in [11]

- 13 =



one can not expect to extend Theorem 8 to Banach spaces (or even

3

to R” with some Banach norm) since does not necessarily

Ia,t

converge to a limit as t —> 0.

11.3 An application to the characterization of compact semi-

groups .
RSt s
Let A be an m-accretive operator in a general Banach space

X and let S(t) be the semigroup generated by -A.

Theorem 10. The following properties are equivalent,

(31) For every t >0, S(t) is compact i.e. S(t) maps bounded
sets of 'EYKS into compact sets of X

[ (32a) For every A >0, (]Z-*-?LA)-1 is compact i.e.

maps bounded sets of X into compact sets of X

>0

(32) 4 (32b) For every bounded set B in D(A) and every tO

the mappings t F» S(t)x are equicontinuous at t = t0

\ as x & B.
Remarks

1) Theorem 10 is due to A. Pazy [20] in the linear case and to

Y. Konishi [15] in the nonlinear Hilbert case (his proof relies

on a consequence of (18) and could not bé extended to Banach spaces)
2) 1t is obvious tﬁat (323) is equivalent to

(32a') (I-i-A)-1 is compact

and also to

(32a") For every M > 0 the set

- 14 -



{xeD(A); lxlleM and |lyligM for some yéAx}

is relatively compact in X.

Proof (31) == (32a)
Let A Dbe fixed and let x € X; we have for every t20
t
"J)\x -S(e) I, x| < tllAx|) = X“x -J,x] .
Let B be a bounded set in X; given £ > 0, choose ¢t SO

0
small that

t
—)%'"x-.])\xll< £/2 for x e B.

Since J5(B) 1is bounded in D(A), it follows from (31) that
S(to)JA(B) is relatively compact. Thus S(tO)J'\(B) can be

covered by a finite union UB(xi, €£/2). Hence J’\(B)C U B(Xi’ 5)#
i i ]

and consequently Jx(B) is precompact.

(31) == (32b)
Using (31) we have only to prove that the mappings t H—> S(t)x

t

are equicontinuous at t = 2—0 as x &€ K, K compact

t
( K =8¢ —29' )B). This follows directly from the fact that for
each fixed x, t ¥v>»S(t)x 1is continuous and that x > S(t)x

is a contraction.

(32a) + (32b) == (31)

Fix a t0>0 and let B be a bounded set in —13—(—;)— By (32b),

for every £ > 0 there exists § » 0 such that
l\S(t)x—S(tO)xl!<£ for It-toﬁss and x & B.

We deduce from (23) that for x € B and A > O,

t
HS(tO)x - st<t0)xn < (1+%) % go “S(to)x -S(T+exlldT
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g(l+%—)2& for every O<té;.
In particular for 0<AgJd and x € B we have

| uS(tO)x - J)‘S(to)xll< Le

Since JSS(tO)B is relatively compact it can be covered by a

finite union UB(xi, £). Hence S(tO)B can also be covered
i

by a finite union of balls of radius 5g and thus S(tO)B is

precompact .

Remark Suppose H 1is a Hilbert space, C'o is a convex func-
tion on H and let A = aﬁo . In this case (31) is equivalent to

(32a) since (32b) is satisfied automatically. Indeed we have

t t
0 °
s (0)x - s (egdxl = |s(t -3y - SC3 )yl €l -tglfacyd
¢ _
where y = S(% )X. On the other hand (see e.g. [4] Théoréme

3.2) we know that
%o | 2
|A°S(—§-)x\ < |A°v|+r|x-v] for every v € D(A).
0

Therefore the mappings t > S(t)x are equicontinuous at t = t0
as x ‘remains bounded. |
In this case property (32a) is also equivalent to
(32a"') For every M  the set
{xeDlg); |xigM and @) <]
is relatively compact in H.
Indeed (32a') == (32a"):
Llet E = {xé DA); Ix|I¢M and |A°x | € M}; for a fixed v, €

D( ‘f) we have

- 16 -
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& @

Plvy) - &) 2 (A°x, vy~ %)
and so Cr(x) < Cf(v0)+M(|vO|+ M) = M' when x € E.
Conversely (32a) => (32a'"):
Let
F={xéD(jo); | xI<M and T(x)sM};
for x € F we have
| (x) - 6(J,x) (A x-J x) = L’ x-J x,z
sox (f) /\x 2 2K A\ X N .
Therefore, since ? is bounded below by some affine function,

we get for x € F,
l|x-J x|2<M+c |3, x|+ C, < M+C |x-J x|+C M+ C
A NS 1 25 1 A 1
Thus lx—J}‘xlg‘/)\(CS)\-FCa) for x € F.

Given € > 0 we choose AO > 0 so small that \/}\O(C3’\O+ C4)

2°

< €. Since JA (F) 1is relatively compact, it can be covered by
0

a finite union UB(xi, &) and then F C UB(xi, 2¢).
i i

§ ITII. A convergence theorem for nonlinear semigroups

Let H be a Hilbert space; let {A } and A be maximal
n/nzl
monotone operators. Let {Sn(t)}nzl and S(t) be the corre-

sponding semigroups.

Our next result is a nonlinear version of the Theorem of
Trotter - Kato ~ Neveu. A number of related results have been
obtained previously by Miyadera - Oharu [18], Brezis - Pazy [8],

Benilan [1], Goldstein [12], Kurtz [16] etc...
Theoren i1, The following properties are equivalent,

-17 -



(33) VxeDd@), Yr>0 (I+}\An)-lx —> (I+ ,\A)°1x

(34) Vxe D(A) ané D(An) such that X —» x and
A°x —> A°x
nn

(35) v e D(A) Exn &€ D(An) such that X —> x and Vt) 0
Sn(t)xn —> S(t)x .

In addition the convergence in (33) (resp. (35)) 1is uniform .

for bounded A (resp. bounded t).

The proof of Theorem 11 is divided into four parts

Part A (33) = (34)
Part B (34) = (33)
Part C (33) = (35)
Part D (35) = (33).

Part A  (33) = (34)

Let x & D(A); given € > 0 there is a A > 0 such that
lx- (T+x8) x| < &/2
|A°x -Akxl < £/2.

- Next, by (33) there is an integer N such that for n > N

la+ Aa) % - @+ an) x| < g/2
|(An)>\,x - A)\X| < £/2 3
Combining these estimates we see that given € > 0 there is an
integer N(€) and sequences un(e) = (I+ A,An)-lx and
£ =
n(&) (An})\x such that [un( £), fn( £)] € G(An) and for

"PNCe), lu(e)-xlce, |£(e)-a"x| <e. Ler N =n(p);

we can always assume that Ny 1is increasing to om0 .
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We define the sequences X and g, by x =u (=) and

1
g —fn(k) for N g<n<N

” Therefpre [xn, gn] € G(An) and

k+1°

for N g n<N we have |x -x\(-l— and |g -A"x]<l
k k+1 n k l n k*

Consequently X —>x and &, —> A°x; we are going to prove now

that A°x  —>A°x. Indeed |A°x |<|g | and thus for a subse-
n"n n“n!'=!en

quence we get A’ x. ~—>h. Let veg D(A); by the monotonicity

J ]
of An we have

(A, -82x% , (1+AA) 'v-x)30.
At the limit as nj —>»& we obtain

(A -h, (1+;\A)'1v-x) > 0.
Next we péiéss to the limit as A —0:

(A°v-h, v-x)2 0 VVED(A)

Therefore h € Ax (see e.g. [4] Proposition 2.7). Since on the
other hand |h| <|A°x| we have h = A°x. By the uniqueness of
the limit, and the fact that 1lim sup lA; xn\s |A°x| we conclude

that A°x —> A°x.
n'n

Part B (34) =» (33)

Without loss of generality we may assume that A = 1. Let

X € I)—(—A—) and let u = (I+An)_lx. Given y & D(A), let v, €
D(An) be the sequence given by (34) so that Y, =

-1 o _ _ _AO
(I+An) (yn+‘Anyn)' Therefore |u_ -y < |x Yo Anyn] and

n\

thus a is bounded. For a subsequence u_, —u; by the

n. ’

J
monotonicity of An we have

(36) (x-u -A’y_, -y )20

u
n n

Passing to the limit in (36) we obtain



37) (x-u-A°y, u-y) 20 Vye D@).
In (37) we choose y = (I+ AA)-lu and so

(x -u, u -J,\u) p /\(A°J)\u, A‘\u) 20 .
As A —2> 0 we see that

(x - u, u-Pr»oj—ﬁ-(—A—j u) 2 0.
on the other hand since x € E(T) we have
(ProjD(A u - X, u-Projﬁ-zA—; u) 2 0

and consequently u = Proj-D-m u i.e. u € m—)- Going back to
(37) we deduce now from [4] Proposition 2.7 that x-u & Au i.e.
a= (1 +A)-1x. By the uniqueness of the limit we have in fact
w = (1+A)'1x.
1t follows from (36) that for every y € D(A)

Lin sup Ju_|% & (x, u-y) + (u, )+ &%y, y-u),
In particular if we take y = u we get

1lim sup |un|2 < \ul2 and thusb u —>u .
The convergence in (33) is uniform in )\ as A remains
bounded:
Without loss of genérality we may assume that x € D(A) and let
x € D(An) with X, X and A; X —>» A°x. We have

|(:L+;uxm)’1xn - (I+/uAn)—1xn |<IA -] a2 x | .

Therefore the fgnctions fn(}\) = (1 +)\An-)-]'xrl are uniformly
lipschitz continuous on [0,+60). Since they converge simply to
(I+J\A)_1x as n —>+e, we conclude that the convergence is

uniform in A _ as A remains in a bounded interval.

Part ¢ (33) = (35)

Without loss of generality we may assume that x € D(A). By (34)

- 20 -



we have a sequence x_ € D(An) such that X —> x and A;x —
A°x. We are going to prove that Sn(t)xn — S(t)x. It is known

(see e.g. [4] Corollaire 4.4) that

S 0y - e Ea) x| € B far < 22
and |
|s(o)x - @+Ea) x| SJ%WXIQ\?—%
where M = Sgp lA; X | Given ¢ » 0, we first fix k 1large
enough so that Z\[Iz_—t < € . Next observe, by inductriqn,_ that for

——

every integer N and for every sequence u —>u with u € D(A)

N

then (I+lAn)- un—->(I+J\An)_Nu, as n —» + 60 . Thus

-k -
lSn(t)xn—S(t)x|$2£+|(I+£-An) xn—(I+§A) kx'$3£
provided n 1is large enough.

Finally (35) holds true uniformly in t as t remains bounded

since (33) holds true uniformly in A as ) remains bounded.

Part D (35) => (33)

The proof relies on the following

Lemma 1 Suppose (35) holds. Let 1%16 D(An) be such that
£ —>f and £€ D(A). Then Yi>0, Ve>»o0

A

u = (I+ “'t—(I -Sn(t:)))“l fn —»u = (I+}\

S-S Tt

Proof of Lemma 1 By (35) there exists a sequence )%16 D(An)

such that X, —u and Sn(t)xn'——é S(t)u. Writing the monoto- .
nicity of I ~Sn(t) we have

{(un -Sn(t)un) "(xn —Sn(t)xn), u - x

) 20

n
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and therefore

£ -f u-x_ Sn(t)xn-S(t)u

where 5:1: X + S + T and §n"‘>0.

Hence

AR R PR TR R N N EEE N R TN TR

and consequently u —>u as n —> 69,

Lemma 2. Let x € D(An) be a sequence such that X —>» x with

X € D(A) and Sn(t)xn —> S(t)x for every t 2 0. Then for every
T there exists a constant K such that | (T+AA )-1 Xn' < K
n

and |Sn(t)xn\é K for every 0K A KT, for every 0<t<T

and every n.

Proof of Lemma 2 Let M = Sup |S(t)x] and let
O<tgl

En ={t € [0, 1]; lsp(t)xp]g M+1 for every p2 n},

>
Clearly E. is closed and UEn = [0, 1]; it follows from Baire's
n=1

theorem that Int EN # ¢ for some N. Let [to, t0+h] C Ey so

that

'Sp(t)xp\s M+1 for ny N and tigt&tytl.
It follows from Theorem 9 that
-1 A 2 (" |
‘Sn(to)xn - (I+7\An) Sn(to)xn\ £ (1+E) EJ-O ‘Sn(to)xn - Sn(t0+’c)xn‘d'c.
Choosing n 2 N we get-

[eaa e (< lx -8 (x| +|S_ (e | +E1+ 2200+ 1)n

- 22 -
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A
< )% ) 2 ) +4(1+7)M+1) .
We conclude by using the fact that

-1
lxn-Sn(t)xnlé 3|xn- (I+tAn) xn\.

Proof of (35) =» (33) 1In what follows A is fixed

Theorem 8 we get

Using

Ja+da-s ©nlx, - araa) x|
< |x, - (I+XA y Lk ‘g ’ x =S (T)x_|dT
= n n n't 0 \ n n nl
and

\(1+%‘(1 -s(e))) Tk -+ Aa) Ix| 2

1,2 (F
g¢x-(I+AA) X‘EJ h<-Sﬂjx|dt.
0
Let P = 2|x- (1+7\A)'1x\+25up|xn- (I+/\An)-1xn|<m (by Lemma
. n
2). We have

1(° 1 (€ 1 (¢
E‘(O\xn-sn(t)xnldtg \xn-x |+-€So\x—s(’t)x| +-t—f0‘s(’c)x—8n('c)xn| dt

and so

Laeaa e - @eam e jasd ass ©n e sarda-s©n T

t
+,’ P\xn—x\ + 2\(%[0 |x-S(T)xldT + \/%jot \ S (*c)x-Sn('c)xn\ dtT

= X1 + X2 + X3 + X4 .

Given § >0 we choose first t > 0 small enough so that X3'< &

and then we choose n (we

large enough so that X1+X3+X4 < &€

use here Lemma 1 to make X1 small and Lemma 2 combined with

Lebesgue's Theorem to make X, small).

- 23 -



[1]

(2]

[3]

[5]

[9]

(10]

[11]

ro
s

References

Ph. Benilan, Une remarque sur la convergence des semi groupes
non linéaires, C. R. Acad. Sci. 272 (1971), p.1182-1184.

Ph. Benilan, Equations d'évolution dans un espace de Banach
quelconque et applications, Thése Orsay (1972).

D. Brezis, Clésses d'interpolation associées & un opérateur
monotone , C. R. Acad. Sci. 276 (1973), p.1553-1556.

H. Brezis, Opérateurs maximaux monotones, Lecture Notes in

Mathematics, North Holland (1973).

H. Brezis,- Interpolation classes for monotone operators,
Partial differential equations and related topics, Lecture
Notes in Math. Vol.446, Springer (1975), p.65-74.

H. Brezis -F. Browder, Equations intégfales nonlinéaires du
type Hammerstein, C. R. Acad. Sci. 279 (1974), p.l-2.

H. Brezis - A. Haraux (to appear).

H. Brezis -A. Pazy, Semigroups of nonlinear contractions on
convex sets, J. Funct. Anal. 6 (1970), p.237-281.

M. Crandall, A generalized domain for semigroup generators,
Proc. Amer. Math. Soc. 37 (1973), p.434-440.

M. Crandall -T. Liggett, Generation of semi-groups of non-
linear transformations on general Banach spaces, Amer. J.
Math. 93 (1971), p.265-298.

M.’Crandall - T. Liggett, A theorem and a counterexample in
the theory of semigroups of nonlinear transformations, Trans.

Amer. Math. Soc. 160 (1971), p.263-278.

'] J. Goldstein, Approximation of nonlinear semigroups and

evolution equations, Jour. Math. Soc. Japan Z&_(1972),
-~ 24 ~



(13]

(14]

(16]

(17]

(18]

(19]

[20]

(21]

(22)

26

p.558-573.

P. Hess, On semi-coercive nonlinear problems, Indiana
Univ. Math. J. 23 (1974), p.645-654.

T. Kato, Differentiability of nonlinear semigroups,

Global Analysis, Proc. Symp. Pure Math. 16 A.M.S. (1970).
Y. Konishi, Sur la compacité des semigroupes nonlinéaires
dans les espaces de Hilbert, Proc. Japan Acad. 48 (1972),
p.278-280.

T. Kurtz, Extensions of Trotter's operator semigroups ap-
proximation theorems, J. Funct. Anal. 3 (1969), p.354-375,
E. M. Landesman -A. C. Lazer, Nonlinear perturbations of
linear elliptic boundary value problems at resonance,

J. Math. Mech. 19 (1970), p.609-623.

I. Miyadera - S. Oharu, Approximation of semigroups of
nonlinear operators, Tohoku Math. J. 22 (1970), p.24-47.
L. Nirenberg, Generalized degree and noniinear problems,

Contributions to Nonlinear Functional Analysis (E. Zaran-

tenello ed.) Acad. Press (1971).

A. Pazy, On the differentiability and compactness of semi-
groups of linear operators, J. Math. Mech. 17 (1968),
p.1131-1141.

R. 1. Rockafellar, Characterization of the subdifferentials
of convex functions, Pacific J. Math. 17 (1966), p.497-510.
M. Schatzman, Problémes aux limites nonlinéaires noncoercifs

Annali Scuola Norm. Sup. Pisa 27 (1973), p.641-686.

- 25 -



[23] K. Yosida, Functional Analysis, Fourth ed. Springer (1974).

Dept. de Mathématiques
Université de Paris VI
4 pl. Jussieu

75230 Paris 5°€

- 26 -



