<table>
<thead>
<tr>
<th>国語</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>日本語</td>
<td>テイラー確率の一部連続関数のウィナーオペレータ上の解析</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>国語</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>日本語</td>
<td>OODAIRA, HIROSHI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>国語</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>日本語</td>
<td>数理解析研究所講究録 (1976), 261: 19-28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>国語</th>
<th>Issue Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>日本語</td>
<td>1976-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>国語</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>日本語</td>
<td>http://hdl.handle.net/2433/105810</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>国語</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>日本語</td>
<td>Departmental Bulletin Paper</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>国語</th>
<th>Textversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>日本語</td>
<td>publisher</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>国語</th>
<th>TEXTVERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>日本語</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
TAIL PROBABILITIES OF SOME CONTINUOUS FUNCTIONALS
OF GAUSSIAN PROCESSES

Hiroshi Oodaira
Yokohama National University

1. Let \(X = \{X(t), 0 \leq t \leq 1\} \) be a path continuous Gaussian process with mean zero, and let \(T \) be a real continuous functional on \(C[0,1] \) such that \(T(cx) = c^p T(x) \) with \(p > 0 \) for any positive constant \(c \). In this note the following asymptotic estimate for the tail probabilities of \(T(X) \) is obtained:

\[
\lim_{\alpha \to \infty} (1/\alpha^{2/p}) \cdot \log P\{ T(X) > \alpha \} = -(1/2) b^2,
\]

where \(b^2 \) is a constant determined as the solution of certain extremal problem. For example, it is shown that if \(X \) is Brownian motion, then

\[
\lim_{\alpha \to \infty} (1/\alpha^{2/p}) \cdot \log P\{ \int_0^1 |X(t)|^p dt > \alpha \} = -(1/2) (C(p))^{-2/p},
\]

where \(p \geq 1 \) and

\[
c(p) = 2(p+2)(p/2)^{-1/2} / \int_0^1 (1-t^p)^{-1/2} dt P_{F_p}^{1/2},
\]

and also, if \(X \) is Brownian bridge, then the same formula holds with \(c(p) \) replaced by \(2^{-p} c(p) \).

In his thesis [3] and also in [4], N. A. Marlow obtained a similar
asymptotic formula for tail probabilities of uniformly Hölder continuous, asymptotically homogeneous functionals \(F \) of path continuous Gaussian processes. His method of proof is to first estimate \(\log P\{ F(X) > \alpha \} \) in the finite-dimensional case by a Laplace asymptotic formula, and then to pass to the limit to obtain the function space version. Note also that H. P. McKean [5] obtained a similar asymptotic estimate for tail probabilities of multiple Wiener integrals.

Our method is different from Marlow's and is based on the following Fredlin-Wentzell type estimates for Gaussian measures given in [7] and [2]. Let \(C = C[0,1] \) be the space of all continuous functions on \([0,1]\) with the supremum norm \(||\cdot||_\infty \), and let \(\mathcal{A} \) be the \(\sigma \)-field of Borel subsets of \(C \).

Let \(\mu \) be a Gaussian measure on \((C, \mathcal{A})\) with mean zero and covariance function \(R(s,t) \), i.e., \(\int_C x(t)u(dx) = 0 \), for \(0 \leq t \leq 1 \), and \(R(s,t) = \int_C x(s)x(t)u(dx) \), for \(0 \leq s, t \leq 1 \), where \(x \in C \). Let \(H = H(R) \) be the reproducing kernel Hilbert space (RKHS) with reproducing kernel (r.k.) \(R \), whose norm is denoted by \(||\cdot||_H \). Note that \(H \subset C \), since \(R \) is continuous.

Theorem 1. Let \(\phi \in H \). Then, for any \(\delta, h > 0 \), there is a number \(a_0 = a_0(\delta, h, ||\phi||_H) \) such that

\[
\mu\{ x \mid \| (x/\alpha) - \phi \|_\infty < \delta \} \geq \mu\{ x \mid \| x - \alpha \phi \|_\infty < \delta \} \\
\geq \exp\left[-(\alpha^2/2)(||\phi||_H^2 + h)\right]
\]

for all \(\alpha \geq a_0 \).

Theorem 2. Let \(K_r = \{ \phi \in H \mid ||\phi||_H \leq r \} \) and let \(d(x, K_r) \) be the distance from \(x \in C \) to \(K_r \) in the sup norm \(||\cdot||_\infty \). Then, for any \(\delta, h > 0 \),
there is a number $a_0 = a_0(\delta, h, r)$ such that

$$\mu\{ x \mid d(x/a, K_r) > \delta \} \leq \exp[-(a^2/2)(r^2 - h)]$$

for all $a \geq a_0$.

For the proofs see [7] or [2]. From Theorems 1 and 2 we obtain the following

Theorem 3. Let T be a real continuous functional on C such that $T(cx) = c^p T(x)$ with $p > 0$ for any positive constant c and $T(\phi) > 0$ for some $\phi \in H$. Then

$$\lim_{a \to \infty} (1/a^{2/p}) \cdot \log \mu\{ x \mid T(x) > a \} = -(1/2)b^2,$$

where $b^2 = \inf \{ ||\phi||_H^2 \mid T(\phi) > 1 \} = \sup \{ r^2 \mid \sup\{T(\phi)\mid \phi \in K_r\} < 1 \}$.

Proof. Let $D = \{ x \mid T(x) > 1 \}$. D is open and its closure $\overline{D} = \{ x \mid T(x) \geq 1 \}$. For any $\phi \in H \cap D$, there is a $\delta > 0$ such that $||x - \phi||_\infty < \delta$ implies $x \in D$. Hence, using Theorem 1, we obtain

$$\mu\{ x \mid T(x) > a \} = \mu\{ x \mid T(x/a^{1/p}) > 1 \}$$

$$\geq \mu\{ x \mid ||(x/a^{1/p}) - \phi||_\infty < \delta \}$$

$$\geq \exp[-(a^{2/p}/2)(||\phi||_H^2 + h)]$$

for any $h > 0$, if a is sufficiently large. Thus, for any $\phi \in H \cap D$,

$$\liminf_{a \to \infty} (1/a^{2/p}) \cdot \log \mu\{ x \mid T(x) > a \} \geq -(1/2)||\phi||_H^2.$$
and hence,

\[
\liminf_{\alpha \to \infty} (1/\alpha^{2/p}) \cdot \log \mu(x \mid T(x) > \alpha) \\
\geq -(1/2) \cdot \inf \{ \| \phi \|_{H}^2 \mid T(\phi) > 1 \}.
\]

Since \(K_\alpha \) is compact in \(C \) (see, e.g. [6]) and \(T \) is continuous, there is a number \(r > 0 \) such that \(\sup\{ T(\phi) \mid \phi \in K_\alpha \} < 1 \), and for any such a number \(r \), there is a \(\delta > 0 \) such that \(d(K_\alpha, D) > \delta \), where \(d(K_\alpha, D) \) is the distance between \(K_\alpha \) and \(D \). If \(T(x) > \alpha \), then \(x/\alpha^{1/p} \in D \), and by Theorem 2,

\[
\mu(x \mid T(x) > \alpha) \leq \mu(x \mid d(x/\alpha^{1/p}, K_\alpha) > \delta) \\
\leq \exp[-(a^{2/p}/2)(r^2 - h)]
\]

for any \(h > 0 \), if \(a \) is sufficiently large. Therefore,

\[
\limsup_{\alpha \to \infty} (1/\alpha^{2/p}) \cdot \log \mu(x \mid T(x) > \alpha) \leq -(1/2)r^2,
\]

and hence

\[
\limsup_{\alpha \to \infty} (1/\alpha^{2/p}) \cdot \log \mu(x \mid T(x) > \alpha) \\
\leq -(1/2) \cdot \sup\{ r^2 \mid \sup\{ T(\phi) \mid \phi \in K_\alpha \} > 1 \}.
\]

It is easy to see that \(\inf\{ \| \phi \|_{H}^2 \mid T(\phi) > 1 \} = \inf\{ \| \phi \|_{H}^2 \mid T(\phi) \geq 1 \} \) (in fact, \(= \inf\{ \| \phi \|_{H}^2 \mid T(\phi) = 1 \} \)), and if \(r^2 < \inf\{ \| \phi \|_{H}^2 \mid T(\phi) \geq 1 \} \), then \(\sup\{ T(\phi) \mid \phi \in K_\alpha \} < 1 \), and so \(\sup\{ r^2 \mid \sup\{ T(\phi) \mid \phi \in K_\alpha \} < 1 \} = \inf\{ \| \phi \|_{H}^2 \mid T(\phi) > 1 \} \). This completes the proof.

Remark. Note that \(\sup\{ T(\phi) \mid \phi \in K_D \} = 1 \). Since \(\sup\{ T(\phi) \mid \phi \in K_D \} = B^p \cdot \sup\{ T(\phi) \mid \phi \in K_1 \} \), we have \(B^2 = (\sup\{ T(\phi) \mid \phi \in K_1 \})^{-2/p} \).
2. In what follows we consider several examples for which the values of \(b^2 \) can be explicitly given by evaluating \(\sup \{ T(\phi) \mid \phi \in K_1 \} \).

(i) Let \(X \) be a path continuous Gaussian process with mean zero and covariance function \(R(s, t) \). Then

\[
\lim_{a \to \infty} \frac{1}{a} \cdot \log P \left(\int_0^1 x^2(t) \, dt > a \right) = -1/(2\lambda_1),
\]

where \(\lambda_1 \) is the largest eigenvalue of the covariance operator \(R \) with kernel \(R(s, t) \) on \(L^2[0,1] \).

This is a known result, and so we just indicate briefly how it can be derived from Theorem 3. In this case \(T(x) = \int_0^1 x^2(t) \, dt = ||x||^2_2 \) and \(p = 2 \).

Let \(\{ \lambda_1 \} \) and \(\{ \psi_1 \} \) be the eigenvalues and the corresponding normalized eigenfunctions of \(R \). Then \(\{ \phi_1 = \lambda_1^{1/2} \psi_1 \} \) is a complete orthonormal system in \(H(R) \). It can be shown that \(||\phi||^2_2 \leq \lambda_1 ||\phi||^2_H \) for any \(\phi \in H(R) \). Hence

\[
\sup \{ T(\phi) \mid \phi \in K_1 \} \leq \lambda_1.
\]

Since \(||\phi_1||^2_2 = \lambda_1 \), we have \(\sup \{ T(\phi) \mid \phi \in K_1 \} = \lambda_1 \), and hence the result.

(ii) Let \(\mu \) be the Wiener measure and let \(T(x) = \int_0^1 |x(t)|^p \, dt \), \(p \geq 1 \).

The RKHS \(H(R) \) associated with the Wiener measure is the space of all absolutely continuous functions \(\phi \) on \([0,1]\) such that \(\phi(0) = 0 \) and \(d\phi/dt \in L^2[0,1] \), and \((\phi, \psi)_H = \int_0^1 (d\phi/dt)(d\psi/dt) \, dt \), where \((\cdot, \cdot)_H \) denotes the inner product of \(H(R) \). V. Strassen ([8], p.220) proved that \(\sup \{ T(\phi) \mid \phi \in K_1 \} = c(p) \), where

\[
c(p) = 2(p+2)^{(p/2)-1}/(\int_0^1 (1-t)^p \, dt)^{p/2}.
\]

We thus obtain the result for Brownian motion stated at the beginning of this note. In particular, \(C(1) = 3^{-1/2} \) and \(c(2) = 4/\pi^2 \). The case \(p = 1 \) has been previously obtained by Marlow [3] by a different method, and the
case $p = 2$ is of course a particular case of (i). If p in an integer, then the same formula holds for $T(x) = \int_0^1 (x(t))^p \, dt$.

(iii) Let μ be the Wiener measure and let
\[T(x) = \int_0^1 |x(t)|^2 \, dt / \int_0^1 |x(t)| \, dt. \]

Then $\sup\{ T(\phi) | \phi \in \mathcal{X}_1 \} = 2q$, where $0 < q < 1$ is the largest solution of
\[(1-q)^{1/2} \sin((1-q)^{1/2}/q) + \cos((1-q)^{1/2}/q) = 0 \]
(see [8], p.222). Hence, if X is Brownian motion, then
\[\lim_{a \to \infty} (1/a^2) \cdot \log P\{ \int_0^1 |X(t)|^2 \, dt / \int_0^1 |X(t)| \, dt > a \} = -1/(8q)^2. \]

(iv) Let X be Brownian bridge. We shall show that
\[\lim_{a \to \infty} (1/a^{2/p}) \cdot \log P\{ \int_0^1 |X(t)|^p \, dt > a \} = -2 (c(p))^{-2/p}, \quad p \geq 1, \]
where $c(p)$ is the same as in (ii).

The covariance function of Brownian bridge is
\[R(s,t) = \begin{cases} s(1-t), & \text{for } s \leq t, \\ t(1-s), & \text{for } s \geq t, \end{cases} \]
\[= \int_0^1 \varrho(u,s) \varrho(u,t) \, du, \]
where
\[\varrho(u,t) = \begin{cases} l-t, & \text{for } u \leq t, \\ -t, & \text{for } u > t. \end{cases} \]

Hence the RKHS $H(R)$ with r.k. R is isometrically isomorphic to the closed subspace M of $L^2[0,1]$, spanned by $\{ \varrho(u,t), \quad 0 \leq t \leq 1 \}$, and any function ϕ in $H(R)$ has a representation $\phi(t) = \int_0^1 m(u) \varrho(u,t) \, du$ with $m \in M$. Note that
\[\mathbb{M}^l, \text{i.e., } \int_0^1 m(u)\,du = 0 \text{ for all } m \in \mathbb{M}, \text{ since } \int_0^1 q(u,t)\,du = 0 \text{ for all } t \in [0,1] \text{ if } \int_0^1 n(u)\,du = 0 \text{ and } \int_0^1 n(u)q(u,t)\,du = 0 \text{ for all } t \in [0,1], \text{ then } n = 0. \text{ Hence } \phi(t) = \int_0^1 m(u)q(u,t)\,du = \int_0^t m(u)\,du, \text{ which shows that } \phi \text{ is absolutely continuous. Therefore, } H(\mathbb{R}) \text{ is the space of all absolutely continuous functions } \phi \text{ on } [0,1] \text{ such that } \phi(0) = \phi(1) = 0 \text{ and } \phi' = d\phi/dt \in L^2[0,1], \text{ and } (\phi, \psi)_H = \int_0^1 \phi'\psi'\,dt. \]

As in Strassen's proof [8] for Brownian motion case, we shall evaluate
\[\sup\{T(\phi) \mid \phi \in K_1\} = \sup\{ \int_0^1 |\phi(t)|^2\,dt \mid \phi(0) = \phi(1) = 0 \text{ and } \int_0^1 \phi'\,dt \leq 1 \} \]
by classical methods of the calculus of variations. Since \(K_1 \) is compact and \(T \) is continuous, there is a maximizing point \(\phi \) with \(||\phi||_H^2 = \int_0^1 \phi'^2\,dt = 1 \).

We may assume \(\phi \geq 0 \), and \(\phi \) satisfies the equation
\[\int_0^1 \phi P^{1-1} \psi\,dt = 2\lambda \int_0^1 \phi'^\psi\,dt, \text{ for any } \psi \in H(\mathbb{R}), \]
where \(\lambda > 0 \) is a Lagrange multiplier. Integrating by parts the left-hand side and noting that \(\psi' \perp 1 \), we obtain
\[\int_0^1 (\int_L \phi P^{1-1}(s)\,ds - \int_0^1 [s\phi P^{1-1}(u)du]\,ds)\psi'(s)\,ds = 2\lambda \int_0^1 \phi'^\psi\,dt \]
for all \(\psi' \in M \). Therefore,
\[(1) \int_L \phi P^{1-1}(s)\,ds - \int_0^1 [s\phi P^{1-1}(u)du]\,ds = 2\lambda \phi'(t), \text{ for } 0 \leq t \leq 1. \]

Since \(\phi \geq 0 \) and \(\lambda > 0 \), (1) shows that \(\phi'(0) \geq 0 \), \(\phi'(1) \leq 0 \) and \(\phi' \) is differentiable and monotone decreasing. Hence there is a point \(t_0 \) such that \(\phi'(t_0) = 0 \) and \(\phi'(t) \geq 0 \) or \(\leq 0 \) according as \(0 \leq t \leq t_0 \) or \(t_0 \leq t \leq 1 \).

Differentiating (1), multiplying with \(\phi' \) and integrating again, we have
\[(2) \phi^2(t) + \lambda \phi'^2(t) = \phi^2(1) + \lambda \phi'^2(1) = \lambda \phi'^2(1). \]
Hence \(|\phi'(1)| > 0\) and

\[
\phi'(t) = \begin{cases}
(\phi^2(1) - (1/\lambda)\phi^2(t))^{1/2} & \text{for } 0 \leq t \leq t_0, \\
-(\phi^2(1) - (1/\lambda)\phi^2(t))^{1/2} & \text{for } t_0 \leq t \leq 1.
\end{cases}
\]

Therefore, noting that \(\phi(0) = \phi(1) = 0\), we get, for \(0 \leq t \leq t_0\),

\[
(3) \quad t = \int_0^{\phi(t)} |\phi'(1)|^{-1}(1 - v^P/(\lambda\phi^2(1)))^{-1/2} \, du \\
= \lambda^{1/P} |\phi'(1)|^{(2/p) - 1} \int_0^{\phi(t)/(\lambda\phi^2(1))} \left(1 - v^P\right)^{-1/2} \, dv,
\]

and, for \(t_0 \leq t \leq 1\),

\[
(4) \quad t - 1 = -\lambda^{1/P} |\phi'(1)|^{(2/p) - 1} \frac{1}{\lambda\phi^2(1)} \int_0^{\phi(t)/(\lambda\phi^2(1))} \left(1 - v^P\right)^{-1/2} \, dv.
\]

Put \(t = t_0\) in (3) and (4). Then \(t_0 = 1 - t_0\), and so \(t_0 = 1/2\). Put \(t = 1/2\) in (2) and (3). Then \(\phi^P(1/2) = \lambda\phi^2(1)\) and

\[
(5) \quad 1/2 = \lambda^{1/P} |\phi'(1)|^{(2/p) - 1} \int_0^{1/2} \left(1 - v^P\right)^{-1/2} \, dv.
\]

Integrating (2) and noting \(\int_0^1 \phi^2 \, dt = 1\), we have

\[
(6) \quad \int_0^1 \phi^P(t) \, dt = \lambda (\phi^2(1) - 1)
\]

Using (3) and (4), we obtain

\[
\int_0^{1/2} \phi^P(t) \, dt = \lambda^{1+(1/p)} |\phi'(1)|^{1+(2/p)} \int_0^{1/2} \left(1 - v^P\right)^{-1/2} \, dv \\
= \int_0^{1/2} \phi^P(t) \, dt.
\]

Hence

\[
(7) \quad \int_0^1 \phi^P(t) \, dt = 2\lambda^{1+(1/p)} |\phi'(1)|^{1+(2/p)} \int_0^{1} \left(1 - v^P\right)^{-1/2} \, dv \\
= (p+2)^{-1} \lambda^{1+(1/p)} |\phi'(1)|^{1+(2/p)} \int_0^{1} \left(1 - v^P\right)^{-1/2} \, dv.
\]
Eliminating λ and $|\phi'(1)|$ from (5), (6) and (7), we obtain

$$\int_0^1 \phi'(t) dt = 2^{-P(p+2)}(p/2)^{-1/2} \int_0^1 (1 - t^P)^{-1/2} dt \frac{P}{P+2} = 2^{-P} c(p).$$

Thus $b^2 = 4(c(p))^{-2/p}$.

Remark. If p is an integer, $T(x) = \int_0^1 |x(t)|^p dt$ can be replaced by $T(x) = \int_0^1 x^p(t) dt$. The above result $\sup\{T(\phi)| \phi \in K_1\} = 2^{-P} c(p)$ can be used to obtain an iterated logarithm result for the functional T of empirical distributions (cf. H. Finkelstein [1]). Finkelstein discusses only the case $p = 2$, which can be obtained as a particular case of (i).

Acknowledgement. The author is grateful to Dr. N. A. Marlow for his comments on [7].

References:

