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APPLICATION OF 'Sb TO DEFORMATION OF ISOLATED SINGULARITIES x )

‘Masatake Kuranishi

§1. Introduction

'The _purpose of’the-present note is to give the outline of
‘derormatlon theory of lsolated srngularltles based on Tangentlal
cauchy R;emann Eouatlons. The deformatlon theory of slngularltles
is already developed by several mathemat1c1ans. (For a historical
note see the artlcle of 0. Forster in this volume [1].) However
the methods so far are algebraic. That is to say, deformations
are regarded as deformations of defining equations of singulari;
ties. As for the anaIYtic approach, besides the one exposed
here, Rlchard Hamilton constructed a theory which relles on o
operator on a tubular nelghborhood of the boundary. This

approach leads to a non-linear boundary value (non coercive)

problem of Caudhy.Riemann_equations [2].

o
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§2. ~Isolated singularities and CR _structures

Let V bewa Stein analytic space (of complex dimension n )
: smooth except at a p01nt p such that there is a relatlvely
7:compact open nelghborhood U of p 1n V wlth the property 7
that.the boundary of U |is smooth and strongly pseudo convex.'
Denote.by M the boundary of U .> M be;ng a real subman;fbld:
of codimension;one~in‘the complex manifold v - fp} , the '
- coﬁple#.tangent vector bundle ggMu'hes e‘distinguieheo:sﬁbf”
bundle TVM Namely, it consiste of all elements.in>LgIM

which are of type . (0,1) when we regard CTM as a sub-bundle

of gyvim . Setting E" = oT{"M , the equation
(1) XE = 0 for all X ¢ E”

is called the tangential Cauchy Riemann equation on M induced
by the ambiant complex space V . By the construction it is
obvious that the sub-bundle E" = OTGM satisfies the following

‘conditions:
(2) If . and L' are sections of E" , so is [L,L'] .

We refer any sub-bundle E" of CT™ of fiber dimension n-1
with the property E' ne" = {0}, E' = E" , as an almost CR

structure on M . If it further satisfies the condition (2), we
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call ‘E" a CR structure. The notion of pseudo convexity of a
hypetsurface ip a complex manifold can be formulated solely in
terms of the”almost CR structure induced in the hypersurface.
Namely, plck sectioﬁs Yi;...,Y _lv of E" ven an open set G

of M such that they generate E"|[G ana also a real vector

,fleld T ‘on G complementary to E' + E - Write

[x., Yk] =c., iT | {mod Y ,...,Y -1’ l""" -l) -

J 3k
"We.say éﬁat ‘E" is strongly pseudo convex when the hermitian
matrix» (Cjk) obtained in this way is-always non-eingular ana

its eigenvalues are of the same'sign. I£f M is strongl& pseudo
ccnvex in VvV, OTGM is strongly pseudobconvex. Conversely,

for any strongly pseudo convex CR struetu:ev E" on M and

for any point p iﬁ M , Boutet de Monvel [6] showed recently'
that there are fl,...,fn € c¢®(M) such that ij = 0 for any
section X of E" and the map‘ x = (£ (x),....f (x)) € < is
aﬁ embeading on a neighborhood of p . This means in particular
that any etrongly pseudo convex CR}structure E" , when feetricted
to sﬁall open sets, is induced by an ambiant complex manifold.

Pick an open covering {Gé} ef M tqgether with an embiantv

l complex manifold Wa of Ga such that Wa - Ga eonsists of two
components and E"léa is the induced CR-structure on G, by w,o-

Then by the theorem of H. Lewy [3] there is unique component w'
) ’ o
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of Wc-'Ga sucb that any solution of tbe‘equation (})'on Wd
~ extends uniQuely-to aaholomorphic function on W; , proyided we,‘
chose W suff1c1ently thln. This will allow you to piece
together »W (shrlnklng G ‘a llttle 1f necessary) and
construct a complex manlfold N with boundary M (regarding
ythe pseudo concave part of the boundary of N as open), even
though the complex structure may not extend beyond M.. We may.
»say that E" ls ;nduoed by the amblant complex manifold N ..
'Sinceubfl....,f 7iin the theoten‘of Boutet de Monyel are defined
everywhere in M , we may conclude that we can construct N as
above such that the holomorphlc functions on N separate points.
Then it is a theotem of H. Rossi [8j.that we can fili in the :
hole on N . He showed that the set of the maximal ideals of the
algebra of -the holomorphic functions on N, say S, has the‘
natural structure of normal Stein analytic space. The obvious
Vinjection N - S is holomorphic and the image is open. In this
way we canlreplace the deformations of normal isolated singuiari—

ties by the deformations of CR-structures.

Deformatlons’of isolated SLngularatles may be v1ewed’1n t&oi
-steps. Namely, the flrst is the deformatlons of the smooth part |
of the analytlc set and the second is the way szngular p01nts aref,
‘added to complete it. Now the second step is not unlque.v Because'

of the blowing up‘and its inverse, this step is_very'complicatedo.



2¢9

Our contention is that the CR-structure induced on the boundary
completely controls the first step and also gives one definite

way of doing the second sﬁep.

§3. - Integrability conditions

. We developvthe deformation theory of CR-stfuctures.
'following the;ﬁattégﬁ established in the deforﬁatién théorfrofv
comélex structures. Let us recall the first step of the latter.
We fix a reference'complex strﬁcthfe on a manifold, say N ,
which is considered as a sub-bundle T" of the complex tangent
vector bundle CTN . T" consists of complex tangent vectors of

type (0,1) . We note the direct sum decomposition

—

(3) CTN = 7 +°7 , o' = T,

-

Then any almost complex structure sufficiently close tc T" is

considered as a sub-bundle which is a graph of a bundle map
(4) ws: T - T .

We denote this almost complex structure by T" . Thus almost
Tw

complex structures sufficiently close to T" are parameterized

by T'- valued differential forms of type (0,1) . T" has

parameter O . If T& is a complex structure, it follows that
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(5)  Bw- Rowl = O

where [w,w] 'ié the tybé (0,2) Aform>constructedAby means of
S : (ord Sxbinior preduct .,

the bracket Qf‘vectCrmfields It is the famou; theorem of
Newlander and Nifenberg that the converse is true. ‘These
considefatioﬁéﬁare the gound on wﬁidh we can_apply fhe theory-of_
elliptic differential operators to construct the versal familjybf
deformations of compact complex structureé.

As for theﬂféfefeﬁce CR;étrucﬁﬁre op" , there i3 no
canonicai decompoSitioh like (3). We are forced to choose one.

We pick a sub-bundle F of CTM of fiber dimension 1 "such

that

——

(6) cm = °" +°' +F , %"= ©° , F = F.

—

Then any almost CR-structure sufficiently close to ©T" is the

graph of a bundle map
(7) _ @' O 4 O+ F.

It is a little awkward to use a bundle like ©T" + F to

. parameterize almost CR-structures. ,Wéravoid this by observing
that the restriction to CTM of the canonical projection map
CIV| M - T'V|M has the kgrnei ©°T" and hence this map induces

an isomorphism of ©T' + F to T'V|M . Denote by
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(8) 7z TVIM - 97 + F

the inverse of the isomorphism. Then we can write

(9) 9 = Tt
_where
(10) o ® 3 Opn = T'VIM

is a bﬁndlé map. :Thus almost CR-structures on M 'Sufficientlyr
close to °T" are parameterized by T'V|M valued differential

forms of type (O,l)b . Namely, °Tep is the graph of the

7'V|M - O7'+ F . Therefore

bundle map T - o

(11) % = X - 1. p®): X €1} .
In other words we have the isomorphism:

/
\

[}
o

1) o' 3 x —-X-'roqo(X)EoT;-

The next problem is to decide which of the almost CR-structures
Ty are CR-structures. This will lead to an equation like
(5) for ¢ . Now we can rewrite the integrability condition (2)

in_terms of differential forms as follows:

(2)' If ¢ is a differential form of degree 1 such that
" o(X) =0 for all X ¢ E" , then do(X,X') =0 for all

X, X' eg" .
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Thus we can write down the condition for ©T" being a
CR-strucute when we can find a generator for differential forms
of degree 1 which annihilate °T; . To do this we use local
.chart and introduce several notations. Before proceedihg, we
pause here to note that the condition (Z)f can be reformulated
in the following more suggeétive way : Consider the diagram
1, 2
A, Q) - A%, e)
(12) a Lo o

c=(M, (E")*) ey c®(M A% (E")*)

where the vertical arrows are induced by the injection

E' - CTM . Then the condition (2)' is equivalent with the
following:
(2)" Théere is a unique dotted arrow which makes the

diagram (11) commutative.

When E" is a CR-structure, we denote by §ﬁ" the dotted
arrow obtained in (2)". It follows easily that once this can be

done, we can construct similarly the differential operator

(13) Tge : CTOLAPEM %) > T, AP e x,
- Since we always have the differential operator
§ﬁ" : ¢ (M, C) +_Cw(M,(E")*) as the composition of the

exterior derivative and the restriction map, we conclude that
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E" 1is a CR-structure if and only if we. have the 35"— complex

. - o ) l n N
(14) c®(M, €) = C™(M, A (E")*) = (M A2(E")*) = ... .
When E" =»°T“ » this is the ‘Es- conplex.

.- Now we come back to the problem of writing down the
generator mentioned above. Let our reference CR-structure ©°r"
be induced locally by a real submanifold G in an open ballvin

c® . Denote by z = (zl,...,zn) the generél elements in the

ball, and let
(15) . ~h =0

be the equation of G , where h is a real valued c® function
in z . The dhoiqe of h is not unigque. But we pick one and
preserve)it throughout. By the injection i of G into the
ball ini'g?‘ we identify CIG as a sub-bundle of crcle .

Since F in (6) is preserved under conjugation, we can write
(26) F=c('-2?), P erce, B = B .

We normalize the choice of P' by the requirement

(17) < an, P > = 1.
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Set
(18) ‘a'h = 3§, haz* h_= h
_ = I hdzo, X By -

(19) ‘ P’ = '):kvpka/azk . }9k = pk .
By (17),
(17)° v Zk pkhk = 1.
Set

K L skp=k K o
(20) 2zt = i"(dz" - p~ dh) ,

—k n

(21) Z- = 3/3z - h_P" .

X k
By (17) we see easily that ZE e O . 2K generates all

differential forms of degree one which annihilate ©T' + F .

7 generates ©T" . They have the relations:
% A

(22) N rkhkzi.=0, »zkpkzgf‘_ 0.

‘Now a T'V|M valued differential form of typé (O.l)b‘, say © «

can be expressed on G as

- k | x e
(23) e =I 9 ®'§§E 9 =I, qzrz with

o .
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Because of (11), the diffential forms on G of degree 1 which

annihilate -OT; are generated by
(24) o8 = i*az"+ o (k=1,....m .
Since ©

T; is a CR-structure (assuming that ¢ 1s sufficiently
small) if and only if E" = OT; satisfies the condition (2)°',

it follows that OTQ is a CR-structure if and only if (since

de" = dg")
._(25) - | avk? o (mod el'...._, o) .
Set
‘(26) . aT/azk = ‘T(B/azk) = a/azk - hyp" .

We calculate the condition (25) more explicitly using the
expression (23). Then we arrive at the following conclusion:
For a sufficiently‘small T'VIM valued differential form ¢ of

type (0,1)b . °T;|Gf is a CR-structure if and only if

(21 Rle) =B - 5y, ,0Ta/ 22)e A 2 @ a/e”

i = 4 i.r % i. k- k
* (Zhi9) AT, 4 (3p*- 5,0 3P/ 22 lo_ ® 3/2z
vanishes identically.

" P(yp) is constrﬁcted depending on the chart 2z of the

ambiant complex manifold inducing ©T" and of the function h
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in (15).A However one can show that P(g) is independent of
such choice. This can be done'by explicitly calcﬁlating the
right.hand side'of (27) Qhén we make changes in the choice.
Recently D.C. Spencer and H. Goldshhidt found an intrinsic

defining formula of P(g) .. -

4. Heuristic arqument for the construction of wversal families

‘Let us recall the basic idea in the construction of the .

versal families of deformations of compact complex manifolds.

- A difféomorphismvof N transforms an almost complex>
structure to - an almost complex structure. Thus the diffeomorphiém
group of bN acts on the set of almost complex structures bn N.
fhis actioﬂmsends complex structures to compiex structures. Two
structures on the same orbit'are isomorphic structures. Siﬁée we
are interested in defbrﬁations we consider.oﬁly ﬁlmost compléx
structuées sufficient;y closé to the reference complex strucﬁure
T™ and acﬁions of diffeomorphisms sufficiently close to the
identity map. Hence we may deécribe'our situatioh‘roqghiy as
follows: A sufficiently'émall open neighborhood of © in |
A(O'l)(N,T') is fibéred into orbits by the action of small opén
neighborhoods of the identity in the diffeomorphism group of N -/

We consider the subset of this fiber space consisting of all

such that ©T" is a complex structure. This is a fiber subspace
w .



say B . If we can find a cross-section passing through O ,

say C , of fibers of B, {T; F‘w € C will be considered as
a universal family of deformations of N . However, it can happen
(for some N 5 that it is impossible to f£ind a decent such C .
This is due to the fact that the dimension of the complex
automorphism gioup of Tl which acﬁs asbthe isotopy group at
may change with y . To avoid tﬁis difficulty we fiber B
instead'into orbits by action of diffeomorphisms which are
complemenfary t§ the automorphism group-of T" .. To 5e more
precise, we parameterize first a small neighborhood of the
identity in the‘diffeomorphiSh group of N by a small néighbér—
hbod of 0 in C%(N,T') by an exponential map. For a small

g € c°(N,T') denote by g the‘diffeomorphism'parameterized

5 ,
by £ . Written in a complex chart z of N

{28) gtg(z) = z + tgk A‘mod t2) . g = ;kgk a/a#k .
Denote‘by +c®(n, 1) the subspéce of »cm(N,T') orfhogonal to

the subspacé of hoiomofphic sectiohs‘6f  T (wiﬁh réspec£ t§ a
hérmitian.méffic in N ). Let éLN ﬁé the set 6£ diffeomorﬁhisms
of N paraméierized by elements in a small neighborhood of ©

in 'LCQ(N,T'),. Now, instead of fibering B into orbité by

small neighborhoods of the identity in the diffeomorphism group

of ,ﬁ', we fiber B into orbits by small néighborhoods of the

/3
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identity in G'N . Then it is possible to find a cross-section,
A family of defomrations of N conétructéd in this way is the

versal familyiof‘defoﬁmations-of N . Befdre we préceed further,
we insert here a notation. For a small w:e A(o’l)(N,T') and 3
diffeomorphism  § sufficiently close to identity map‘»N ’ tgé
transforﬁ of TL‘ by £ 1is equal to T; . We set g é we g .

Then we f£ind that
(29) e gy T wFRWH ..

where ... includes all terms which are not linear in (w,8) .
This formula plays an important role in the construction of the

‘versal family.

Now we start to éarry over the above consideration tok
deformations of isolated Singularities viéwed‘as deformationé‘of
CR-structur;s. Then we'notice a new phenomenoﬁ due to the facﬁ»
that we can wiggle the boundary. Let °¢; be a CR-Structﬁre on
M indﬁced~by an ambiant complex‘manifold va. Sincé Ny .is
diffeomorphic to the ambiant complex manifold N ‘of Op* , we
may write Nl‘é Nw . Let f: M <N bea c°"igjgctive map
sufficiently c;bse to the injection 'i: MaN. The'doﬁplex
manifold Nw induces a CR-strﬁcture on bf(M) , which we |
transplant to a CR-structure‘on M via £ . We c;ll it Ehe 
transform of OT; by £ . Since the above érécess is nothing
‘but a wiggling of the boundary it is obvious that. °T; and its

transform give rise to isomorphic singularities. Thus we find
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that in the deformation theory of isolated singularities the set
of injections M - N sufficiently close to i plays the role
of diffeomorphism group in the deformation theory of complex

. structures. This is the only modification we have to make.

Let us éo over the fibering we consider more éxplicitly.
We first paraﬁeterize injections of M inéo ‘N sufficiently
close to i by a small open neighborhood of c®(M,T'N|M) , say
£ for g € CQ(M,TfNM) ’ by an exponeﬁtiai nap.  In a complex

g
. analytic chart z of N it means that

(30) fz(z) = +v§k(z) - ", g = I &;ka/azk

. for ‘z €M. Denpte'by ‘I the set of ail f§ where E are

' sufficiently small and orthogonal to thé vector space of‘ Sg
closed secﬁiohs of T'NIM . Consider the set B of ¢ such
that ¢ is.sufficiently small and 'OT; is induced by a complex
'structure-.Nw . The elements in I act on the elements in - B.
‘Consider the fibering of B 1into orbits oﬁvthe action by small
heighborhoods of i in I . We shall trykto fiﬁd a cross-
s;ction of the fiber space ,B vand shaw that a cross-section
reﬁfesents a yersal family of deformations of the isolated

singularity out of which we obtained Orpe .

7’8
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We might feelithat our picture is a ;ittle blurred.hecause
we considered only ¢ such that OT; is induéed by é complex
manifold Nw which 1ies on both sides of M , wWhereas in §2 we
constucted for any integrable’ ® a coﬁplex manifold which
induces -OT; bﬁt lies only in oﬁe §ide-$f k .- waever‘this
does not stop us from constructing the,versai familf by the
following reason: To construct a faﬁily which we wish to be the
versal family we do-not need w's , and in order to show that

. the familé we constructed is versal we are offered td.consider
only ¢'s such théﬁ.the ambiant complex manifolds lie on both
side; of M . The last is due to the fact thaéiwe staft'from an
analytic set V with an isolated singularity so that Op"  is
in&ucedvbyvan ambiantvcomplex‘manifold which lies on both sides
of M: and that ény small deformation of.-V‘ induces a CR—structﬁfe
with the saﬁe prop¢rty.

As before we define g+ £ so that the transform of ©T"
by £ is O . Then wé find after a little calculation by

P £

= RS A TR

‘ where ... includes all terms not linear in (w;g) .

6
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85. The construction of versal families

We recall first how the versal family of deformations of a
compatt.complex manifold, say N , was constructed. As was
explained in the preceding section, we are to find a decent set

C of ue€ A(O'l)(N,T'N) satisfying the céndition:

(5) ' B - 2lw.wl] = 0

such that it contains 0 and it cutsAtransversally the set

(32) . lueg, : e c(N,T') , § small} .

When we linearize the'prdblem, we see by (29) that we are asked
to find»é complete set of representatives of the cohomology
classes in the T'N valued differential forms of type (0,1) .

The standard way is to solve the equation

(33) | 3w = 0 , J*y = 0.

This observation suggests that a good candidate for our C is

the set of sufficiently small solutions of the equation
(34) dw - #lww] = 0, 3y = 0.

Actually it can be shown that such C forms the versal family.
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The equation (34) is solved as follows:l Since solutions of (34)

satisfy the condition

(35) Go*(Bw - #[w,w]) + G33*w + H(w) is harmonic,

whére‘ G ﬁis thé Green's operator and :H is the hgrmonic
projection; we firSt‘;;lve the equation (35) and decide which of
the solutions of (35) are solutions bf (34). ‘Since the
Sufficiently small éélufions of (35) form a finitéIAihensiénél
complex manifold, it caﬁ be shown that solutions»of (34) in thiéi
manifold form an analytic set. Now we can solve the equatioh

(35)'wheh we can invert the map
(36) > H(w) + G3*(3u - Z[w,0]) + G30*w = w - 2G3*[w,w] .

Because of‘éhe eilipticity of the laplacian A =
-the map (36) in@uces an analytic map of the Banach manifold

obtained b& completing with respeét to‘Sobolov norm. Therefore
to find the inverse of (36), we check that the differential at

0 1is the indentity map theorem and apply Banach inverse mapping A

. theorem.

To find CR analog of the above construction we merely

have to replace the equation (5) by the equation (cf. (27))

(37) ’ P(p) = 0

/¥
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and the formula (29) by (31). Thus our problem is to invert the
map
(38) g~ H(g) + N3fP(9) + N3, 3¢ ¢

where N. is thé Neumann operator. (For subellipticitﬁ and
Neumann operators. see the Kbhﬂ‘s article t4] in this volume.)
However,vthé analogy fails here because the laplacian
B, = S;€£'+ Egsg» ié not elliptic ;hd hence the map (38) does
ﬁbt induce‘the map of.a Sobolev Banach manifold into itself. ' The
- way to get around the difficulty is to note that Ab is
subelliptic and use Nash-Moser inverse mapping theorem.. Tﬁe
theorem say§ that, when we,have a map like (33),'if the
differentials at péints ﬁear, 0 are subelliptic with uniform
. estimate and invertible then the map is invertible. However, the.
differentials of thé map (38) at}non zerd poihts do not appear to
be subelliptic. Thus we ére forced to modify our construction:
’In’orderrﬁo obtain the:subéellipﬁicity of differentials we have
to bring the boundafy cauchy-Riemann operators of each OT"
into QUr éicture. Now it is necessaﬁy to introduce a number of
operators. vBefore,proceeding fﬁrther we noﬁe that the inverse in
Nash Morse théorem is constructed by ingenibusly‘combinihg ﬁewton'é

algorithm and the smoothing 6perators (cE. [71).

/7
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We recall that ﬁﬁ"-

means of the diagram (12) in the case E" = OT; . However,

complex was constructed in (14) by

we need such_ah operator for all sufficiently small ¢ (not

merely for @ for which OT; is a CR—structﬁre). We obtain

thislby picking cross-sections of the vertical arrows in (12).
i ‘ ' '

Such cross-sections which are natural from our stand-point are

‘induced by the decomposition -(cf. (6) )

ct™M = E" +E' +F, E' = _".'1‘; .

We denote by - §§ the sequence of differential operators thus

obtained:

(0P) ¢y = p 0P D ye) L

: 0.
(39) 3 Ay

. They form a complex if and only if 0T¢ is a CR-structure. In

1

terms of a complex analytic chart z = (z ,...,z') of N

(and using the notations introduced near thé'end of §3),

(40) L = z(zi',%f)z’z , £ ec™(E0
2

(41) ,3224 = ;kék Alsg(hkéz) .

The formulae (40) and (41) determine uniquely the operator 3§
because of the linearity and the rule Sg(e A ¢) =

(sgé) A+ (-1) %9 A 3g¢ where g is the degree'bf 9 -

st
ik



It is interesting to note here the formula
- k k-
3. 3f. = -5 (37E/2z )P(g)" .

This coul;i. be used to show that _é(¢) is well-defined independent -
of choices in the defining formula (27). Since.in our conétruction
of ve.rsal families we wbrk on T'N|M ‘valued differential forms

of type _(0,p)b - we have» to define’ Eg for such forms. We do

this by explicitly writing dowr} the definition in teﬁns of

_complex analytic chart z in N and sh(r:wix.zg'vthat it is well-

defined globally. For . € Aéo,,p) (M, T'N|M) write

k (0,p)

k k .
p = Lu ®¥rz , u €A (c,c) .
Then we define Egu, on G by
<o, - <o k k A
| ENT! T (37w +»22I‘£(<p) A W) @z
where
ok - k 3 k 3 .
rle) = (e / 22hz - o Jie)
I3 L =g K jor kK, &
= h + z.h, : .
ayz(cp) 43P EJ 93P / 3z

By means of a hermitian metric we 'introduce ,(_a-g)* . The
laplacian 62 = (FH*F + JP(FN* is still subelliptic. The
di.xnension of the kernel of Aép may depend on ¢ . However, we

" can show that, for ¢ sufficiently small, the dimension of the

2/
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sum of the eigen spaces of eigen values sufficientiy small, say
H; , is independent of ¢ . Denote by % the,ofthogonal
projection (in 'Lz nérm) to H;‘}  Denote by N¥ the
composition of I - pm with Neumann operator of gg where I

is the identity map. We have the formula:
pCP + Nvgg = the identity map .

We use p% and N? instead of thé harmonic projéction and
Neumann operator qf qg because the latters do not depend
smoothly on ¢ . When we write dowA (Eg)* in terms ofAé local
chart, we find that partial‘derivativeé of é; appear in the
coefficients of the zero-th order terms of the expression. By a
technical reason these coefficients‘cause some trouble in the
construction of the universal family. _Thérefore we just take out
the terms which contain partial derivatives of QE and piece
them together by means of a partition of'unity. In this way we
construcf ,(Sg)# . It is a differential operatof having the

same principal part as Sg .

We are ready to state what we will do instead of trying to

find the inverse of the map (38). For each sufficiently small
harmonic (with respect to AE ) T'N|M valued differential form

of type (0,1) solve the equation

b s

pP +NP((FD) *R(g) + TL(ED *g) = o%t .

22
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4 =
-1

It can be shown by means of Nash Mosef theorem that the equation
has a uﬁique solution, say o(t) , which is sufficiently small.

" Then we write'déwn thé’equation for t so that OT;(t) is a
CR-structure. In this way we.construct a family of CR-structures.
By anélyzing fg closely we can show that the family induces»the'

versal family of deformation of the isolated singularity we

started with.
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