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1.Introduction

Recently several authors have investigated the Euclidean
boson quantum- field models ( the so-called P(¢)d—models) as
a classical statistical mechanics [1];[2] . In these articles
we see that the Lee-Yang circle theorem and the correlation
inequalities do play a_central role in the studying. On the
other hand, Griffiths et al conjectured that a set of
correlation inequalities will determine the forms of the
interactions {3],[4'3 .From the view points of these appli-
cations and the conjectures, it is an interesting problem
to decide the partition functions which satisfy the Lee-Yang

circle theorem or the desired correlation inequalities.

Adding to these problems; Newman recently proved that the
Lee-Yang circle theorem leads tbvsoﬁe‘torrelation'ineAUali—'
ties [5]: Therefore it is also an inferesting‘problem to
discuss the relation between the Leanaﬁg circle theorem and
the correlation‘inequalities} Finally  since the properties
of the partition functions which satisfy  the Lee-Yang circle
theorem seem to be open; we! investigate'the genefal properties

of them.

We organize the paper as follows:.
In section 2, we define <classes of the partition functions
Lo, L, D, .J ,and summarize the relevant correlation ine-

qualities without proof. In section 3, we investigate the
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Griffiths first (G-1) and the second (G-IX) inequalities and
discuss the relation between these inequalities and the Lee-
Yang circle theorem. In sections 4 and 5; we inves:igate'the
Griffiths-Hurst-Sherman ineguality (GHS-inequalitys ] and the
Lebowitz inequality. I%%ection 6;genera1 prcperties of the

partition functions which belong to the Lee-Yang class are

given.

2.Classes L, &,

We summarize notations and definitions used in the following

=
(<))

[
.

D ; unit desk =i{ ZE‘C;[ 4< 1}
3D ; boundary of D= z.C ;;[zi =14
L@ o L
e

polynomials:of nﬂvariaﬁleS'zl,~°',z

which are linear with respect to each

] ol

'zi,and satisfy

) -\1. N "» . ) .'.’. )
P('Zl ,"'12;1‘_ 1=PCZ1;"5ZBI n 2z
with PC0,0"",O‘)=1 .

-1
5

For the sake of the brevity, we restrict ourselves to the
case where all the coefficients are real, thus Pé&Le is typical-
ly given by :

P= (A*zyz,-vz )+ % B£11C2:+Zizz-.

with B .(¥), . '5 - = =)



A A - . ' : .
Here: Z5 (or 1 ) means that the variable Z; should be omitted.

.ﬁﬁn) or &~ ; the Lee-Yang class Ciﬁe . We say that

Péaié belongs to £ provided that any
oC

L

root of P=0 satisfies 'zi(zj; j#i) €
provided 'zjé‘D (j#i) and z, € D° for some
X (k#i).

J ~; Set of Pél% such that all the rocts of

P(z,..,z)=01lies on aD. Obviously L 2Z .

These definitions are general and independent of models. In order
to define class £ , we use the Ising model of spin 1/2 where

there are only ferromagnetic pair intexactions :
By =~ Byey Jp5 (545370072 - Bhy(s3+1)/2 (2-2)

where 0 iJ;ji © and s, (i€ A) is a random variable at the lattice
site i€A which takes the values %'1 . Let P be the relevant
partition function;

p= z{si=il} exp (-H, ) (2-3)
with o z: = exp»(hi) .
Therefore P is given by the coefficients

8 Y iz : :
VIO SNCTU SRR UTIG O ¢ (2-4)
1,1, i, i=i, jEA ;G & ﬁllz 12} A

with Yij= exp (-Jij) .

Then obviously <v;; £1, however we extend this as.-12 Y. 51,

7

and denote the resultant set by D,

N . ) 2
For PEL, we identify P with its coefficients {8 =, s

e lll 18
d

& R (d=2n'1 -1), and consider the sets of functions Lo and £

as the set of the coefficients. Iﬁ@hiS'sense',we’denote the

-3
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onvex hulls of £,2.4 by £ & and J respectively, and the closur

o

al

of £ by £, |

Finally in order £o study the correlation inequalities, we some-
times restrict ourselves to the subsets where all the coefficients
are real non negative . We denote these by ,ﬁ;,¢£* andfﬁ*respec—
tively. | |

Now we define the so-called ursell functions:

for P¢ L ; , we define

@) i,

u (il""’i&)v FUIi:il Ziazazi‘)l‘og P 2‘2‘2 k

(1) . : ) (2-5)
u (1) =7 a/azi log P -1/2
As is well known OCE (8¢ %), and for Pl we see [3],[4],[7]
(81, [9]
P . . . L@ s : L
Griffiths first inequality ; u (d)> @ for zj >1 jen,

Griffiths second inequality ; uczki,j) >0 for zj >1,4€4,
cHS e . R 69 PN ' .
-inequality ; u (11,12,13;5 0 for zj >1, jeéa,
. p » | |
Lebowithz inequality; u‘é)(il,iz,is,i4)i 0 for zj=l,jéA,‘
Sylvester inequality ; ueé)(il,",i6) 33 for zj=1,jeA,

where A={1,2,""",n }.

. PR . + L.
Cs 3 The set of the partition functions Pe‘ﬁe which

satisfy the expected inequality £or the i'th

ursell function.

3. 27 and ucl) u(Z)

’
‘ + (1
Lemma 1. Let P&L | then u“‘)Ci) >Q provided Zji 1 ,jeA.

-~
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. Let
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P be given by
P=B(zl,-‘;zn_l) + A(zl,'°;zn_1)zn

hers . . . PR o ..
wherc A,B are linear functioms of 295"t 2oy with positive

coefficients. PEL implies:
|B/A|<1 provided |z;[>1 i=1,2,'*,n-1.
On the other hand,

ucl)(njéanAzn-B)/ZP .

=

-Lemma 2. For Pélf ,~ followings hold
(i) 1If ucl)(x) 20 provided 23_1 ,JéA,then
)y
o ul )(11,12)! >0 .
i) 1wt g,1,) 20 provided 25 21,jen, then
ney (i) 20 provided 2 21,j€a |
proof. Cif Let all z except Z; be equal to 1. Since
peL (1) (11) (z -l)f(z ) wﬁere the G-L inequality .
Te? 12 - :

ensures’ E(z, ) >0 prov1ded z; > 1. Thus ne )(1 =£(1)2 0.

2-—- 1’12) = 1
(1) = '

(ii) Since P€23,11 (ll)iz=l 0. » | 2
However, unfortunately PEL" does not necessarily imply
the second Griffiths inequality—with positive external fields,

i.e., PE€ L7 does not imply o
) 2Y .. s A .
Ll ’(11,12} 20 with zjil ,jEh
An explicit counterexample is given in the next section.
Finally for Pélﬁ,we can show thé correlation inequalities
which correspond to <5152...sz>30 provided hizo;iéA.This is

the G-1 inequality in usual sense.

: '\Vs'h
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Theorem 1. Let P(zl,",znktf'then

‘ 5 -1/2 -1y
B HiGS (zi 3/321)[P(Zl, »2 )cnlgl zi) 120 (3-1)

~ provided 'z{ >1 ,i€Awhere SCA denotes the set of indices.

proof It 1s suff1c1ent to consider the case that all the

lndlcesare dlfferent Let P Be glven By

. . --.» Iy 3 zt z. "z-
{11,12, ,i }cs i L T s B e
. whers -{a 1’12’ .12 } are 11near functlons of zjéANS with

pos1t1ve coffxcxents. Then
| | no Mt
z 1/2] .[ 2'3[ / Q’

ges(z 9/0%z. )[P H1=1 23 1=1 23
where R o :

. ,'8].8, _,ls|-1 SNi gy LolS]e2. - - S\(§j)
Q=2 l,“’s 270 T Eges 2T Pang 20 E g ges P\, )
) *'f'fffi)‘S!P o _ 

=T   ‘ | 5,," : (;1)|sl“‘ll atzr‘ C3§21

RECR SRR AT < R
with |
‘= . - I- -
aI‘ailgiz’.‘.-,il .‘z H.éI 1’ PI nler 3/321 P

Let szANS be fixed and > 1, thus we study: the necessary and
.sufficient condition that ensures Q '3p:provided that'ziz 1 ;iETS.
Following Lemma 4,which will be-proved later, this is

. (1) ' 1 2’00”; —"0 B

2 3 2,000 T % 2,.1 1—0 ies ,

[ .
h.

5(3)_? 1 z,..,z ! z,.1 L ;32 %212 ,.1.5. 201,568,

(2+1) a. Z

ies 21, 2,.1 z' *Iijes ®1,2,.4.5.0

s ez g2z

1 2’002

Here without loss of generality, we put S={1,2,3,..,2}CA .

-6~
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These cond*“*ons are equivalent to

=
ey
2>
T
Q)
™
}J
L 4
"
™~
1
}
—
<
n
1%
~
iV
<O

- - . ,

for any subset ICS. Since PéL , all the roots of P.(z.
. o

lie in the unit disk D. Now we investigate the sign of %{-1}.

o 1

IS\T:

Po(z)= agz ™
“

it
3
<}

ag .. [(z-0;5(z-0;)]

wheve {w.,G. lwil } are the complex roots,and {z.;|glsl 1} are the
B LA | ) IS 27
real roots: of P;=0. Since aS>O,({1%wi)(-l-6i) >0 and sgn Hj=1 (-1-¢
=sgn (~1)!S\I[ we see A |
NIL L
-1 -1y »0.
This completes the procf.’ v “

X0 : _
Finally we would likévﬁoint'out‘ that if Péﬁ,‘ucl)Ci) or

< 5152“’5 > o Tl

L y a/az [P Nz, l/2] also satisfy the definition

1€S j

. _= |

of £ except the eveness condition P[z l,..,z )= P(zl,.. 3 N

L ’ GYPCI.@ )Z';:') YPClGDZ

PEs

This 1is obvious Dbecause if P(Zl,-.,211~

with 9.€&R  again satisfies the definition of £ except the

eveness condition,and these correlation functions are essentially

*

given by (3-2). However ,this is mnot true for the higher

functions. In fact if it were true, the higher ordey

@]
L]
o
(¢}
*
o
g
w
4
f=
Pt

h

ursell functions would have definite signS'in'{'zi il;iéAl}



4. L7 ane u(s), u:4)
In the cases of n= 1,2, £ = 9 (f*= D" ), and

= 2 ) P , N ..
that £ =8 (L*=&" ), and PE€L “oes.not imply the desired

W

(i=1,2,3,4) . In tie casz of n= 3, we will eazily see

2 -

inequality .

Lemma 3. Let P€L , and be given by

p= 1+zlzzz3 « L §=1ﬁ(zi *212:24 ) . o (6-1)
Then P&L if and only if
Tl >ies Byl B | (4-2)

proof. It is necessary and sufiicient that
-1_ ' _ ‘ ' ' - S0
(25) 7= -[B3 *By29*By2, +292,1/1 1+8,21%8)2; +B5212,]1 €D
provided zl,zzé D and some of thamé;Do. Remark thet the Shilov
boundary of the polydisk DoD®. .eD issD@. ..o8D.Since zs € 5D pro-
videéd (zl,zz)éanaD,,the problem reduces to ' obtain a condition
which is equivalent to
P(27,27,25=0)=1%812y +By2) +B52,2 7 0
provided (z152,) ¢ DD
Therefore ‘ (
-2 .
[z, = 1(32+3321)/(1+8121)[ <1 p?OV1ded zlé»D.
This completes the proof. A

o]
L1
w»
vl
Hn
&)
H
*J
o
¢ Y

Now we investigste the correletion inegualil

given in the previous lemma 3. When &ll the arguments ave differ-

ent with each other, we have

-

u(é)(1,2,3}vzlzzzs‘ﬂa/32i log P=zlzzz3 £3/ P3

.,'8,
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where

2

f3= P P1,2,3 - PI Pin;k +P_P, P

17273
Cmso(mzgzyz) +sy(zymzg24)%s,(zym2520) *+55(z5-2,2,)
with S :
sg= 1-B] -85 -Bj +26,5,8
So 1 "By "Bz *2B18;85

’

ot eroa? a2 a2y
Sl—yl\(l B; +82 +83) 28253’

(4-3)
5,=8,(1 +87-83+52) "2858y,
sg=85(1 +8] +85-80)-28,8, |
Lemma 4. Let ,
£= B ZqZgeea2, * Zaizlzz..;i..in' f Eaij»zlzz..;i.,;;. .

[ -1 '
' 1,2,..n .

&

Then the necessary and sufficient condition that, f >0 provided

z; >1 (i€A) |is

1
+ « > .é
t o .4 . Y >0 . i ‘;é
a a a al’:’ ‘ ‘..1’ A

R EEEEE R I N A R NS

i,j Treetey g 20

ag* Eai'+ La
proof. Remark that £ is 'a linear function with
réspect to each variable.. Tﬁerefore,the necessary and sufficient
condition that £ >0 provided z; >1 is
f(il,zz,..,zn_i,l) >0 )
3/ vz £(zp)e..,2)= 8/02 £(z,..,2) 2,21 0
.provided - z; > 1 ,i€.. This discussion leads to the

following condition:

for any ICA ,( ﬁ-a/azi)f . >0, Z
el lz=1 = :

~9-
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) +
Theorem 2. For P¢L, we .see:

(1) u(3)(1,2,3) 20 provided z,,z,,25 21 and z,=z =, .=z_=1.

3 S n

21,

(ii) u(z)(l,z) is not necessarily positive provided Zs

however, uczl(l,Z) 20 providec ’21,22;1 and z

(iii) For Péié, let P?Plz4=,,=zn=1 ,ﬁhen for P we see

that if u‘t () > 0 provided 2,21 (3=1,2,3) o
proof. (i)It is sufficient to consider P givae by (4-1).
Thus following lemma 4 and (4-3), we must prove
SO+Si+sj-sk 20, - - (1,7,%=(1,2,3)

5,*552 o - - (1i=1,2,3)

provided (B;,8,,B; ) eX"., It is a straightforward but
tedious calculation..

(ii) We present. an ekample . For P given by (4-1),

(2) - . 2y sp1.al g2 a2 2

Thus obviously u\é);O provided peL and 23=1 (this. includes general
cases) ,however, consider the point5(1/3,1/3;0)62}. At the point
| 83-8182 =-1/9, then if Z4 is large enough, we ses u(2)< 0.

(iii) Following lemma 4, the necessary. sufficient condition
that w1 (1)> 0 provided zjgl,(j=l,2,3)'is

1 +B; 28548, (3,3,00=(1,2,3) Y

Finally we investigate the fourth urseil function [7],[8]:

C4)1 -, 4 '
ut'(1,2,3,4)= M, (258 /azi? log pi

NS

. . o~ 45 : .
As is well known , even if PeX-, p( / does not necessarily

-10-
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negative . when zigl,btt_negative provided zi=1 {the so-called
. A
Lebowitz Inequality ) .Contrary to the case of utz),ucq) is not

4

necessarily negative even if PE€L and zi=l (iep ) .In fact

let P(zl,z2,23,24)= P §25="=2 =1

" = const. L(1+z 4) +Z Bi(zi+zi' 2;..24)

+I ; (z

Thus
(4) N 52
u (1,2f3,4)-z 2,252 [P Pl 2,3, 4 P ZPilek 1
2 A o . S
and o o o : .‘ . :
(4) _ e 2 - -1/2)
u (1,2,3,4)-lz=1—p051t1ve const. [{(Z Bi) /2v—2u,5i3j /2}
L 2,,_ o2 ' .
Oz 8y5)7/2- L By +18;5 M (4-6)

A point C B.=0, Bij=1/3)é R7 is e25+, but at the point
[ 1=2/3>0. Thus w= see that pe & implies mneither “(4)i 0
with zero external fields nor u( )< 0 with positive external

fields (Jee the next sectlon)

" 5.Some remarks on the correlation

inequalities.

NoWw we see that the partition functions which ©belong

to £* do not necessarily satisfy the correlation inegualities
. ' ) + .
expectzd from the results seen in Pé & . The reason is

. . oo P .
obvicus, in fact P¢L is a property which is derived from

» 11 -
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the behavior of P on Deb®..®D C c?, and on the other hand
correlation inequalities crucially depend on the behavior

: n n .
on [l,e )7 C€ R” . Cur examples suggest

Si
+ —
D°C N, CL* (5-1)
v i~i
However, Newman .showed [5]
0"1 \2& . ) . K
(17 " (z 3/s2)"*log P(z,2,..52) > 0 5-2)

fzel =

provided Pe 0 ,.

-3

From our standing point of view, these are special ursel

functions.
" Our analysis implies that £ *-class is too wide to
satisfy all the correlation inequalities . Finally we
show that the evén'th correlation-inéqualities with zero ex-
“ternal fields follow?Afrom the odd'th correlation inequalities

with positive' external fields (see also the note-added in [91).

Theorem 3.  For PeLy, if ul®)(4,5,k)< 0 with positive

external fields holds, u(4?(i,j,k,1]z=lz'0-

proof.
{4) , : 3 e s
ut-"*(1,j,k,1)=z 3/321 ucu>(1337k)'~=1
|z
. 5 . - 37 and
Since we camn put all z except z; equal to 1 im u=*
PeL _, then we have '
< .
(3) et -
utt (1,3 k=128 (2, (5-3)

where the GHS inequality emnsures f(zl) 0 provided z,> 1.

This compltes the proof.’ ' 7 ’ Z

Cemark. As is well known, the higher order ursell

functions do not satisfy the expected inequality for z; s1-

~12-
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even for P& . FHowever, if they satisiy the conjectured
inequalities (including odd'th ursell functions) for

- R,-l -
e 3 3 , y T (2211(
1< z.% 1+e with e> 0 ,i€A,wz see that (-1) u | - >0

can be derived from (-1)2’1u(2£'1)

>0 with 1;zi< 1+g.
. 20w ‘
If this is. true, u(2&) and u(“z 1) should be considered
~as a pair. See also the dicussions in lemma 2, and by the

same discussions, we see that the converse is true.

< 0

o=
& 1==

Corollazy 1. For PeL ™, ul®) (5,3,%,17
provided that at least two of (i,j;k,l) are equal.
proof. (i) Two arguments are equal.

Following Theorem 2 and Theorem 3, it is obvious.
(ii) Three érguments are equal.,

Without loss of generality,let (i,j,k,l)=(1,2,2,2){ Thus

u(4)‘z=i=(PP1

y &~

°-P1P2)(P fePZ‘-GPPZ) / ?4lz=1 W ~This fs-negative
. + ~
since PEL . pinally if all the arguments ' are equal,the

problem reduces to P=const.(1+z). 1Z

6.Structure of & and .
Before studying the topological structure of £, we
would like to point out that a product can be defined on £

[6},[10],{11} We call thiS'product the Asano product.

) ) ()

Theorem 4. Let 4{'& o _-}EA, (5. . }é:ﬁcn)
11,..12 . ? 11,.:12
then | (2) 80’) . (n)

ke s e P R



This is.a very well known theorem. zand we
- s . ) b d do not reveat

the proof. Details are shown in [6],[10],[11]. Therefcre X
has a semi-group structure by this product. Remark that L
is also closed wunder the product. We denote this product

by {ae}', .ot A[PQPB}.._.

The Lee-Yang class L is a much complicated set in the

n-1_

space of the d-coefficients (d=2 1). Let P be given by
a

(2-1), then we identify P with {B(iz...,ﬁ(i)z...... } e R”.
. 3
Lemma 5. I: P€f, then -1 ng) <1
proof. If PEL,then A[PN]=A[PA[....ATPP]1]..] € Z .A[P"] is

(2)N

given by {8 Since all the coefficients of must

p
1 (!?I)' . . . .
be bounded, - |B';’ | £ 1. This completes the proof. ¥/
' . - -

Theorem 4.
(i) £ is an open',arcwise-connectedVset.
Cii) L is homeomorphic to &-dimensionai opendisk DCd).
proof. (i) The openess of £ follows from the definition.
. .

Let Pt'ésﬁ be given by putting all Yijlw tel0

THerefore P, ¢ £ and P €L for té&([0,1) .P, is a continuous

i
s+

line connecting Hn(1+zi5 ¢L and I.+nnzie¢£ ,and liies 1in
L . For any P€ZL, P, = A[PtP]E L 1is continuous with
‘ * . ~ ~ ) >
respect to t€[0,1], and P1=P€i,PG= 1+ Mz; €L . Thus L
is arcwise connected. .
(11) From the above discussions ,we see ,by operating
A[Pt--],‘that any sub set of £ can De continucusly contracted

to the origin. This complefes the pfoof.“ ‘%%

~14-
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Remark. Even if the coeff*c1en»s are complex, these stat

[}
[

N

ments can be extended by su:table redefinitions |

The main. theorem in this section is;

Theorem 5.

(1) ACEcd ,
(ii) v,{‘)*‘Cf*‘C@"» .
(111) ,é\-’ﬁé\ ; 004-,/@4-.

pProof | (j) DCfﬂJ@*Cﬁfare well known. Consider the following
(d+1) functions;; K
o ' nn(l izi)
where the number of (-) sign is even, and which ensures that
" these functlons belong to I: We denote tﬁée functions by Pi
(1=1,..,d+1), and re;ark that P €D (P P ) and these are

all linearly independent.Then P=I oy P ‘with a. ;@,z @: =

becomes a d-dimensional comnvex ceal 1 in th» d-dimensional
space of the coefficients. Thus,denoting this convex cell
N ' X R ‘e -
by ,8 ,we show 2R £€Z |If once it is proved, (i) follows
’—5. o 2,
from theorem 4 and the fact HCL . Each of 30 is a (&-1)

dlmen51ona1 convex cell.We rewrite P as
p= %z =0 7 *n a/azn
n o 4 :
.=B(zi,..,z 1) +A(zl,..,z 1)Z<

Since PEL is equi*; ent to

A/B |< 1
provided z;&éD and some z;¢€ p°, @nd P € 1% im»lies
(/B | =1 provided all z.€80, it is neceséary and suilicient
J .
that B70 provided 1029000 %, l}é@Dnhl,

-18-
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B is given by by L“,-Pi 1z =g » and consider the point
. “ I n n_-‘ |
(zl,zz,...,zn’1)=(il,il,...,ix) . There are 2" %= <. points.

For the giveén point, the function which does not vanish at

the point is one of the fellawing two possible functions:

Hi;l'* izi)(l-z”)
and only one of these functions belongs to &£_.Thus d-function
of ‘{?i} vanish at the point. Therefore XL 2 a5 ,and
(i) follows- ’ |
(ii) Each ~hypersurface of;fﬁlis given by

P = I%p. o
iell 1

is0, yd w=1.

= i=1 1
Since we restrict ourselves to xi+, one of Pi (i=1,2,..,38)
is II;=1 (1+zi).YThese hypersurfaces intersect the positive

part of the coordinate-axis at the points
. _ .
(1+mep 20 (L +n je1¢ zj)éas

If o.M,

The convex hull of these points together with (i+Lz. )

and Hi(l+zi) includes £ .
(iii) This is obvious fron the above discussions. .Z%
Remark
(i) Set L is much complicated, an a;i is constructed
by algebraic manifolds. X seéms to be a 'concave set ".To
confirm the conjecture,consi&er the function P =(1-2) {1+ Tz.)
+AN(1+z.) -~ with 0 <A< 1,m » 3. P €L T if and only if

0<A< [1+(2cos ﬂ/(n-l))n’l]'l.

(ii) One may define the vertices  of L .,4& . I owvizr

to define . the vertices, however, we must use tie terminologiecs

-16-
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of algebraic geometry. Since £ and i)are semi-analytic sets,

we can define the vertices as the zero dimensional singularities

“of 8L 38 .This is usually done through the stratification

of. the singularity.We conjecture

@) Ver £ = Ver D

(i1). Ver —Ver;d R

These can be con flrnod for n= 1 2 3 4.

‘Finally we comment on the some‘interestinq'prcuarties cf
& . Let. P(z,...;z)=(1+zn) +a1(z+zn“1) +aZ[22' n= 2)+ €D,
Recently Millard et al have obtained a‘generalization of. the
Ruelle's lemma [6],[12] | | |
Theorem 6. e Let A aﬁdB-Bé'closedAcircular regions
‘not contalnlng the orlgln If f=y ?.0 B”Zi vanishics only in.

ACC,and g= 3 .=d [ z1 vanxshes only in BCLC,then AIfOJ-_

i
120 1l b c z

vanlshes only in AB={ zeCz=-z1 z,zléA z éB

Therefore , usn1~ the same- technlques in Theorem 4, we have:

Theorem 7.

“

(i) 4 is closed,arcwise-connected set and all of the

Homotopies of »/ vanish .

»(ii) Let 7%ﬁ{zn+an%1zn’1+a \'zn12+..~alz-*,cg ?éRnul}

be functions whose roots are all. in an. open reulcn 3CC “;:ﬂa
- Faed ) = K - ' - Pl & [~y > =

‘AnvaAlant under the rotation around the’ or*g*n.inen f% is  homzo-
norphic to (n—l]—divens401al open disk p*° 1,

.
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