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On Isometric Structures of 3-Manifolds =

By

Akio Kawauchi

(Department of Mathematics, Osaka City University)
0. Intreduction

As is well-known, J.W.Milnor[12] defined an isometric form
of the knot exterior E(k) of a classical tame knot k € §°
associated with an element of Hl(E(k);Z) that is specified by the
orientations of the knot %k and the containing 3-sphere 83. The
3

isometric form, referred to as the gquadratic form of the knot k¢ 57,

is necessarily non-singular and it was applied for the Fox-Milnor

knot cobordism group[3]. The author defined analogously non-singular
‘isometric forms for closed 3-manifolds having the integral homology
group of an orientable handle Slxs2 and this isometric form was
applied for the %Lcobordism group §R151X82) of the homology
orientable handles.(See [8].)

The main purpose of this note is to define isometric forms for
arbitrary, compact,connected and oriented 3-manifolds with non-zero
first Betti numbers and to deduce elementary proverties of the forms.

In order to define}the isometric form, we will need a version

of the Blanchfield duality on the infinite cyclic covers of manifolds,

(¢f. R.C.Blanchfield[1].) Our isometric form will be, in many cases,
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singular and, as in the link theory(cf. K.'urasugill3], ¥.Hosokawal4],)

, we will define the surasusgi signature, the ( one variable)iAlexander

volvnonmial, the Hosokawa polvnomial and the nullity.(However, it

should be noted that the concepts of the lurasugl signature and the
nullity of our form are strictly distinct from the original concents
of K.Aurasugi{lBJ.) The isometric forms and hence the;e invariants
will be seen to be closely related to the various (restricted)
cobordism problems of 3-manifolds,

The note will contain typical three applications. The first
will concern a polynomial condition for a finitely pnresented group
with the first Betti number one to be a 3-manifold group. For example

, we shall show that the finitely presented grouv &

)—"‘—( ay b:
?—lbpa = bq )

h

is a 3-manifold group if and only if pgq = O or

ol = |gl. This answers a question of William Jaco[5,Question 13].

The second will concern a codimension one piecewise-linear embedding

of a 3-manifold into a 4-manifold. For example, we shall show . that,

Ql
1

for an orientable torus bundle M  over , the bundle proiection

1

v: o= 3 Slﬂi*'<:S%K83 is not homotopic to any piecewise-linear

embedding except for two vnossible cases. The third will concern a

codimension two (possibly non—loéally flat) piecewise-linear
embedding of the disjoint union of Z2-spheres in a 4-manifold. For
examvle, we shall present a generalized version of an example shown
by Y.Matsumoto[1l] by using an invariant of R.A.Robertello[15]. That

is, we shall show that there exist simply connected viecewise-linear

4-manifolds W such that anv basis of HQ(W;Z) can not be

represented bv disijoint, piecewise-linearly embedded Z2-spheres, though
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Throughout the note, spaces will be considered fro

linear voint of view.
1. Duality Theorems

Let F Dbe a field and <t> be the infinite cyeclic
multicative ) group generated by +t. By Flt] we denote tne grouy
algebra of <t> over F. It is easy to see that ¥t] is a vrincinal
ideal domain.

Consider a compact, connected, piecewise-linear n-manifold 4

. . L ’ Ny ; ~ ‘ U
with an evimorphism Y:TT, (M) = <t> and let 1™ be the infinite
cyclic cover . of M associated with Y. It is easilv checked

. T £ 1o RN -

that the homology F-modules  H,(M ;F) and H,

finitely generated F[t]-modules, since the original manifold is

. 1. . . . . . I s B,

compact and F[t] is a principal ideal domain. We denote by 6*\A PR
5 R . . ) or e Piot

and *(M , M3F), respectively, the Flt]-ranks of the finitely

_ S o~ NG
generated homology #[t]-modules H, (M;F) ana H, (0,30
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to as the 7Flt]-Betti numbers of M ana (Nn S, By T, (%%7F)

~ .
and T*(Manﬁn;F), respectively, we denote the F[t]-torsion parts

of H (M%F) ana H (WP

1 F), referred to as the homology F[t]-

torsion modules of M and (ﬁn,ﬁﬁn)

The cohomology F-modules Hf(M ?) and H*( AT F) form
F{t]-modules that are not always finitely generated F[t]-modules.
Define the finitely generated F[t]-torsion modules T*(@F}F) and -
(M2 XM F) by the identities:

() = HomF[T*(?ﬂm;F),F]
™ (M, 3N F) = Homg[T, (°,3H%;F), P,
Further, we define B, = H,/T, and B* = HomF[B*,F]. There are split

short exact sequences of F[t]-modules:

0 = T, —> H, B, —> 0

0 -—= B* > H* T* => 0.

(Note that these qeauences are canonlcal but not canonically svlit.)

1.1.Duality Theorems. Suppose ‘%ﬁ is orientable over F.

I‘-lell 1
e toeamir . ) 1 ’ n-—1i ’

(11) Tn_l(ﬁp,%ﬁn;F)'?sfy and for a generator //b . of

y ~ ] : ' . s A
Tn_l(ﬁn,zwn;y) and all i, the cup product with/u pE (B F) —

B (19 M F)  induces an isomorphism

fpazel(ﬁn;F)¢z i 1(“ ,omn ,F)
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Duality Theorems (I) and (II) have been essentially known by
R.C.Blanchfield[1]. However, the formulation of (II) is near to
J.W.Milnor's[12] rather than the original R.C.Blanchfield's.

1.2. Remark. In Duality Theorems (I) and (II), the assumption
of the triangulatidn of M can be actually removed by using a
method analogous to that of the author's paper[9].

1.3.Remark. In Duality Theorem (II), t acts on T l( 9 )
~F as the identity map or the (~1)-multiple map according as the
original manifold M? is orientable or non-orientable over F.

1.4. Proof of Duality Theorems. Take a triangulation of Ui

and choose a basis for the free F[t]-module C. ("n F) with one
generator for each i-cell in M. Then it is easily done to set up
the identification as F[t]-modules of the finife cochain complex
Homc[C*(ﬂp;F),FJ with the cochain complex HomF[tJfC*(ﬁn;F),F{tJJ.
Hence we have an isomorphism Hé(ﬁn;F)ﬁz H§&§ﬁn;F[t]) as Flt]-

M F(t]) denotes the cohomology of the cochain

modules, where Tﬁ{%
complex HoantJLu*(; sF)L,FPLt] . Usihg the vprincival ideal domain Z[t]
, from the universal coefficient theorem, we obtain a short exact
sequence
= S ’:\vz‘fn. o+ % Al "
Oﬂ>ExtF[tJ[Hi_l(M ,F),FLtJJ—9H §1 ;FLt])—=Hom,

for all i. In particular, we have

72 ¢ R, A A
ei(mn;r) = rank-LtJHomFLtJLH (T 7) thJJ

rankF[tJqu§M sFPLt])

]

rankFLtJH (“n F)

and



= dimyExt tjiﬁi;l(m‘;y),F{tJJ
= 11,LorFLtJ(uFLtJ( ,¢Lt4)}
= i1m$¢ornt+;(i (7).

Un the other hand, we obtain the following commutative (up to sign)

sguare of isomorphisms

. N6
L s s B b M - SN ATH
() i (7,0 )
= |t 7 [ =

F) Ne, g (0 3 F)
~ n-i""

-
o -
-
2

o]

“t

~ —
, where [Mn} is a generator of the nth infinite homology F-module
.Yﬂ‘"v
B (R

, %M ;F)= F. Therefore we have

@i(ﬁn;F)

I

B vt s N
rankF[tJﬂc(M i F)

= rank7, -"'JHn i ( ,ap,vn.F)

'11’1 -
en l(vIA H55).

This proves Duality Theorem (I).

Next, choose compact. submanifolds Mi’ —kal‘kdb, in WM with

il , : . M1 cw
“1”“1+l a compact submanifold and such that I = bl_ WLl and
t(Mi) = Hi,q (ef. J.W.Milnori12], A.Kawauchil7],[9].) By [7,Theorem

] o W ) =] AT
1.1}, we can assume that both mD_UOUﬂp+lU... and Nq M—QU“—q—lU'.‘

are connected for all integers p and q. Let jD:%DCZ(ﬁn,ND) and

jé:??(i(”ﬂ Né) be the inclusions. By considering the Mayer-Vietoris
1 ~ |

sequence of the triple (Mn;Nn,Né) and by taking the direct limit

v, @ —=> +083, we obtain the following exact seguence

‘ 1, ‘iJ* J '*}
—_— Hi(ﬁn;ﬁ)——> 1im_§ 5 (W0 )%”3{ nt(m, NT) }

Now we need the following lemma:
-6 -
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1.5.Lemma. In §j*} + §"*}<:B(Iu"1 F) for all i.

The proof will be given later.

Lemma 1.5 tells us that the énlit exact sequence
0 — B F) —eut (i F) — P17 F) — 0
also induces a split exact seguence
o->31 (1% F)/Im §‘j§}+§jc'l*}'—>ﬁi ) /Imij*%gjé*}—;. (I F)—> 0.

M3 F)  induces a

Since the homomorphism §:HT ﬁn~F) — Hl+‘(
’ c

mononorphism S“.H (h ;F /LH$J*% +§3'*? — Fl+l(3n F) and

1+l(”n F) ],

dlmﬁT (MH,F) dim Torr[t [H from the above split exact

i ~n
‘sequence, we obtain a canonical isomorphism §":T (M ;F) —

l+l (i ;F) ], Combined with the isomorphism Nt

TorFLt][ﬂ

TorF[tJ[HC (M ;P ] — Tn_i_l(ﬁn,Bﬁn;F), we obtain the composite

isomorphism (1[M"]e &ﬂ-ml(’%n-F)-*’»T N ('Ff'zn,giﬁn;?) for all i.
'?"I‘

For a unit léEI{ F)=T JCMn sF), we let }L & (L)L -1

(ﬁngWF}F). It is 1mmed1ate to see that the 1°omoroh1%m

‘WQ@JOS"iT (M ;F)f:;Tn_l_l(M ,3M ) is induced from the can vproduct
wit@}t QﬁaHl(ﬁn;F) - Hn_i_l(ﬁnféﬁn;F). This proves Duality Theoren
(I1). | S

1.6. Proof of Lemma 1.5. Let T, i(p) and Ti(q) be the

images of the homomorphisms j. *.T (ﬁn ) —= Hy (o ,r) and

’ ’ !
jé*:Ti(ﬁn;F) —>-Hi(ﬁn,Né;F). For p'<p and q' < q let ‘Ap

B (00,8 ;F) = 1, (5 ,;F 9, (3w N
i i ,Np,l‘) eHi(lv’I ,I‘Ip" ) al'ld A -H g 4 ,J") — H (1 9 O"f)
be the canonical homomorphisms. Slnce tT, (ﬁ = T F)

-8 A
and t. 7T! for all s.

=T i(q) = Ti(q+s)

obtain £57

i(p) i(o+s)
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Using that T, and T! are finite-dimensional over
i(0) i(0)
Al . -3 N =S -
I, there exists s >0 such that )\O (Ti(U))_b and No (J.i(o))—o
(71,(12].). Naturality , then, implies that for all » and g
— "'\l
) = 0 and Aq-m T i(a+s)

and write x* = §j;¥§x;& + .&éﬁ@%éﬁ} = j;(xg) + jé*(xé*). For all

1 v‘) L . .
AT 0. e xe et gk o 1)
Ve Ti(M;F), we have

x*(y) = =X (G () + x50 (y))
X LA y))] + xr LA G ()]
= 0.

]

Hence x* & Bt (M™;F). This completes the proof.

1.7. Remark. Consider a non-trivial homomorphism Y‘:‘nl(Mn)—><~t>

with order[<t>/Im¥ ] = d. The infinite cyclic cover M* of M*

associated with v has & components FITQ’O, '?fl,. Nd 1 such that
- "7" = - i ’T Vi T
t<1j 1) = My, d= 1, 2,..., d=1, and t(Id l) = ro. Each component

7"3 is the infinite cyclic cover of ¥ associated with vl TTl(Mn)—a

. . n .
Im W . For simplicity, we assume M is orientable over F. For

- ~
each j, Duality Theorems (I) and (II) imply @.(W};F): ~.(MI}
V1] -% ]
. - ~ Y
7Mn ;F)  and 9&3 :T (Mgl )=~ Tn_i_l(ﬁj A MJ.;F), where we choose
’}4(‘07 %l’.-oy/ld_l SO that t/‘j = ., j = l,2,..-,d—l and t./o‘vd_:L:,/LO.
Let )L:ﬂl+ "‘+/I"d-l & T -1 CH,EM . Duality Theorem in this case

may be also formulated as follows:
(1) For all i, B, (a Q i, i F)

(M W F) .

(II) For all i, Iy : o (30 F) =

o

n-l -1




2., Isometric Forms of 3-lanifolds

Consider a compact, connected and orien

epimorphism 3”:1W1(M) —= <t> , For the infinite cyclic cover ¥. of
M associated with Y, Duality Theorem (II) with rational coefficients

Q asserts a duality

1 N YL A
”/’4(3 T (M;Q) —~ Tl(ra,én;w. ,
This implies that the cuv product U: TH(W:0) X TH(H,aM;qQ) = 17(¥,3%0)

! - . . - - o
(gg TO(M;Q) = Q) is a dual pairing. From the exact sequence of the

3

~ . , : . . .
pair (M,9), we obtain the following commutative (up to sign) diagra

of semi-exact sequences:

() 25 200t & oY Si)-Es ot (M)A 01T - 727,30
;:;1/!\ L :;bj; . = l?},t =~ }/ ‘//,& = A
T (M,éﬁ)-ﬁé T (9;;)—-—*9 T (i";)—‘*—"l—*‘-? ﬁ ap —"'?i (31“1)—'—*'9T~<11>.

We may have g ( generally singular) skew-symmetric cup product vziring

Us T (m.,am)x T (‘M,%M) 2 (T,99) = @ such that the following triangle
13 commikalive &
Tl(ﬁ’;);‘vi) X Tl(ﬁ,ﬁ) \
s a 2~ .
.j’J*XlQ J{/y/;? T (8, M) =QqQ,

ot (»f) X7 1(M ) <

2.1.Definition. The ideal order AU(t) of Tl(? %) as a

na
i

Q[tj-module is called the (one-variable) Alexander volynomial of

with ¥ . Further, . .the ideal order h}(t) of Tiﬁﬁ}&)/lmi* is called the

Hosokawa polynomial of M with Y. [Note that the Alexander polvnomial

-9 -
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is defined to be a non-zero polynomial. This attitude is near to that
of R.C.Blanchfield[1]. If M is without boundary, the Hosokaws
polynomial is the Alexander polynomial. ]

Now we let H be the quotient Q[t]-module TL(¥,3M)/In¥. It
follows from the above diagram that the ideal ordér of H 1is hi(t~lL
[Use the equality (tu)t}c: t_l(u@#) and the duality @M,: H =~
Tl(M)/Im i .] The skew-symmetric pairing U: Tl("l‘\ff,')ﬁ) )(Tl(ﬁ,'a@i} - Q
induces a skew-symmetric pairing U: HXH - Q, since j*§ = O.

We say that the pair (M,¥) is admissible if the boundary gl
is empty or the union of tori of genera one,for each component N of
which the homomorphism r*:'ﬂi(N) —> < t*> induced from ¥ is
non-trivial, |

2.2. Lemma. For any admissible pair (M,Kﬁ),,the row_seguences

of the following diagram

1°(3f) o 13— 0tF) s ol

Yo 2 S A

2, (7)) e 0 (M) —des 1 (7,30 1 (@)

are exact.

Proof. Since Tl(jﬁ) = Hl(iﬁ}Q), it follows from the exact
gequence of the pair (ﬂ;éﬁ) that the lower row sequence is exact at
Tl(ﬁj and Tl(ﬁ;éﬁ); Hence the upper row sequence is also exact at

1.5 o 1.7 . :
T7(M,91) and T (M). This completes the proof.

For simplicity, we will assume the pair (M, ¥) is admissible,
throughout the section.

2.%3., Corollarv. The skew—symmetric pairing HXH —Q> Q is

non-singular,

- 10 -
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Proof. By Lemma 2.2, we have Ker &= Im §. Hence the
nomomorphism H = Tl(ﬁ;éﬁ)/KerJ*-—e> T1(33 induced from j* is
injective. Since the cup product U:Tl(zb X Tl(%,5ﬁ) — Tz(ﬁ,iﬁ)z Q

is non-singular, the desired result follows.

2.4, Corollary. The Alexander polynomial A}(t) is &

reciprocal polynomial A}(t) = Aw{t—l) and the Hosokawa polvnomial

hT(t> is a reciprocal polvnomial with even degree.

Proof. From Corollary 2.3, it follows that dimQH = deg h?(t)
is even and hr(tﬁl) = h}(t). [Note that +tulUtv = ulUv for all wu,
v€H. ] Further, the ideal order oi Imé? is reciprocal, since the
ideal order of To(éﬁ) ié the product of a type t*~ 1. So, the
jdeal order of Tl(ﬁ,jﬁ)' is reciprocal, which implies Aw(t)é Abﬂt“l).

This completes the proof.

Define a bilinear form < , >3 Tl(ﬁ}ﬁﬁ)‘le(ﬁ,ﬁﬁd —
by the identity <x,y> = (xUty + yUtx)@Ac. (ef. J.W.Milnor[12],
D.Erie(2], A.Kawauchi[8].) It is clear that <x,y> = <y,x> and

<tx,ty> = <x,y> for all x, y & T (LA,

2.5. Definition. The pair (<,>,t) is called the isometric

form of the oriented M with the epimorphism X‘:Tﬁl(M) - <t>,

2.6. Definition. The signature of the form < , > 1is called

the Murasugi signature of the oriented M with ¥.

- 11 -
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3,

2.7. Definition. The nullity nr(i-i) of W with ¥ is defined
by the equality

(F,34) - rankgs , >+ 1 if Q¥ £ ¢

dim~Tl(§) - rankQ<~,.> if ¥ = [/

Let A be the Q[t]-submodule of H consisting of elements x

with (t-1)(3-1)x = O. Define H = H/A. Then,

2.8. Lemma. The isometric form (< , >,t) induces a non-

singular isometric form (<~ , =,t): HXH — Q.

Proof. For all y e H, <x,y¥> = 0 if and only if +(t-1)(t+1)x=0

by Corollary 2.3 if and only if xe& A. This completes the proof.

Now consider an oriented tame link ,ﬁ in the oriented 3-sphere
SB. Let ¢ “have )\ components. By E({), we denote the exterior of
the link (i.e. the closed link complement in SB). The orientations
of Q and g7 specify a canonical basis of Hl(E(ﬂ);Z). Choose an
epimorvhism 5‘:Trl(E(£)) —> <t> determined by sending each generator
“of the basis of H (E(R);Z) to t. By Ay(t), ho(t), ML) and n (f)

, respectively, we denote the Alexander polynomial,, the Murasugi

signature and the nullity of E({) with . dhe Hosc kowe pobmamﬁ&/

The following was first noticed by F.Hosokawal[4]:

7 5 FWw;a) T ) ) (e 1
2.9. Theorem. Suvppose 81 I ;Q) = 0. Then Aﬂ(u = Qét -1) .

Proof. Since the pair (E(L),Y¥) is admissible and gl(ﬁil);Q)=of;

, it follows from the exact sequence of the pair (F(Q),»E( ) that

the sequence (0 —= Tz(éﬂ,ﬁm)—‘? Tl(ﬁ"(ﬂ)) N Tlajﬁ s Tlmag@))—>
- 12 -
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o~ 2. NG i . i [ - N -
TO@EWD‘_*9'T£CEQ»** 0 is exact. | Use the dusl secuence,,; Jince
DXy ANy LT / " ) i
TQ@((“),Q&:@)% Gle}/e-1 and 7 (R = ol
({ = b»(t‘(t-l)k* directly fo.lows

.

s R .
of hl(ﬁKQ);Q) is not zero if and on

of H (B(L);0).

2.11. Corollary. Suppose B-(2(£);Q) = 0. Then n{{)=Cir & + A,
1

2.12, Remark. From Theorem 2.9, we see that the Alexander
polynomial and the Hosokawa polynomial are the generalizations oi
the usual concepts. However, the Murasugi signature and the nulliity

Tl 9 A ¢ 3

are different from the concepts of K.Murasugill3]. For examnle,
@) =0 and n(Q) = 2, since H(T@);2) = «[t]/t-1. On the
other hand, (Classical Murasugi signature)(@)) = + 1 and (Clusgioal
nullity)«aj) = 1. [ It seems that our signature is related to the

signature z defined by K. FMurasugi in [14].] Cne may note that

= Q)l(ﬁ(-ﬁ);@) = 0, then n() =\, thouzh

,for an arbitrary link,
(Classical nullity) < (the number of tne components). (See [13%,Lemma
6.1].) For a trivial link O™ with )\ components, we have

(0M) = (Classical Murasugi signature)(0™) = 0, n(0*) =1 (<))

and (Classical nullity)(ok) = A.

- 13 -
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Cobordisms between 3-Manifolds

\A

two theorems are basically important:

The following
oriented

connected,

3.1. Theorem. Let M be a closed,

3-manifold with an epimorphism h‘:TTl(M) —_— <>,
suppose M ig the boundarv of a compact, connected and orientegd

4-manifold W such that
(1) There is an epimornhism ‘?:Ktl(w) — <t> such that

the triangle

~

W of W associated with'$,

is commutative,
(2) For the infinite cvclic cover

Qlt)-module.

Hy(W,11;G) is a torsion

Then we have . (i) = O and hy(t) £(4)£(+7 L), where hy(t)

»

is the ideal order of H.

3.2. Theorem. Let Ki’ i =1,2, be connected finite complexes
with rankHl(Ki;Z) > 1.
L such that

Sﬁppose there exists a finite connected complex
is embedded in 1L,

(1) The disjoint union KlUK?

(2) HJ(L,KI;Z) = Hj(L,K2;Z) =0, j =1,2.
Then for all compatible epimorphisms Yzzvni(Kl) - <t>, i=1,2,

is the

QltJ-modules, where By

B, as

is isomorvhic to 5
consisting of elements annihilated by some

B
1
submodule of Tl(Ki;Q)

- 14 -




multiovle of t-1 or t+1.

3.3. Proof of Theorem 3.1. Consider the following commutative

( up to sign ) diagram:

) L o 1(F 82 (¥,%:Q)

=| 0k ‘:l/w Q\[AE
i, (W, Q) 2 7, () ) —ix s 7, (V).

v
It should be noted that the bottom sequence is exact at Tl(m) and

, ' . 1
yconsegquently, that the top sequence is exact at T (ﬁ), because the

vertical homomorphisms are isomorphisms by Duality Theorem (II).

Denote by S the image of a subset © of H under the map H — é:n/A
, where H = 1H(¥), Suppose ,for all i*(xs & Inm i (< ﬁ), <i*( ) v =0,
This situation is equivalent to §(t-t 1)y = O i.e.(t—t 1)y @ In i*

e . ! '—l)y)”#

, because <i¥(x),y> = <i*(x),y> = (i*(x)U{(t-t
(xU (t—t—l)y)ﬂjl

~
=0 for all x é%Tl(M).
Hence we have (t—t‘lkyelmli*. However, e t-l(t—l)(t+l):i - g

is a monomorphism and hence an isomorphism, because dim.H < +00. Thus
o

A ~ - A A A

. . . -1 . - .y o - .
we have y<€Im i*, since (t-t 7 )Im i* < Im i*, Therefore, Im i* is
an orthogonal complement of Im i* itself under the non-singular

A

isometric form < , > , This implies that G%(M) =0 and h}(t) =

-1y,

f(t)f (% (cf. J.Levine[10].) This completes the vroof.

3.4. Proof of Theorem 3.2. Consider an evimorphism y “Tl\“)

{ L]
<t> such that the restricted homomorphism lﬂi ( )= 1r K —

Ty

<t> 1is also an epimorphism, i = 1, 2. It is always possible, since

e

there is an inclusion isomorphigm Hl(Mi;Z)“. HI(L;Z), i=1, 2.
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Let li be the infinite cyclic cover of 1L associated with VT .
Decompose Tl(ii;Q) into BfB Ti, where Ti is the submodule that
contains no elements annihilated by +t-1 or +t+l. By the Wang exact
sequence (cf.[9!.), we obtain an isomorphism t-1: HZCE,Ei;Z) =~

[ iR - ! L i ]
HQ(L,Ki;Z), since H (L,Ki;Z) = 0 and HQ(L,Ki;Z) is a finitely

2
generated Z[t/-module. Let 75%(t) be a presentation matrix of
. N .
Hg(z,Ki;Z) as a Z[t]~-module. By %1i(t)z we denote the matrix
2
2it] = 2

Uﬁi<t) with coefficients reduced to %.. Let be the

<
2 22 2
augmentation reduced to Z,. Since 7ﬁi(t) is a presentation matrix
\ A Snd N b . . . | ‘JN.r :
of HZ(L’Ki’Z)’ 7&1(1)29 is a presentation matrix of H2(L,Ki,£)Q%§2,
Hence if A;(t) 1is the first invariant factor of Z&i(t), then
4;(1) mod 2 is the first invariant factor of N3 (1), . However,
~ \ 2
HQ(L,Ki;Z)Q%;122= 0. Therefore, 4,(1) # 0 mod 2. 307 4, (1) £ 0.
o~ N Lol
Ai(il) # 0 insists that Tz(f,Ki;Q)=H2(L,Ki; ) contains no elements
annihilated by t-1 or t+1. Similarly, Tl(ff?i;Q)=Hl(Lf%i;Q)
contains no elements annihilated by t-1 or t+1. The homology
~ X
exact sequence of the pair (L,Ki) induces the following exact
seguence:
TZ(L,Ki)'ﬁ> T, (%) = 1,(L) — 1,(L,K,).
This implies that Tl(L) " is isomorphic to Bf%?;, where Tg is a
Q[ t ]-module that contains no elements annihilated by t-1 or t+1.

Therefore Bl is disomorphic to B2, since Q[t] is a principal

ideal domain. This completes the proof.

3.5. Corollary. Let ¥ Dbe a closed, connected and oriented

3—manifold with rankHl(M;Z) > 1. If there exists a compact, connected

~ 16 -
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oriented 4-manifold W with W = I and Hg(W;Z) = HZ(W;Z) = 0,

then for any epimorphism ’F:"ﬂi(M) — <t> we have G%(H) = 0,
hy(t) = £(£)£(671), £(21) £ 0, and ny(1) |

Proof, H

Oo

il

2(‘»/-J;Z) = 0 imvlies that the epimorvhism ¥ is
extendable to an epimorphism 7::1T1(W) —= <t> and that Hz(yfﬁ;Q)

is a torsion Q[t]-module. By Theorem 2.1, we have f}(ﬂ) =0 and
._]_)

hy (t)= £(£)2(t™h), Purther, H°(W;2) = 0 also says that t-1: H,(¥,7;7)

r
—_— Hz(ﬁfﬁ;z) is an isomorphism, which assures that the ideal order
L S ]
g(t) of Hy(W,M;Q) satisfies g(41) # 0, as in 3.4. As was shown

in 3.3, £(t) is a factor of g(t); so, f(+1) # 0. This also implies

that nt(M) = 0. This completes the proof.

2.6, Corollary. Let Mi’ i=1, 2, be closed, connected and

oriented 3-manifolds with rank Hl(Mi;Z) > 1.

Suppose there exists a finite connected complex K such that

(1) The disjoint union MJ_UMQ is_embedded in K,

(2) HJ(K,Ml;z) = H.(K,1,;2) =0, § =1, 2.

Then we have nIE(Ml): n33(M2) for all compatible enimorphisms
im0 = <>, i= 1, 2, |

Proof. It follows immediately from Theorem 3.2.

For example, let M = sixslxsl ana Y (i) — T (6= <t
be the epimorphism defined by the projection M= S%YSIXSl — Sl onto
the first factor. Since Hy(M;Q) = Q[t)/t-1 @Alt]/t-1, we have
Q&M) = 0 and h?(t) = (t—l)g.[These are also justified, by
Theorem 3.1, from the fact that M bounds a 4-manifold W, say,

- 17 -
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‘ . ; -
SlXSlX32 with a finitely generated Q[t]-module HZ(W}M;Q).J
However, n?(K) = 2, which implies, by Corollary 3.5, that [ is
not the boundary of a compact, connected, oriented 4-manifold W

with H,(4;2) = Ho(W;2) = O.

no

5.7, Corollary. Le’cﬁi(S3 be links with Alexander polynomiq;§§

4,(), 1 =0, 1. Write A (%) = (+-1)21(++1)°3a2(t), A1 (x1) £ O,

If there exists a (possibly non-locally flat) piecewise-linear nronerf
annulus A(;rSlX[O,l]) in SBX[D,IJ with ~€O= ANSX0  and

—Jle 415X 1, then we have ag = a; and b, = by.
Proof. It follows immediately from Theorem 3.2.

3.8.Corollary. If .Q(:SB is a slice link in the strong sense,
then we have T(£) = 0, 4p(¢) = ng(s) = £(£)2(+7), £(21) £ 0,

and n(}) = 1. (cf. K.Murasugil[/3,Theorem 8.4].) v
Proof. It follows from Corollaries 3.5 and 3.7.[Note that :
, in the case, there is a canonical isomorphism Hl(ﬁﬁﬁ));: Hl(@ﬂﬁ))‘z
and ¥({) Dbounds a 4-manifold W with Hz(W;Z) = H?(N;Z) = 0, whereé
W) is a closed 3-manifold obtained from §° vy surgery along ké
exchanging the meridian curves on a tubular neighborhood with the

(uniquely specified) longitude curves on the tubular neighborhood.]

4., Applications

Avplication. 1. Consider a finitely presented group G with

- 18 -
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rank Hl(G;Z) > 1. For an epimorphism ¥: G — <t >, Hl(KeﬁT;Q) is
a finitely generated Q[t]-module. By T&(G;Q), we denote the Q[t]-
tofsion part . Let ’Jlt) be the ideal order of TK(G,Q . Also,
define a polynomial A(? (t) by the identity A(z)(t )= &Kt }( -t)
(well-defined). We let ?}. G — <t > ——>‘<t//<t2> = ZZ‘
Suppose there/is a non-zero homomorvhism ™G —= 22 with

?;é)jz for ali epimorphisms ¥: ¢ —> <t>; [This situation is
equivalent to saying that Hl(G;Z) contains an element of_order two. |
Then denote Ker[a -T> Z?J by G¥ . Further, we let T% Fe ¢ — <t>

be the composite enlmoxpnlqm and AY (t) ‘be the ideal order of

Tw( y%).

We shall show the following:

Theorem A, Consider a finitely vresented group G without

~

2-torsion (i.e. x°= 1 implies x =1 in G) and with H (8;Q)= 4.

Let §: 0 — <t> be an epimorphism. If G is a 3-manifold group

(2) ()

, then the nolvnomlal A

———

or g( is reciprocal.

Remark. For an arbitrary finitely presented 3-manifold grouv
G with. Hl(G;Z) = Z, there is a more explicite characterization of
the .nolynomial. (cf. A.Kawauchil(6].)

A

A (finitely presented) 3-manifold group is a (fin 1tely presented)

group igsomorphic to the fundamental group of a connected 3-manifold

that need not have any other condition.

Proof of Theorem A. Since G 1is a finitely presented 3-manifolad

- 19 =
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group, it follows from a result of D.EK.Galewski-S.G.Hollingsworth-

D.R.MeMillan,dr.: On the fundamental group and homotopy tvpe of

open 3-manifolds (preprint) that there exists a compact 3-manifold

¥ with T\'l(i‘fi)fix ¢. In that case, we can assume that M contains
no conies of S2. 2

Also, we have that Q! contains no copies of P°,
since G is without 2-torsion. First suppose oM # 9. Using

rank Hy(i;2) = 1, we obtain that X(i1) = 0; so, X (31) > 0, for
N(QM) = 2 X(}). Since neither 5° nor P° 1is contained in Jl, we
have AQ@QM) =7((.!?~1) = 0. Accordingly, H3(l‘~ﬁ,alvl;z)-—,.:, HZ(’aM;Z) and hence
it occurs either that M is orientable and gl = Sl)(Sl or that

M 1is non-orientable and each component of gM is a Xlein bottle
Sl)(ic-sl. In case M 1is non-orientable, we can further assume that

, for each component Slxrsl of 9, the inclusion homomorphism
Hl(slxtsl;z) — Hl(I"T;Z)/(torsion) (= Z) is non-trivial. [ Otherwise,
we will attach the solid Hlein bottle Sl)(rB2 to M along this
5¥%5': 1 = HUS'XB®. Then we will have H (M';Q)= H (M;Q) and
Hl(‘ﬁ';@) ) ril(l\ll, @).] Thus, the pair (4, ‘6’2) is always admissible
for any W, where Iv‘12 is the orientation cover of M and }"2377.1(?’12‘)
— <t2> is the epimorphism deternined by the composite

Vo W (1) < (1) — <>,

1.1

S or @, the vair (i,¥)
-1)

Case(4): M is orientable. Since OM = S

is admissible. This implies that A‘r(t) = A

hence A(i)(t) =3 A(-i_)(t_l)-

by Corollary 2.4;

?F“:

Case(2): }i__is non-orientable and 2{2: T\’l(i‘\'i) - 7, gives the first

Stiefel-Whitnev class of M, In this case, M is the orbits space

2

of the infinite cyclic group <t2> is

?«2/«‘52) and a generator t?

- 20 -
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is given by tz. Let Aa(tg) be the Alexander polynomial of M,
2

with.'ré. Consider a rational matrix (& representing the linear

(g N
isomorphism t: Tl(M;Q) — Tl(m;g; ( for a suitable basis ). Then
o} ) , {21 2
Ap(t7) 2 det(t%8- ) = det(tB- Q)aet(ti+(l) = alt)ayet) = 200 (+7).
£y ‘

Thus, Aﬁét) = A(i)(t). Since the pair (H,, ¥,) is admissible, by

Corollary 2.4, we have Amét) = Atét'l);so, A(ig(t) = A<§)(t‘l).

Case(3): M is non-orientable and the first Stiefel-Whitnev class

T (1) = 2, satisfies ¢#Y¥,. In this case, Y, =% ana
t2 = t. Since the pair (M2,K¢) is admissible, from Corollary 2.4,

the reciprocity Ai(t)ré Azgt—l) follows. This completes the proof.

Example. The group G(D Q) = (a, b; a 1pPs = b3)  is a
MM

3-manifold group if and only if |o| = |o] or pg = 0.

This answers a gquestion due to William Jaco{S,Question 13].
Proof, It is not hard to construct a 3-manifold for the case

ol = lg] or wvg = 0. Hence it suffices to show that if [n| £ lo|

~

and g # 0, then G is not a 3-manifold group. Suppose & .
(p,0) (p,a)

A

is a 3-manifold group. G(n ) satisfies the assumption of Theorem A.

Jlh ]

Afizjt) 1s not reciprocal: Aylt) =gt - » (or pt - q); hence
) ,

A(i)(t) = q2t - p2 (or »°t - q2). Since [pl £ lo| and vpq £ 0,

A(Z)(t) is not reciprocal.

E?(t) is not reciprocal: If there exists a non-zero homomorphism
0 G(p,q) —> 7, with ™ £ Ké; then |o-q| must be Qven, since
Hl(G( AEAS . In case p and q are even, we have a

p,q) p-q
bresented group G?; q) = (a, b, c: a_lbp/2a = bq/z, c—lbp/dc=bq/2))
had ]

where we haveimmka) = &Q(c) =t.
- 21 =



In case » and g are odd, we have a presented group Ggg q)=
My

1622 = %), [Avoly the Reidemeister-Schreier method. ]

(a, b; a~
In either case, we also have K?(t) =gt - p ( or pt- q). Since
ol # lgl and »q # U, A (t) 1is not recivrocal. This completes

the proof.

Application 2. Let M ©be a closed, connected and orientable

F-manifold with rank Hl(M;Z) =r>1 and W be a closed, connected
and orientable 4-manifold with rank Hl(W;Z) =r-1 or r, and
Hy(W;2) = 0.

Theorem B. If there is a piecewise-linear embedding f£:M —= W

such that the induced homomorphism f*:Hl(M;Z) — Hl(w;z) is an

epimorphism, then for any epimorvhism Eﬁ'ﬂi(M) - <t> we have

Gi(M) = 0 and hbjﬁ) f(t)f(t—l). Furthermore, if Hl(M;Z) lig
- 0. ‘

free, then we also have nE(M)

T

Proof. We identify £f(M) with M. M separates W into two

submanifolds. [Notice the assumptions.]| It is easily checked that

one of the submanifolds, say, Wy 2(

oy Poincaré duélity. This implies that any epimorphism 'U:TTl(M) —

has H,(W ;2) = 0. So, HZ(Wl,M;Z)zO

<t> is extendable to an epimornhism ?::Tvl(wl)~ - <t>, Since
H2(§i;ﬁ;Q) is a finitely generated Q[t]-torsion module, from
Theorem 3.1, we obtain that G}(M) = 0 and hbjt) = f(t)f(t—l). If
Hl(M;Z) is free, then we also have HZ(Wl;Z) = 0. By Corollary 3.5,

nkiﬁ) = 0. This completes the proof.

For the special case: M = a homology orientable handle and W=

- P22 -
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a homology 4~sphere, Theorem B has already obtained in [8].
Example. Consider an orientable torus bundle M over Sl(i.e.,
M 1s an orientable 3-manifold that is a fiber bundle over Sl with
fiber a torus of genus 1). Such a bundle M is completely
determined by the fundamental group presented as follows: (t,u,w:

1 ab 1 a b

uw = wu, tut = uw’, twt = ucwd), where P:: (. e d ) is an

integral matrix with det(): 1. We will fix the words t, u and w

and set ¥ = Mp . Let p : Hp—> 5T

be the bundle projection that
corresponds to an epimorphism td er(MP) —= <t>, Then it holds that

the projection p : My —=> Sl = SlX*CZS%XSB is not homotovic to anv

viecewise-linear embedding M@ - S]XS3 except for two vnossible

casess Q =&, -E.
O .
Proof. Let Me be the infinite cyclic cover associated with
the above T In case P:ﬁ ¥, -E, we have 1 < rank Hl(Ev‘Ee;Z) < 2.
~ -8 - .
H (Mp;Q) has a presentation matrix (JC a b1 ). ha(t) = tz—(a+d)t+l.
17 -c  t-d T
If a+d# +2, then h%(t) is irreducible. If a =4 = +1 and
S, 0, or if a+d= +2 and a £ d, then HlCﬁb;Q)cg alt]/(+171)°,
Hence QEKMP) = 1. Thus, in case Q# 3, -E, from Theorem B, there
is no embedding Mpﬁ> SlXSB homotopic to p. In case = I or =%,
it is easy to construct the desired embedding. This compietes the
proof.
P . ady oLyl - -
Remark. If § = E, then M, is clearly SXS5 ¥5~, If P= -5,

then M ¢ can be visualized as the boundary of a regular neighborhood

!
of the "standardly" embedded Klein bottle in R .

Application 3. Consider a compact,connected and orientable

4-manifold W with connected boundary JQJW. Suppose Hl(W;Z =0 and
- 23 -
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HZ(W;Z)Q Hl(g’d;z)’:,@Zm for some m > 1.

Thecorem C. If there exists a basis for HZ("‘J;Z) such that the

generators of the basis are repnresented by mutuallyv disijoint,

niecewisgse-linearly embedded 2-spheres, then we have nb(aw): 0 i.e.

h&(il) # 0 for all epimorohisms {§: “\Tl(}N) — <>,

Proof. Let 3y,..., 'Zm C W be mutually disjoint piecewise-
linearly embedded 2-spheres representing the basis of Hg(w;Z) and
Nl""’Nm be the mutually disjoint regular neighborhoods of 'Zl,.'.,,3
Em in W, respectively. Since W —-ZlU...U}‘m is connected, we can
perform a disk sum of Nl,...,Nm in W. Let N ©be the resulting
4-manifold ley bNm in W. Since the inclusion NCW induces
an isomorvhism H,(N;2)~ H,(W;Z), we obtain that H,(W,N;Z) =
H, (W=N,dN;2) = O. By Poincaré duality, H,(W-N, 9W;2) = O. Hence by
Corollary 3.6 n‘},(BN) = n&('f)w) for all compatible epimorphisms U
and § . Note that N = REE: I #Nm and Hl(gN;Z)e Hl(aw;z)z@zm.%I
This implies that for all i H*(})Ni;Z) QH*(S]‘XSz;Z), since N. is ‘
a regular neighborhood of the Z-svhere Ei’ oince, for any
epimorphism Qf:.'L:“Wl(aNi) — <>, h?f;’(in £ 0 i.e. na}'(BNi)zo
(ef.l6].), it is not hard to see that nw(})N) = 0 for all
epimorphisms W':TTl(aN) —> <t>, Therefore we have n&(aw‘) = 0 for

all evimorphisms ‘}y This completes the proof.

Examoule (cf. Y.Matsumoto[1l1l].) We consider the link klU ks in

$7, illustrated in Fig. 1.




Since the linking number of kl and k? is O, we can specify the

longitude and meridian curves on a tubular neighborhood of each k

such that the longitude curve is homologous to O in 85~ki. Let

W Dbe the 4-manifold obtained from D4 by attaching two 2-handles

o0

DEXDZi, D2XD22 along the tubular neighborhoods with the specified
longitude and meridian curves, so that the boundary QW is a
3-manifold ohtained from 83 by surgery along the link klU k2
exchanging the meridian curves with the longitude curves., It is
clear that W is a simply connected 4-manifold with connected
boundary and that H2(w;z)c<}5}3w;z)¢: Z®7%. Kote that the element
?i of Hg(W;Z) related to each ki is certainly represented by a
locally flat 2-sphere and that§ ?1’ ?2? forms a basis for Hz(w;z).
It is immediate to see that the intersection numbers ?lffl’ i]?”fg’
.?1352 are all O and ,hence, that each two elements of HP(N;Z)
has the intersection number O, Y.Matsumoto[1l] showed that ‘fl
and ?2 can not be represented by disjoint, piecewise-linearly

embedded 2-svheres by using an invariant of R.A.Kobertello[i5].

Wwe shall show that any two elements of H2(W;Z) forming a basis

can not be represented by disjoint, piecewise-linearly embedded

-23_
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1,

2-spheres.

Proof. Let t, and 1%, be thé elements of My (QW;2) related
to kl and k?, resnectively. The set § Tty s } forms a hasis for
Eﬁxaﬁ;z . Let a (Bd — <t> be the epimorphism sending each t;

to 1. Since Tl(auf;q)f:. Q{t]/(t—l)Z, we have nk('&w') =1 ( or

hhil) = 0). Hence by Theorem C +the desired assertion follows.

By considering the disk sums of copies of W, we can produce

infinitely many simply connected 4-manifolds with similar properties.
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