On the disruption of Whitney's lemma for simply connected
4-manifolds (in piecewise-linear and homotopy versions)

By Yukio MATSUMOTO

Whitney's lemma [7] states that intersection points of smooth n-submanifolds of æ simply connected 2n-manifold can be eliminated if the intersection number of the two submanifolds is equal to zero and $2n \ge 6$. However, this lemma fails for 2n = 4. This was first pointed out by Kervaire and Milnor[2] who found 2-dimensional homology classes ξ_1 , ξ_2 of a simply connected 4-manifold such that (i) ξ_1 and ξ_2 are represented by smoothly embedded 2-spheres, (ii) the intersection number ξ_1 , ξ_2 = 0 but (iii) there are no smoothly embedded disjoint 2-spheres which represent ξ_1 , ξ_2 respectively. However, one can easily verify that their classes ξ_1 , ξ_2 can be represented by disjoint piecewise-linearly (PL) embedded 2-spheres (with locally knotted points).

In this paper we shall give an example (Example 1) which shows that it is not always possible to represent two homology classes ξ_1 , ξ_2 with ξ_1 , ξ_2 = 0 by disjoint PL embedded 2-spheres. We shall also give an example (Example 2) in which one cannot re present a homology class ξ with ξ ξ_1 = 0 (ξ_1 being a finite set of embedded 2-spheres) by a continuous map of a

2-sphere whose image is disjoint of these 2-spheres $\{S_i\}$.

§1. The PL case.

EXAMPLE 1. There exists a compact 1-connected 4-manifold \mathbb{W}^4 (with boundary) which satisfis the following conditions:

(i) There are two primitive homology classes ξ_1 , $\xi_2 \in \mathbb{H}$ (\mathbb{W}^4 ; \mathbb{Z}) with $\xi_1 \cdot \xi_2 = 0$, but (ii) one cannot represent ξ_1 , ξ_2 by PL embedded 2-spheres with disjoint images.

We start with the following link :

Fig. 1.

Since each of the components C_1 , C_2 is a trivial knot, it has a trivial framing in S^3 : $C_1 \times D^2$, $C_2 \times D^2$. Attach 2-handles h_1 , h_2 to D^4 along these trivially framed circles. Then we obtain the 1-connected 4-manifold W^4 with boundary. Clearly $H_2(W; \mathbf{Z}) = \mathbf{Z} \oplus \mathbf{Z}$ of which each summand is generated by the respective 2-handles. Let ξ_1, ξ_2 be the two generators.

LEMMA 1. Suppose that ξ_1 (or ξ_2) is represented by a PL embedded 2-sphere Σ^2 which has a singular point (i.e., a locally knotted point) of knot type k (Cf. Fox and Milnor [1]).

Then $\varphi(k)=0$, where $\varphi(k)$ denotes the Robertello invariant of the knot k. (See Robertello [3].)

LEMMA 2. Suppose that $\xi_1 + \xi_2$ is represented by a PL embedded 2-sphere Σ^2 with a singular point of knot type k. Then $\varphi(k)=1$.

These lemmas will be proved later. Since the linking number of our link is equal to zero, the intersection number ξ_1 , ξ_2 =0. Now we shall show that ξ_1 , ξ_2 cannot be represented by disjoint PL embedded spheres. Otherwise, we would have two 2-spheres Σ_1 , Σ_2 (\subset W⁴) which represent ξ_1 , ξ_2 respectively. By Lemma 1, the singularities k_1 , k_2 of these 2-spheres have Robertello invariant zero. We take the connected sum of these two spheres and would a PL embedded 2-sphere $\Sigma_1 \# \Sigma_2$ (\subset W⁴) which represents $\xi_1 + \xi_2$ and whose singularity has Robertello invariant $\varphi(k_1) + \varphi(k_2) = 0$. This contradicts Lemma 2.

Proof of Lemma 1. We shall prove the lemma for ξ_1 . The proof for ξ_2 is the same. Suppose ξ_1 is represented by a PL embedded disks 2-sphere Σ^2 with a singularity k. Let D_1 , D_2 be transverse of the attached 2-handles h_1 , h_2 (i.e. cocores in the terminology of Rourke and Sanderson [4, p.74]). We may assume that Σ^2 intersects D_1 , D_2 transverselly with algebraic intersection numbers 1,0, respectively. Let U_1 , U_2 be (sufficiently thin) tubular neighbourhoods of D_1 , D_2 in W^4 . Then $V^4 = \overline{W^4 - (U_1 \cup U_2)}$ is PL-homeomorphic with a 4-disk, and on the boundary of V^4 we have a link $\ell = \Sigma^2 \cap (\partial U_1 \cup \partial U_2)$. observe

that one can obtain the link ℓ starting with the (trivial) knot C_1 (Fig.2) or with the link of Fig.3 by adding a finite number of (0,L,K)-pairs in Tristram's sense ([6], Def.3.1), where L is the knot C_1 or the link of Fig.3 and K is any component of L. (This construction of ℓ will be referred to as the explicit construction.) Thus ℓ is a proper link in the sense of Robertello [3, p.546]. ℓ is clearly related (in Robertello's sense [3, p.547]) to the singularity knot k. Since ℓ is a proper link, the Robertello invariant of a knot which is related to ℓ depends only on ℓ . Therefore, we can compute ℓ (k) by any knot which is related to ℓ ([3],Th.2). However, from the explicit construction of ℓ it is easily verified that ℓ is related to a trivial knot ℓ 1. This implies that ℓ (k)=0.

Proof of Lemma 2. Let Σ^2 be a PL embedded 2-sphere ($\subset W^4$) which represents $\xi_1 + \xi_2$. Then Σ^2 intersects D_1 , D_2 with algebraic intersection numbers 1,1.

Thus, by the same reasoning as the previous proof, the link $l = \sum_{i=1}^{2} (\partial U_{i} \cup \partial U_{i})$ (C ∂V) is proper and is related to the link of Fig.1. The link of Fig.1 is related to a trefoil 3_{1} (See Fig.4). Since $\varphi(3_{1})=1$, we know that the singularity k of $\sum_{i=1}^{2}$, which is also related to l, has Robertello invariant 1.

Q.E.D.

PROBLEM 1. Find a closed example with the same property.

PROBLEM 2. Determine whether ξ_1, ξ_2 are represented by topologically embedded 2-spheres with disjoint images.

§2. The homotopy case.

EXAMPLE 2. There exists a closed 1-connected 4-manifold M^4 with the following properties: (i) There are smoothly embedded 16

2-spheres S_1, \dots, S_{16} with disjoint images, (ii) there is a continuous map $f: S^2 \to M^4$ of a 2-sphere to the manifold with $(f_*[S^2]) \cdot [S_i^2] = 0$ for $i=1,\dots,16$, but (iii) f cannot be homotopic to any map $g: S^2 \to M^4$

with $g(S^2) \cap (\bigcup_{i=1}^{16} S_i^2) = \emptyset$.

The manifold M4 is, in fact, a Kummer manifold (Cf. Spanier[5]). Let us recall the construction. We take a 4-dimensional torus $T^4=S^1\times S^1\times S^1\times S^1$ and consider the involution σ defined by $\sigma(\Sigma_1,\Sigma_2,\Sigma_3,\Sigma_4)$ $=(\overline{Z}_1,\overline{Z}_2,\overline{Z}_3,\overline{Z}_4)$, where we are considering $S^1=\{Z\in\mathbb{C};|Z|=1\}$. Then σ has 16 fixed points P_1, \dots, P_{16} . The quotient $T^4/_{\bullet}$ has thus 16 singular variety points each of which locally looks like a cone over a 3-dimensional (real) projective space. Blow up these singularities, in other words, delete small regular neighbourhoods of the singular points and glue copies of the total space E of $^{a}_{\Lambda}$ 2-disk bundle over S^{2} with Euler class -2. Then we obtain a closed smooth 4-manifold M4 which contains 16 smoothly embedded 2-spheres (as exceptional curves or zero-sections of E's). Denote these spheres by S_1^2, \dots, S_{16}^2 . Note that $[s_i^2] \cdot [s_i^2] = -2 \delta_{ij}$ (Kronecker's delta). It is known that the second betti number $b_2(M^4)=22$ (cf.[5]). Thus we have a non-zero homology class $\xi \in H_2(M^4; \mathbb{Z})$ such that $\xi \cdot [S_i^2] = 0$ ($\forall i=1, \dots 16$). Since M^4 is 1-connected ([5]), $H_2(M^4; \mathbf{Z}) = \pi_2(M^4)$. Hence ξ is represented by a continuous map $f:S^2 \to M^4$. Suppose $f_{\geq g}$ with $g(S^2) \land (US_i^2) = 0$. Then, since $M^4 - \bigcup_{i=1}^{16} S_i^2 = T^4/\sigma$ -(the 16 points), the map g would be lifted to $\tilde{g}: S^2 \to T^4$ -(the 16 points). However, $\pi_2(T^4$ -16 points)={0}. This

implies that g≥o, which contradicts \ \ +0.

Q.E.D.

PROBLEM 3. Find a similar example with a smaller number of spheres.

References

- 1 R.H.Fox and J.W.Milnor, Singularities of 2-spheres in 4-space and cobordism of knots, Osaka J.Math. 3(1966), 257-267.
- 2 M.A.Kervaire and J.W.Milnor, On 2-spheres in 4-manifolds,
 Proc. Nat. Acad. Sci. U.S.A. 47 (1961),1651-1657.
- R.A.Robertello, An invariant of knot cobordism, Comm. pure appl.

 Math. 18 (1965), 543-555.
- 4 C.P.Rourke and B.J.Sanderson, <u>Introduction to Piecewise-</u> Linear Topology, Springer-Verlag, 1972.
- 5 E.Spanier, The homology of Kummer manifolds, Proc. Amer. Math. Soc. 7 (1956), 155-160.
- 6 A.G.Tristram, Som cobordism invariants for links, Proc. Camb.
 Phil.soc. 66 (1969), 251-264.
- 7 H.Whitney, The self-intersection of a smooth n-manifold in 2n-space, Ann. of Math. 45 (1944), 220-246.

Department of Mathematics

College of General Education

University of Tokyo