<table>
<thead>
<tr>
<th>Title</th>
<th>On the Disruption of Whitney's Lemma for Simply Connected 4-Manifolds: in Piecewise-Linear and Homotopy Versions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>MATSUMOTO, YUKIO</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1976(268): 36-43</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1976-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/105888</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ
Kyoto University Research Information Repository
On the disruption of Whitney's lemma for simply connected 4-manifolds (in piecewise-linear and homotopy versions)

By Yukio MATSUMOTO

Whitney's lemma[7] states that intersection points of smooth n-submanifolds of a simply connected 2n-manifold can be eliminated if the intersection number of the two submanifolds is equal to zero and 2n \geq 6. However, this lemma fails for 2n = 4. This was first pointed out by Kervaire and Milnor[2] who found 2-dimensional homology classes \(\xi_1, \xi_2 \) of a simply connected 4-manifold such that (i) \(\xi_1 \) and \(\xi_2 \) are represented by smoothly embedded 2-spheres, (ii) the intersection number \(\xi_1 \cdot \xi_2 = 0 \) but (iii) there are no smoothly embedded disjoint 2-spheres which represent \(\xi_1, \xi_2 \) respectively. However, one can easily verify that their classes \(\xi_1, \xi_2 \) can be represented by disjoint piecewise-linearly (PL) embedded 2-spheres (with locally knotted points).

In this paper we shall give an example (Example 1) which shows that it is not always possible to represent two homology classes \(\xi_1, \xi_2 \) with \(\xi_1 \cdot \xi_2 = 0 \) by disjoint PL embedded 2-spheres. We shall also give an example (Example 2) in which one cannot represent a homology class \(\xi \) with \(\xi[S_1] = 0 \) (\(S_1 \) being a finite set of embedded 2-spheres) by a continuous map of a
2-sphere whose image is disjoint of these 2-spheres \(\{ S_i \} \).

§1. The PL case.

EXAMPLE 1. There exists a compact 1-connected 4-manifold \(W^4 \) (with boundary) which satisfies the following conditions:

(i) There are two primitive homology classes \(\xi_1, \xi_2 \in H(W^4; \mathbb{Z}) \) with \(\xi_1 \cdot \xi_2 = 0 \), but (ii) one cannot represent \(\xi_1, \xi_2 \) by PL embedded 2-spheres with disjoint images.

We start with the following link:

![Diagram of a link](image)

Fig. 1.

Since each of the components \(C_1, C_2 \) is a trivial knot, it has a trivial framing in \(S^3: C_1 \times D^2, C_2 \times D^2 \). Attach 2-handles \(h_1, h_2 \) to \(D^4 \) along these trivially framed circles. Then we obtain the 1-connected 4-manifold \(\tilde{W}^4 \) with boundary. Clearly \(H_2(W; \mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z} \) of which each summand is generated by the respective 2-handles. Let \(\xi_1, \xi_2 \) be the two generators.

LEMMA 1. Suppose that \(\xi_1 \) (or \(\xi_2 \)) is represented by a PL embedded 2-sphere \(\Sigma^2 \) which has a singular point (i.e., a locally knotted point) of knot type \(k \) (cf. Fox and Milnor [1]).
Then \(\varphi(k) = 0 \), where \(\varphi(k) \) denotes the Robertello invariant of the knot \(k \). (See Robertello [3].)

LEMMA 2. Suppose that \(\xi_1 + \xi_2 \) is represented by a PL embedded 2-sphere \(\Sigma^2 \) with a singular point of knot type \(k \). Then \(\varphi(k) = 1 \).

These lemmas will be proved later. Since the linking number of our link is equal to zero, the intersection number \(k_1 \cdot k_2 = 0 \).

Now we shall show that \(k_1, k_2 \) cannot be represented by disjoint PL embedded spheres. Otherwise, we would have two 2-spheres \(\Sigma_1, \Sigma_2 \) \((\subset W^4 \)) which represent \(k_1, k_2 \) respectively. By Lemma 1, the singularities \(k_1, k_2 \) of these 2-spheres have Robertello invariant zero. We take the connected sum of these two spheres and would obtain a PL embedded 2-sphere \(\Sigma_1 \# \Sigma_2 \) \((\subset W^4 \)) which represents \(k_1 + k_2 \) and whose singularity has Robertello invariant \(\varphi(k_1) + \varphi(k_2) = 0 \).

This contradicts Lemma 2.

Proof of Lemma 1. We shall prove the lemma for \(k_1 \). The proof for \(k_2 \) is the same. Suppose \(k_1 \) is represented by a PL embedded disks 2-sphere \(\Sigma^2 \) with a singularity \(k \). Let \(D_1 \), \(D_2 \) be transverse, \(\wedge \) attached 2-handles \(h_1, h_2 \) \((\text{i.e. cocores in the terminology of Rourke and Sanderson [4, p.74]} \)). We may assume that \(\Sigma^2 \) intersects \(D_1 \), \(D_2 \) transversely with algebraic intersection numbers 1, 0, respectively. Let \(U_1, U_2 \) be (sufficiently thin) tubular neighbourhoods of \(D_1, D_2 \) in \(W^4 \). Then \(V^4 = W^4 - (U_1 \cup U_2) \) is PL-homeomorphic with a 4-disk, and on the boundary of \(V^4 \) we have a link \(L = \Sigma^2 \cap (\partial U_1 \cup \partial U_2) \). observe
that one can obtain the link l starting with the (trivial) knot C_1 (Fig.2) or with the link of Fig.3 by adding a finite number of $(0, L, K)$-pairs in Tristram's sense ([6], Def. 3.1), where L is the knot C_1 or the link of Fig.3 and K is any component of L.

(This construction of l will be referred to as the explicit construction.) Thus l is a proper link in the sense of Robertello [3, p. 546]. l is clearly related (in Robertello's sense [3, p. 547]) to the singularity knot k. Since l is a proper link, the Robertello invariant of a knot which is related to l depends only on l. Therefore, we can compute $\varphi(k)$ by any knot which is related to l ([3], Th. 2).

However, from the explicit construction of l it is easily verified that l is related to a trivial knot C_1. This implies that $\varphi(k) = 0$.

![Fig.2](image1.png) ![Fig.3](image2.png)

Proof of Lemma 2. Let Σ^2 be a PL embedded 2-sphere ($\subset W^4$) which represents $\xi_1 + \xi_2$. Then Σ^2 intersects D_1, D_2 with algebraic intersection numbers $1, 1$.

-4-
Thus, by the same reasoning as the previous proof, the link $l = \Sigma^2 \cap (\Sigma^1 \cup \Sigma^2)$ is proper and is related to the link of Fig. 1. The link of Fig. 1 is related to a trefoil z_1 (See Fig. 4).

Since $\Phi(z_1) = 1$, we know that the singularity k of Σ^2, which is also related to l, has Robertello invariant 1.

Q.E.D.

Problem 1. Find a closed example with the same property.

Problem 2. Determine whether ξ_1, ξ_2 are represented by topologically embedded 2-spheres with disjoint images.

§2. The homotopy case.

Example 2. There exists a closed 1-connected 4-manifold M^4 with the following properties: (i) There are smoothly embedded 16 2-spheres S_1, \ldots, S_{16} with disjoint images, (ii) there is a continuous map $f:S^2 \to M^4$ of a 2-sphere to the manifold with $(f_*(S^2)) \cdot [S^2_i] = 0$ for $i = 1, \ldots, 16$, but (iii) f cannot be homotopic to any map $g:S^2 \to M^4$.
with \(g(S^2) \cap \bigcup_{i=1}^{16} S^2_i = \emptyset \).

The manifold \(M^4 \) is, in fact, a Kummer manifold (Cf. Spanier[5]). Let us recall the construction. We take a 4-dimensional torus \(T^4 = S^1 \times S^1 \times S^1 \times S^1 \) and consider the involution \(\sigma \) defined by \(\sigma(z_1, z_2, z_3, z_4) = (\overline{z}_1, \overline{z}_2, \overline{z}_3, \overline{z}_4) \), where we are considering \(S^1 = \{ z \in \mathbb{C} ; |z| = 1 \} \). Then \(\sigma \) has 16 fixed points \(P_1, \ldots, P_{16} \). The quotient \(T^4/\sigma \) has thus 16 singular points each of which locally looks like a cone over a 3-dimensional (real) projective space. Blow up these singularities, in other words, delete small regular neighbourhoods of the singular points and glue copies of the total space \(E \) of \(\Lambda^2 \)-disk bundle over \(S^2 \) with Euler class \(-2\). Then we obtain a closed smooth 4-manifold \(M^4 \) which contains 16 smoothly embedded 2-spheres (as exceptional curves or zero-sections of \(E \)'s). Denote these spheres by \(S^2_1, \ldots, S^2_{16} \). Note that \([S^2_i] \cdot [S^2_j] = -2 \delta_{ij} \) (Kronecker's delta). It is known that the second betti number \(b_2(M^4) = 22 \) (cf.[5]). Thus we have a non-zero homology class \(\xi \in H_2(M^4; \mathbb{Z}) \) such that \(\xi \cdot [S^2_i] = 0 \) (\(\forall i=1, \ldots, 16 \)). Since \(M^4 \) is 1-connected ([5]), \(H_2(M^4; \mathbb{Z}) = \pi_2(M^4) \). Hence \(\xi \) is represented by a continuous map \(f:S^2 \to M^4 \). Suppose \(f \) with \(g(S^2) \cap \bigcup_{i=1}^{16} S^2_i = \emptyset \). Then, since \(M^4 - \bigcup_{i=1}^{16} S^2_i = T^4/\sigma \) -(the 16 points), the map \(g \) would be lifted to \(\tilde{g} : S^2 \to \pi_2(T^4) \) -(the 16 points). However, \(\pi_2(T^4-16 \text{ points}) = \{0\} \). This
implies that \(g \neq 0 \), which contradicts \(\xi \neq 0 \).

Q.E.D.

PROBLEM 3. Find a similar example with a smaller number of spheres.
References

Department of Mathematics
College of General Education
University of Tokyo