1.4

Unknotted Surfaces in 4-Space

Ву

Fujitsugu Hosokawa and Akio Kawauchi (Kobe University and Osaka City University)

In this note we will discuss a concept of unknotted surfaces in the euclidean 4-space \mathbb{R}^4 and study elementary topics related to it. Spaces and maps will be considered from a piecewise-linear point of view. We will denote by $\mathbb{R}^3[t_0]$ the hyperplane whose fourth coordinate t is t_0 in \mathbb{R}^4 , and for a subset A of $\mathbb{R}^3[0]$, $A \times [a \le t \le b]$ means the subset $\{(x,t) \in \mathbb{R}^4 \mid (x,0) \in A, a \le t \le b\}$ of \mathbb{R}^4 . The configurations of surfaces in \mathbb{R}^4 will be described by adopting the motion picture method. (cf. R.H.Fox[1], F.Hosokawa[4] or A.Kawauchi-T.Shibuya[6].)

1. A Concept of Unknotted Surfaces

Consider a closed, connected and orineted surface F_n of genus n (n \geq 0) in \mathbb{R}^4 . We will assume that F_n is <u>locally flat</u> in \mathbb{R}^4 . It is reasonable to note the following known basic fact before stating our definition of unknotted surfaces: <u>The surface</u> $F_n = \frac{\text{always bounds a compact, connected orientable 3-manifold in }}{\mathbb{R}^4}.$

[For example, to see this, consider the regular neighborhood $N(F_n)$ of F_n in \mathbb{R}^4 . Since F_n is locally flat, we have $N(F_n) = F_n \times \mathbb{D}^2$ for a 2-cell \mathbb{D}^2 . The projection $f : \partial N(F_n) (=F_n \times \partial \mathbb{D}^2) \to \partial \mathbb{D}^2$ is easily extendable to a piecewise-linear map $f : \operatorname{cl}(\mathbb{R}^4 - \mathbb{N}(F_n)) \to \partial \mathbb{D}^2$ by an elementary obstruction theory. Then the transverse-regularity argument assures us to find a compact, connected orientable 3-manifold \mathbb{M} in $\operatorname{cl}(\mathbb{R}^4 - \mathbb{N}(F_n))$ with $\partial \mathbb{M} = F_n \times \mathbb{X}$ for some $\times \partial \mathbb{D}^2$. This \mathbb{M} may be extended to a manifold \mathbb{M} with $\partial \mathbb{M} = F_n$ in \mathbb{R}^4 . See H.Gluck[2] or A.Kawauchi-T.Shibuya[6,Chapter II] for other more constructive proofs.] We will define an unknotted surface as the boundary of a solid torus in \mathbb{R}^4 . Precisely,

l.l.<u>Definition</u>. F_n is said to be <u>unknotted</u> in \mathbb{R}^4 , if there exists a solid torus T_n of genus n in \mathbb{R}^4 whose boundary $\mathfrak{d}T_n$ is F_n . If such a T_n does not exist, then F_n is said to be <u>knotted</u> in \mathbb{R}^4 .

In the case of 2-spheres(i.e., surfaces of genera 0), Definition 1 is the usual definition of unknotted 2-spheres in \mathbb{R}^4 and it is well-known that any unknotted 2-sphere is ambient isotopic 1) to the boundary of a 3-cell in the hyperplane $\mathbb{R}^3[0]$.

¹⁾ An <u>ambient isotopy</u> of a space X is a family $\{h_t\}$ (05 t \leq 1) of auto-homeomorphisms of X with identity map h_0 . For two subspaces X_1 and X_2 in a space X, X_1 is <u>ambient isotopic to X_2 </u>, if there exists an ambient isotopy $\{h_t\}$ of X with $h_1(X_1) = X_2$. An auto-homeomorphism f of X is <u>ambient isotopic to the identity</u>, if there exists an ambient isotopy $\{h_t\}$ of X with $h_1 = f$.

The following theorem seems to justify Definition 1 for arbitrary unknotted surfaces.

1.2. Theorem. F_n is unknotted if and only if F_n is ambient isotopic to the boundary of a regular neighborhood of an n-leafed rose L_n in $R^3[0]$.

A 0-leafed rose L_0 in R^3 is understood as a point in R^3 . For $n \ge 1$ an n-leafed rose L_n in R^3 is the union $\bigcup_{i=1}^n 2\Delta_i$ of the boundaries $2\Delta_i$ of 2-simplices Δ_i in R^3 whose intersection $\bigcap_{i=1}^n \Delta_i$ is one vertex of each Δ_i and such that for each $k,j,\ k \ne j,\ \Delta_k \bigcap_j \Delta_j = \bigcap_{i=1}^n \Delta_i$. In Fig. 1 below, we illustrated L_n for the case n=6.

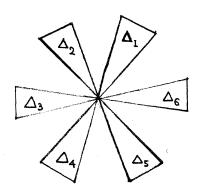


Fig. 1

1.3. Example. The surface of genus 1 in Fig. 2 is unknotted, since it bounds a solid torus of genus 1 that is shown in Fig. 3.

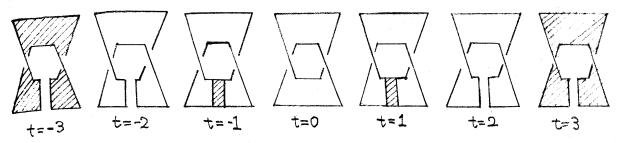


Fig. 2

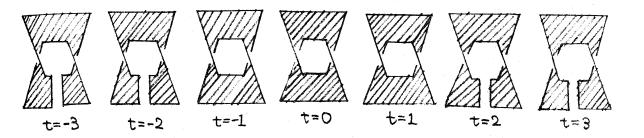


Fig. 3

Theorem 1.2 shows that this surface is ambient isotopic to the surface described in Fig. 4.

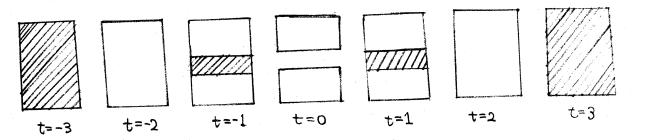


Fig. 4

1.4. Proof of Theorem 1.2. It suffices to prove Theorem 1.2 for the case $n \ge 1$. Assume F_n is unknotted. By definition, F_n bounds

a solid torus T_n of genus n. Let a system $\{B_1, \ldots, B_n\}$ be mutually disjoint in 3-cells in T_n , obtained by thickenning a system of meridiæ disks of T_n , such that $B = cl(T_n - B_1 U \dots UB_n)$ is a 3-cell. B is ambient isotopic to a 3-cell in $\mathbb{R}^3[0]$; so we assume that B is contained in $\mathbb{R}^3[0]$. Let L_n be a one-point-union of n 1-spheres at v in $Int(T_n)$ which is a spine of T_n , i.e., to which T_n collapses. Choose a sufficiently small , compact and connected neighborhood $\mathrm{U}(\mathrm{v})$ of v in L_{n} so that $\mathrm{U}(\mathrm{v})$ contains no vertices of L_n except for v. We may consider that $U(v) = L_n H B$ and $BX[-1 \le t \le 1] ||(L_n - U(v))| = \emptyset$. It is not hard to see that L_n is ambient isotopic to an n-leafed rose in $\mathbb{R}^{3}[0]$ by an ambient isotopy of R^4 keeping $\text{B}\textbf{X}[\text{-l} \leq \text{t} \leq \text{l}]$ fixed. So, we regard L_{n} as an n-leafed rose in $R^3[0]$. Let $R_0^4 = cl(R^4 - Bx[-1 \le t \le 1])$ and $\mathrm{cl}(\mathbf{L}_{n}-\mathrm{U}(\mathbf{v}))=\mathbf{l}_{1}\cup\ldots\cup\mathbf{l}_{n},$ where \mathbf{l}_{i} are connected components. Note that $cl(T_n-B) = B_1 U \dots UB_n$. Now we shall show that there exist mutually disjoint regular neighborhoods H_i of \mathcal{L}_i in R_0^4 that meet the boundary ∂R_0^4 regularly and such that the pairs $(B_i \subset H_i)$ are proper, i.e., $\partial B_i = (\partial H_i) / (B_i)$. To show this, triangulate R_0^4 so that $\mathbb{B}_1 \cup \ldots \cup \mathbb{B}_n$ is a subcomplex of \mathbb{R}_0^4 and so that $\boldsymbol{\ell}_1 \cup \ldots \cup \boldsymbol{\ell}_n$ is a subcomplex of $B_1U...UB_n$. Let X and H' be the barycentric second derived neighborhoods of $\ell_1 \cup \ldots \cup \ell_n$ in $B_1 \cup \ldots \cup B_n$ and in R_0^4 , respectively. It is easily seen that the pair ($X \subset H'$) is proper. Since $cl(B_1U...UB_n-X)$ is homeomorphic to $cl(F_n-3B)X[0,1]$, $B_1 \cup ... \cup B_n$ is ambient isotopic to X by an ambient isotopy of R_0^4 . Using this ambient isotopy, the desired pair $(B_1U...UB_n \subset H_1U...UH_n)$ is obtained.

Next, by using the uniqueness theorem of regular neighborhoods, we may assume that $H_i = N(\mathcal{L}_i, R_0^3) \times [-1 \le t \le 1]$, $i = 1, 2, \ldots, n$, where $R_0^3 = \text{cl}(R^3[0]-B)$ and $N(\mathcal{L}_i, R_0^3)$ is a regular neighborhood of \mathcal{L}_i in R_0^3 meeting the boundary ∂R_0^3 regularly. More precisely, we can assume that $\partial R_0^3 \cap N(\mathcal{L}_i, R_0^3) = (\partial B) \cap B_i$.

Now we need the following lemma:

1.5. Lemma. Let a 1-sphere S^1 be contained in a 2-sphere S^2 and consider a proper surface Y in $S^2 X[0,1]$, (abstructly) homeomorphic to $S^1 X[0,1]$. If $Y \cap S^2 X \cap S^1 X \cap S^2 X \cap S^1 X \cap S^2 X \cap S^1 X$

By using Lemma 1.5, $cl(\mathbf{\partial}B_i - \mathbf{\partial}B)$ is ambient isotopic to $cl(\mathbf{\partial}N(\mathbf{L}_i;R_0^3) - \mathbf{\partial}B)$ by an ambient isotopy of $cl(\mathbf{\partial}H_i - \mathbf{\partial}B\mathbf{x}[-1 \le t \le l])$ keeping the boundary fixed. Hence by using a collar neighborhood of $cl(\mathbf{\partial}H_i - \mathbf{\partial}B\mathbf{x}[-1 \le t \le l])$ in R_0^4 , we obtain that by an ambient isotopy of R_0^4 keeping $\mathbf{\partial}R_0^4$ fixed. This implies that F_n is ambient isotopic to the boundary of a regular neighborhood of L_n in $R^3[0]$. Since the converse is obvious, the proof is completed.

1.6. Proof of Lemma 1.5. Let $D \subset S^2$ be a 2-cell with $\partial D = S^1$. The 2-sphere YUDXOUDX1 bounds the 3-cell C in $S^2 \times [0,1]$, since $S^2 \times [0,1] \subset S^3$. Let $p \in Int(D)$ and choose a proper simple arc α in C to which C collapses and such that $\alpha \cap S^2 \times O = p \times O$ and $\alpha \cap S^2 \times 1 = p \times 1$. Since there is an ambient isotopy of $S^2 \times [0,1]$ keeping $S^2 \times O \cup S^2 \times 1$ fixed and carrying α to $p \times [0,1]$, it follows from the uniqueness

theorem of regular neighborhoods that C is ambient isotopic to DX[0,1] by an ambient isotopy of $S^2X[0,1]$ keeping S^2X0US^2X1 fixed. This proves Lemma 1.5.

As one consequence of Theorem 1.2, we have the following corollary:

1.7. Corollary. For any unknotted surface F_n in R^4 , the bounding solid torus T_n is unique up to ambient isotopies of R^4 .

Proof. Let T_n be a solid torus in \mathbb{R}^4 with $\mathfrak{F}_n = F_n$. It sufficies to construct an ambient isotopy $\{h_t\}$ of \mathbb{R}^4 such that $h_1(T_n)$ is a regular neighborhood of an n-leafed rose in $\mathbb{R}^3[0]$. By Theorem 1.2, we can assume that F_n is the boundary of a regular neighborhood of an n-leafed rose in $\mathbb{R}^3[0]$. Let $\mathbb{N}(F_n)$ be a sufficiently thin regular neighborhood of F_n in $\mathbb{R}^3[0]$. Then we may consider that the union of T_n and one component $\mathbb{C}(F_n)$ of $\mathbb{N}(F_n)-F_n$ is a solid torus T_n' . Since $\mathbb{C}(F_n)$ is homeomorphic to $F_n \times (0,1]$, T_n' is ambient isotopic to T_n . Let T_n'' be a regular neighborhood of an n-leafed rose in $\mathbb{C}(F_n)$ such that $\mathbb{C}(T_n'-T_n'')$ is homeomorphic to $F_n \times [0,1]$. Since T_n' is ambient isotopic to T_n' , we complete the proof.

1.8. Note. It should be noted that for $n \ge 1$ the bounding solid torus T_n is not unique up to ambient isotopies of \mathbb{R}^4 keeping F_n setwise fixed. Consider, for example, an unknotted surface F_1 of genus 1 as in Fig.5.

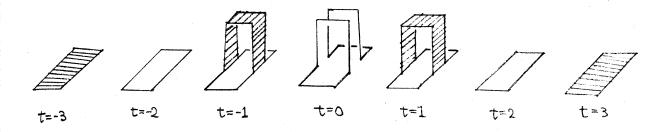


Fig. 5

This surface F_1 bounds two kinds of solid tori T_1 , T_1' as shown in Fig. 6.

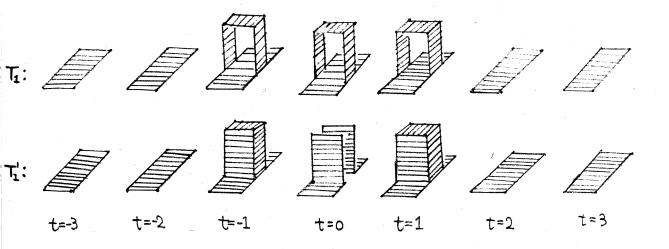


Fig. 6

Since the meridian curve of T_1 relating critical bands of F_1 is not a meridian curve of T_1' , T_1 is not ambient isotopic to T_1' by an ambient isotopy of R^4 keeping F_1 setwise fixed.

1.9. Note. Let F_n be unknotted in R^4 . Consider the homeotopy

group $\mathcal{H}(\mathbb{R}^4,\mathbb{F}_n)$ of auto-homeomorphisms of the pair $(\mathbb{R}^4,\mathbb{F}_n)$ modulo the homeomorphisms ambient isotopic to the identity. By Theorem 1.2, the homeotopy group $\mathcal{H}(\mathbb{R}^4,\mathbb{F}_n)$ is isomorphic to a homeotopy group $\mathcal{H}(\mathbb{R}^4,\mathfrak{F}_n)$, where \mathfrak{F}_n is the boundary of a regular neighborhood \mathbb{F}_n of an n-leafed rose in $\mathbb{R}^3[0]$. So, we assume $\mathbb{F}_n = \mathfrak{F}_n$. Note 1.8 asserts that the group $\mathcal{H}(\mathbb{R}^4,\mathbb{F}_n)$ is non-trivial. Let a_1,\ldots,a_n ; b_1,\ldots,b_n be the standard meridian and longitude curves of $\mathbb{F}_n\subset\mathbb{R}^3[0]$. The homeotopy group $\mathcal{H}(\mathbb{R}^4,\mathbb{F}_n)$ contains the elements represented by the following auto-homeomorphisms; $h(i_1,\ldots,i_n)$ and $h^{(j)}$ such that

$$\begin{array}{c} h_{(i_1,\ldots,i_n)}(a_k) = a_{i_k} \\ h_{(i_1,\ldots,i_n)}(b_k) = b_{i_k} \end{array},$$
 where (i_1,\ldots,i_n) is a permutation on $\{1,\ldots,n\}$ defined by $(i_1,\ldots,i_n)=\begin{pmatrix} 1&\ldots&n \\ i_1&\ldots&i_n \end{pmatrix}$, and
$$h^{(j)}(a_j)=b_j \qquad h^{(j)}(a_k)=a_k \\ h^{(j)}(b_j)=a_j \qquad h^{(j)}(b_k)=b_k \ , \ k\neq j, \end{array}$$

since T_n is contained in a 3-sphere in R^4 . (Discussions on the orientation are now omitted.) Details of the homeotopy group $\mathcal{H}(R^4,F_n)$ remain as an open problem. For example, is $\mathcal{H}(R^4,F_n)$ isomorphic to the homeotopy group $\mathcal{H}(F_n)$ of the surface F_n ?

2. Hyperboloidal Transformations

Let F be a (possibly non-connected) closed and oriented

surface in \mathbb{R}^4 . An oriented 3-cell B in \mathbb{R}^4 is said to span F as a 1-handle, if B N F = (∂ B)NF and this intersection is the union of disjoint two 2-cells, and if the surface $\operatorname{cl}[FU\partial B - (\partial B)NF]$ can have an orientation compatible with both the orientations of F - (∂ B)NF (induced from F) and ∂ B - (∂ B)NF (induced from B). Also, an oriented 3-cell B in \mathbb{R}^4 spans F as a 2-handle, if BNF = (∂ B)NF and this intersection is homeomorphic to the annulus $\operatorname{sl}_{\mathbf{X}}[0,1]$, and if the surface $\operatorname{cl}[FU\partial B - (\partial B)NF]$ can have an orientation compatible with both the orientations of F-(∂ B)NF and ∂ B-(∂ B)NF.

2.1. <u>Definition</u>. If B_1, \ldots, B_m are mutually disjoint oriented 3-cells in R^4 which span F as 1-handles, then the resulting oriented surface $h^1(F;B_1,\ldots,B_m)=cl(FU\partial B_1U\ldots U\partial B_m-FII(\partial B_1U\ldots U\partial B_m)]$ with orientation induced from $F-FII(B_1U\ldots UB_m)$ is called the surface obtained from F by the hyperboloidal transformations along 1-handles B_1,\ldots,B_m . Likewise, if B_1,\ldots,B_m span F as 2-handles, the resulting oriented surface $h^2(F;B_1,\ldots,B_m)=cl(FU\partial B_1U\ldots U\partial B_m-FII(\partial B_1U\ldots U\partial B_m)]$ is called the <u>surface obtained from</u> F by the hyperboloidal transformations along 2-handles B_1,\ldots,B_m .

We may have the following:

2.2. For arbitrary integers m and n with $1 \le m \le n$, if $F_n \xrightarrow{\text{is unknotted in }} \mathbb{R}^4, \xrightarrow{\text{then there exist mutually disjoint }} \mathbb{R}^4 \xrightarrow{\text{solution of }} \mathbb{R}^4 \xrightarrow{\text{which span }} \mathbb{R}^6 \xrightarrow{\text{as 2-handles and such that }} \mathbb{R}^2(F_n; \mathbb{B}_1, \dots, \mathbb{B}_m) \xrightarrow{\text{is an unknotted surface of genus }} \mathbb{R}^m.$

We shall show the following theorem which was partially suggested to the authors by T.Yajima:

2.3. Theorem. For arbitrary integers m and n with lemen, if F_n is unknotted in \mathbb{R}^4 , then one can find mutually disjoint m 3-cells B_1,\ldots,B_m in \mathbb{R}^4 which span F_n as 2-handles and such that $h^2(F_n;B_1,\ldots,B_m)$ is a knotted surface of genus n-m. Further, every knotted surface in \mathbb{R}^4 is ambient isotopic to a surface $h^2(F_n;B_1,\ldots,B_m)$ with an unknotted surface F_n and spanning 2-handles B_1,\ldots,B_m for some m and n ($m \leq n$).

The proof will be given later.

Combined 2.2 with Theorem 2.3, we conclude that the knot type of the surface $h^2(F_n; B_1, \ldots, B_m)$ in R^4 depends on the choice of B_1, \ldots, B_m , even if F_n is unknotted. (In case F_n is knotted, the assertion has already known by T.Yajima[7].)

On the other hand, concerning 1-handles, we shall obtain the following:

- 2.4. Theorem. Given an unknotted surface F_n and mutually disjoint m 3-cells B_1, \ldots, B_m in R^4 which span F_n as 1-handles, then the resulting surface $h^1(F_n; B_1, \ldots, B_m)$ of genus n+m is necessarily unknotted.
- 2.5. Note. In case F_n is a knotted surface, then the knot type of the surface $h^1(F_n; B_1, \ldots, B_m)$ depends on the choice of B_1, \ldots, B_m . For example, let us consider the 2-sphere S illustrated in Fig. 7.

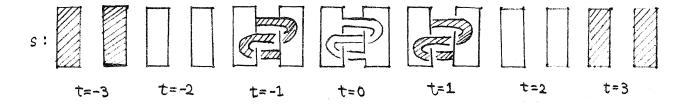


Fig. 7

This 2-sphere S is certainly knotted, since the fundamental group $\pi_1(R^4-S)$ has a presentation (a,b: aba=bab) whose Alexander polynomial is t^2-t+1 .[In fact, this 2-sphere has the same knot type as the spun 2-knot of a trefoil.] Let B, B' be two 3-cells that span S as 1-handles, as shown in Fig.8.

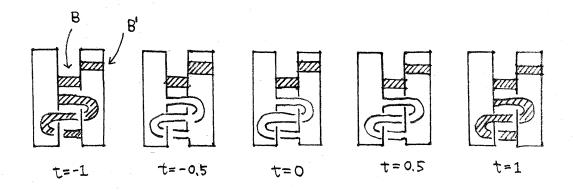


Fig. 8

The surfaces $F_1 = h^1(S;B)$ and $F_1' = h^1(S;B')$ of genera 1 related to the 3-cells B and B' are illustrated in Fig. 9.

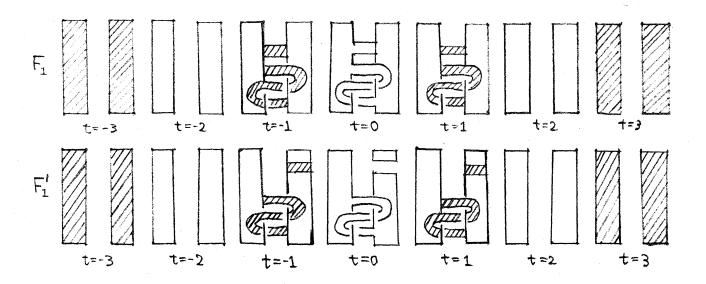


Fig. 9

It is easily seen that the fundamental group $\pi_1(R^4-F_1)$ is an infinite cyclic group [In 2.7 we shall show that this F_1 is actually unknotted.] and the fundamental group $\pi_1(R^4-F_1')$ is isomorphic to the fundamental group $\pi_1(R^4-S)$ that is non-abelian. Hence the knot types of F_1 and F_1' are distinct.

2.6. Proof of Theorem 2.4. We shall show the existence of a solid torus T_n of genus n in R^4 with $\partial T_n = F_n$ and $\operatorname{Int}(T_n) \cap B_i = \emptyset$, i = i, 2, ..., m. Then the desired result follows , since $T_n \cup B_1 \cup ... \cup B_m$ is a solid torus of genus n+m and since $h^1(F_n; B_1, ..., B_m) = \partial (T_n \cup B_1 \cup ... \cup B_m)$. Choose for each i, i = 1, 2, ..., m, a simple proper arc d_i in d_i so that the union $d_i \cup d_i \cup ... \cup d_m$ is a spine of the union

 $F_n \cup B_1 \cup \ldots \cup B_m$. Since F_n is unknotted, we may consider F_n as the surface of genus n illustrated in Fig. 10.

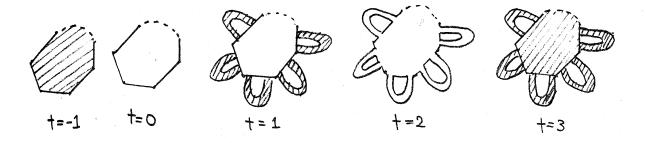


Fig. 10

By sliding B_1, \ldots, B_m along F_n and by deforming B_1, \ldots, B_m themselves, we can assume that $\alpha_1, \ldots, \alpha_m$ are attached to the circle in the level t=0,i.e., $F_n\cap R^3[0]$ in well order and that for each i the two attaching points of α_i to $F_n\cap R^3[0]$ have compact and connected neighborhoods n_i^+ and n_i^- in α_i which are contained in the level t=0. For m=3 we illustrated the situation in Fig.11.

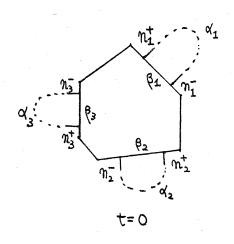


Fig. 11

- 14 -

For each i, let β_i be the part of $F_n \cap \mathbb{R}^3[0]$ divided by α_i as in Fig. 12. (For m = 1 let β_1 be any one of the two components of $F_n \cap \mathbb{R}^3[0]$ divided by α_1 .) Further, for each i, let $\alpha_i' = \operatorname{cl}(\alpha_i - n_i^+ \cup n_i^-)$. Now we join , for each i, the end points of α_i' with a simple arc such that the loop $\beta_i \cup n_i^+ \cup n_i^- \cup \gamma_i$ bounds a non-singular disk D_i in $\mathbb{R}^3[0]$ with $\operatorname{Int}(D_i) \cap (F_n \cup \alpha_1' \cup \ldots \cup \alpha_m') = \emptyset$, as in Fig. 12.

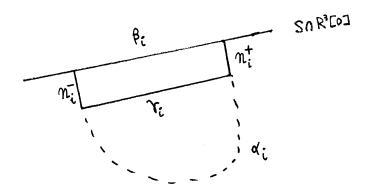


Fig. 12

The simple closed curve $\Upsilon_i \cup d_i'$ is in general not homologous to 0 in \mathbb{R}^4 - \mathbb{F}_n . However, by twisting Υ_i along the circle $\mathbb{F}_n \cap \mathbb{R}^3[0]$ (See for example Fig. 13.), we can assume that the simple closed curve $\Upsilon_i \cup d_i'$ is homologous to 0 in \mathbb{R}^4 - \mathbb{F}_n .

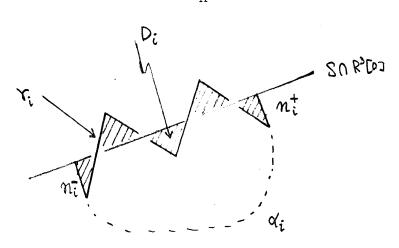


Fig. 13

Since F_n is unknotted, we have the Hurewicz isomorphism $\pi_1(R^4-F_n)$ $\approx H_1(R^4-F_n;Z)$. Hence $\gamma_i \cup \alpha_i'$ is null-homotopic in R^4-F_n . By general position and by slight modifications, $\gamma_i \cup \alpha_i'$, $i=1,2,\ldots,m$, bound mutually disjoint non-singular disks d_i in R^4-F_n . Thus, $F_n \cup \alpha_1 \cup \ldots \cup \alpha_m$ is ambient isotopic to $F_n \cup (n_1^+ \cup \gamma_1 \cup n_1^-) \cup \ldots \cup (n_m^+ \cup \gamma_m \cup n_m^-)$. Hence $F_n \cup \alpha_1 \cup \ldots \cup \alpha_m$ is ambient isotopic to the standard surface of genus n with m attaching curves, as in Fig. 14.

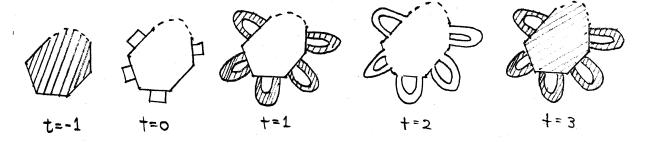


Fig. 14

Now by using the uniqueness theorem of regular neighborhoods, one can easily find a solid torus T_n of genus n in \mathbb{R}^4 with $\mathbf{\partial} T_n = F_n$ and $\text{Int}(T_n) \cap B_i = \emptyset$, $i = 1, 2, \ldots, m$. This completes the proof.

2.7. Proof of Theorem 2.3. We shall show that , for an unknotted surface F_1 of genus 1, there exists a 3-cell B_1 in \mathbb{R}^4 which spans F_1 as a 2-handle and such that $h^2(F_1;B_1)$ is a knotted 2-sphere. Then it is easy to find mutually disjoint 3-cells B_1,\ldots,B_m which span an unknotted surface F_n as 2-handles and such

that $h^2(F_n;B_1,\ldots,B_m)$ is a knotted surface of genus n-m for arbitrary given $m \leq n$. We consider the surface F_1 in Fig. 9. This surface is actually unknotted. In fact, let \overline{B} be the 3-cell which spans F_1 as a 2-handle, illustrated in Fig. 15.

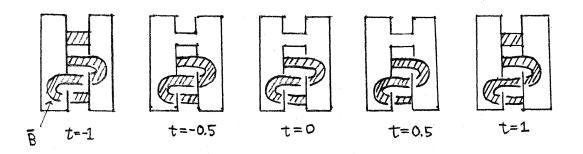


Fig. 15

The resulting 2-sphere $S_o = h^2(F_1; \overline{B})$ is clearly unknotted. Then Theorem 2.4 shows that the surface $F_1 = h^1(S_o; \overline{B})$ is unknotted. Consider the 3-cell B in Fig. 8 that spans F_1 as a 2-handle. The resulting 2-sphere $h^2(F_1; B)$ is knotted, because $h^2(F_1; B)$ is S in Fig. 7.

Secondly, we shall show that any knotted surface F in R^4 is ambient isotopic to a surface $h^2(F_n;B_1,\ldots,B_m)$ with an unknotted surface F_n and spanning 2-handles B_1,\ldots,B_m for some m and n $(m \leq n)$. Consider a compact, connected 3-manifold M in R^4 with $\partial M = F$. It is not difficult to find mutually disjoint 3-cells B_1,\ldots,B_m in M which span F as 1-handles and such that $T=cl(M-B_1U\ldots UB_m)$ is a solid torus.[In fact, take a 2-complex K that is a spine of M

and let $K^{(1)}$ be the 1-skelton of K. Take the regular neighborhood $T'=N(K^{(1)};\mathbb{M})$ of $K^{(1)}$ in \mathbb{M} . We may consider that cl(K-T') consists of m 2-cells $\Delta_1,\Delta_2,\ldots,\Delta_m$ for some m. For each i, let B'_1 be a 3-cell thickenning Δ_i in $cl(\mathbb{M}-T')$. The union $\mathbb{M}'=T'\cup B'_1\cup\ldots\cup B'_m$ is a regular neighborhood of K in \mathbb{M} . Using the uniqueness theorem of regular neighborhoods, we obtain that \mathbb{M}' is homeomorphic to \mathbb{M} . Divide \mathbb{M} into a solid torus T and 3-cells B_1,\ldots,B_m corresponding to T' and B'_1,\ldots,B'_m , respectively, utilizing this homeomorphism. The result follows.] Let $F_n=\partial T$, where n is the genus of T. By definition, F_n is unknotted. From construction, we have $F=h^2(F_n;B_1,\ldots,B_m)$. This completes the proof.

A basic unsolved problem still remains that asks whether, given a knotted surface F_n of genus $n, n \ge 1$, one can always find mutually disjoint n 3-cells B_1, \ldots, B_n in R^4 which spans F_n as 2-handles and such that $h^2(F_n; B_1, \ldots, B_n)$ is a 2-sphere. (The resulting 2-sphere will be necessarily knotted by Theorem 2.4.)

The following shows that there is a knotted surface from which one can never produce a 2-sphere by the hyperbolic transformation along 2-handle without changing the fundamental groups:

- 2.8. Theorem. There exists a knotted surface F_n in \mathbb{R}^4 (for each $n \ge 1$) such that
- (1) One can find mutually disjoint n 3-cells B_1^0, \ldots, B_n^0 with $h^2(F_n; B_1^0, \ldots, B_n^0)$ a 2-sphere,
- (2) $\pi_1(R^4-F_n)$ is not isomorphic to $\pi_1(R^4-h^2(F_n;B_1,...,B_n))$ for any mutually disjoint n 3-cells $B_1,...,B_n$ with $h^2(F_n;B_1,...,B_n)$ a 2-sphere.

Proof. It suffices to prove for the case n=1. We shall show that the surface of genus 1 described in Fig. 16 is such a surface.

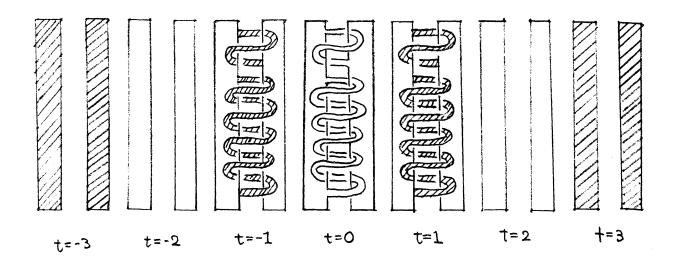


Fig. 16

This surface certainly satisfies (1). To see that it also satisfies (2), consider the fundamental group π of the complement of this surface in \mathbb{R}^4 . π has a presentation (a,b|ab = ba², ba⁵=a⁵b).(See for example R.H.Fox[1]or T.Yajima[7] for a calculation.) Obviously, $H_1(\pi;\mathbb{Z})\approx\mathbb{Z}$ and, by sending b of this presentation to t, a generator of an infinite cyclic group, the abelianized commutator subgroup π'/π' of π is isomorphic to $\mathbb{Z}[t]/(1-2t,5t-5)$ as $\mathbb{Z}[t]$ -modules, where (1-2t,5t-5) denotes the ideal over $\mathbb{Z}[t]$

generated by the polynomials 1-2t and 5t-5. Using the identity 5=5(2t-1)+2(5-5t), π'/π'' is, consequently, isomorphic to $Z_5[t]/(2t-1)$ as Z[t]-modules. In particular, π'/π'' is isomorphic to Z_5 as abelian groups.

Now we need the following theorem that seems essentially the same as a result of M.A.Gutiérrez[3] (, although our approach is different from his.):

2.9. Theorem. Let G be a finitely presented group with $H_1(G;Z) = Z \quad \text{and such that} \quad G'/G'' \quad \text{is a finitely generated torsion}$ group. If G is isomorphic to $\pi_1(R^4-S)$ for some 2-sphere S^2 in R^4 , then for any finite field F the first polynomial invariant $a(t) \quad \text{of} \quad (G'/G'') \bigotimes_Z F \quad \text{as} \quad F[t]-\text{modules is reciprocal:} \quad a(t) \stackrel{.}{=} a(t^{-1})$ up to units of F[t]. (The first polynomial invariant a(t) is defined to be the product $f_1(t)f_2(t)...f_r(t)$ for a cyclic decomposition $(G'/G'') \bigotimes_Z F \approx F[t]/(f_1(t)) \bigoplus_F[t]/(f_2(t)) \bigoplus_{\bullet,\bullet,\bullet} F[t]/(f_r(t))$ as F[t]-modules.)

Note that 2t-1 is the first polynomial invariant of $(\pi'/\pi') \mathfrak{D}^2_5$. Since 2t-1 is not reciprocal in $Z_5[t]$, it follows from 2.9 that π is not the fundamental group of any 2-sphere in \mathbb{R}^4 . This is enough to show (2). This completes the proof.

2.10. Proof of Theorem 2.9. By assumption, G is isomorphic to the group $\pi_1(\mathbb{S}^4-\mathbb{S})$ for some 2-sphere S in a 4-sphere \mathbb{S}^4 . Let $\mathbb{N}(\mathbb{S})$ be the regular neighborhood of S in \mathbb{S}^4 and $\mathbb{M}=\mathrm{cl}(\mathbb{S}^4-\mathbb{N}(\mathbb{S}))$. Note that $\mathfrak{d}\mathbb{M}$ is homeomorphic to $\mathbb{S}^1 \times \mathbb{S}^2$. Consider the infinite cyclic

cover $\widetilde{\mathbb{M}}$ of \mathbb{M} associated with the Hurewicz epimorphism $\pi_1(\mathbb{M}) \longrightarrow H_1(\mathbb{M};\mathbb{Z})$. Since $H_1(\widetilde{\mathbb{M}};\mathbb{Z}) \approx G!/G$ " is a finitely generated torsion group, it follows from A.Kawauchi[5,Theorem 2.3] that $H_*(\widetilde{\mathbb{M}};\mathbb{Z})$ is finitely generated as an abelian group and that there is a duality

Πμ:
$$H^2(\widetilde{M}; Z) \approx H_1(\widetilde{M}, \widetilde{\partial M}; Z)$$
.

By the universal coefficient theorem, $H^1(\widetilde{\mathbb{M}};\mathbb{F})$ is canonically isomorphic to the torsion product $Tor[\widetilde{\mathbb{H}}^2(\widetilde{\mathbb{M}};\mathbb{Z}),\mathbb{F}]$, for $H^1(\widetilde{\mathbb{M}};\mathbb{Z})=0$. Since the inclusion map $\widetilde{\mathbb{M}}\subset (\widetilde{\mathbb{M}},\Im\widetilde{\mathbb{M}})$ induces an isomorphism $H_1(\widetilde{\mathbb{M}};\mathbb{Z})\approx H_1(\widetilde{\mathbb{M}},\Im\widetilde{\mathbb{M}};\mathbb{Z})$ as $\mathbb{Z}[t]$ -modules and $H_1(\widetilde{\mathbb{M}};\mathbb{Z})$ is a finitely generated torsion group and \mathbb{F} is a finite field, we obtain the composite isomorphism

$$\overline{\psi}(\mu): H^{1}(\widetilde{M}; F) \approx Tor[H^{2}(\widetilde{M}; Z), F] \approx Tor[H_{1}(\widetilde{M}, \partial \widetilde{M}; Z), F]$$

$$\approx Tor[H_{1}(\widetilde{M}; Z), F] \approx H_{1}(\widetilde{M}; F).$$

The identity (tu)) $\mu = t^{-1}(u)\mu$) for any $u \in H^2(\widetilde{M}; Z)$, then, induces the following commutative square of isomorphisms:

Since $H^1(\widetilde{\mathbb{N}};F)$ and $H_1(\widetilde{\mathbb{N}};F)$ are isomorphic as F[t]-modules, the first polynomial invariant a(t) of $H_1(\widetilde{\mathbb{N}};F)$ must be reciprocal: $a(t) \doteq a(t^{-1})$. This completes the proof.

References

- 1. R.H. Fox: A quick trip through knot theory, in Topology of 3-Manifolds and Related Topics, M.K.Fort, Jr., editor, Prentice-Hall, Englewood Cliffs, 120-167,1962
- 2. H. Gluck: The embeddings of two-spheres in the four-sphere, Trans.

 Amer. Math. Soc. 104, 308-333(1962)
- 3. M. A. Gutiérrez: On knot modules, Inv. Math. 17,329-335(1972)
- 4. F. Hosokawa: On trivial 2-spheres in 4-space, Quart. J. Math.

 Oxford(2) 19, 249-384(1965)
- 5. A. Kawauchi: A partial Poincaré duality theorem for infinite cyclic coverings, Quart. J. Math. Oxford(3) 26 (1975),437-45%
- 6. A. Kawauchi and T. Shibuya: <u>Descriptions on Surfaces in Four-</u>

 <u>Space</u>, Mimeographed notes (based on lectures given by

 A. Kawauchi in the Kobe topology seminar), 1975
- 7. T. Yajima: On the fundamental groups of knotted 2-manifolds in

 the 4-space, Jour. of Math., Osaka City Univ. 13, 1962

 22 -