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4

In this note we will discuss a concent of unknotted surfaces
. - . 4 .
in the euclidean 4-svace K and stuldy elementary tovics related to
it. Snaces and maps will be considered from a piecewise-linear point

of view. fe will denote bty R)[toj the hyperplane whose fourth

A .
coordinate t is % in X7, and for a subset A of RBLOJ,
s r 4
A¥X |2 = t = b] means the subset {(;\,t)éb’.  (x,0)& A, a<t< b}
4 4

cf =& The configurations of surfaces in K will be described by

adonting the motion picture method. (cf. R.H.Fox[1l], F.Hosokawal4 ]

- . - L. PR o
or A.Kawauchi-T.chibuval 6],)

1. A Concevnt of Unknotted Surfaces

Consider a closed, connected and orineted surface Fn of

renus n (n > 0) in 3%, e will assume that F~is locally flat

b

in . It 1s reasonable to note the following known basic fact

tefore stating our definition of unknotted surfaces: The surface

En alwayvs bounds a commact, connected orientable Bemanifold in K .




(For example, to see this, consider the regular neighborhood F(”n)
. 4 , . A X N T T
of F, in K. Since F = is locally flat, we have N(F )= F XD

2 . . o AN : 2 L
for a 2-cell D", The projection f: BI(Eh)(anan ) — 30 is
. . . = LG . 2
easily extendable to a viecewise-linear mav f:cl(R'-H(F )) — 2D
py an elementary obstruction theory. Then the transverse-regularity

argument assures us to find a compact, connected orientable 3-manifocld

4 . o 2
@ in cl(R' - N(Fn)) with M = F xx for some x& D", This M may
. . e s - - . 4 ~ T ]
pe extended to a manifold 1 with QW = F in R'. See HeGluck|?2 |

or A.Kawauchi-T.Shibuyal 6,Chapter II] for other more constructive
proofs.] We will define an unknotted surface as the boundary of a

golid torus in R4, Precisely,

1.1.Definition. Fn is said to be unknotted in R4, if there

. . - . o4 . .
existe a solid torus Tn of genus n in A whose boundary BTP

is Fn. If such a Tn does not exist, then Fp is said to bte knotted

i

in R7.

In the case of 2-spheres(i.e., surfaces of genera 0), Definition

. N . ; . 4 L
1 is the usual definition of unknotted 2-spheres in R and 1t is
] : ; . s 1) -
well-known that any unknotted 2-sphere is ambient isotopic to the

boundary of a 3-cell in the hyperplane RB{OJ.

1) An ambient isotopy of a space X is a family ;Kht} (O~ t < 1) of

auto-homeomorphisms of X with identity map hO' For two subspaces

Xl and X, in a space X, 4, 1s gmbient isotovnic to ,, if there

exists an ambient isotopy .ght} of X with hW(Xl)z K?. An auto-

homeomorphism f of X dis ambient isotopic to the identity, if there

exists an ambient isotopy (h.} of X with hy = f.

9]
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The following theorer seems to justify Definition 1 for

arbitrary unknotted surfaces.

1.2.Theorem.‘Fn is unknotted if and only if Fn is ambient

isotopic to the boundarv of a regular neighborhood of an n-~leafed

rose L, in R2[0].

A O-leafed rose LO in R3 is understood as a point in RB.

For n>1 an n-leafed rose Ln in RS is the union UifiQAE of
the boundaries 34&1 of 2-simplices Z&i in R3 whose intersection

ﬂiilzxi is one vertex of each ‘31 and such that for each k,j, k # i,
Zﬁkﬂglj = Hiﬁlﬁki. In Fig. 1 below, we illustrated L =~ for the case

n = 6,

Fig. 1

1.3.Zxample. The surface of genus 1 in Fig. 2 1is unknotted,

since it bounds a solid torus of genus 1 that is shown in Fig.3.

-3 -



Theorem 1.2 shows that this surface is ambient isotopic to the

surface described in Fig. 4.

T 1
F

1.4. Proof of Theorem 1.2. It suffices to prove Theorem 1.2 for

the case n > 1. Assume F  1is unknotted. By definition, F =~ bounds

-4 -
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a solid torus T of genus n. Let a gystem .{Bl,...,5r§ be mutually
i i
disjoint n  %-cells in T, obttained by thickenning a system of
1L
reridis  disks or T, such that I = cl(T - B, U...UEk ) dis a 3-cell,

n 1 n

A is ampisnt isotonic to a 3-cell in R°[0]; so we assume that E
z
is contained in R7[0j. Let L. bte a one-point-union of n l-spheres

i1

)
ot
<

in Int(Tr) which 1is a svine of Tp, i,e., to which Tn

i i

collapses, Choose a sufficiently small comnact and connected
b o 3 o

neighborhood U(v) of v in L~ so that U(v) contains no

L1
vertices of Ln except for v. wWe may consider that U(v) = LqH B

and BX[-1 < t :.lJH(Ln—U(v)) = ¥. It is not hard to see that L,

ASX}

is ambient isotopic to an n-leafed rose in «”°LCUJ by an ambient

. L4 . = , o .
isotopy of R xeeping BX[-1 <t < 1] fixed. So, we regard Ln

as an n-leafed rose in RB[OJ. Let Rg = c1(14—BX[—l <t<1]) and

cl(Lﬂ—U(v)):ﬂlU...uﬂn, where J@i are connected comvonents. Note

4

that cl(TW—B): B,

Ii L

U...UBn. Now we sghall show that there exist
R . - . 4 g
~utually disjoint regular neighborhoods Hy of ii in RO that meet
. 5 4 - . . -
the boundary ano recularly and such that the pairs (d‘C'Hi) are
—_

proper, i.e., 9B.= (Bhi)ﬂdi. To show this, triangulate K so that
A -

C
. , ‘ L4 ) . i
b,U...UB is a subcomplex of Kk and so that QlU...u@n is a
subcomonlex of BlU...UBn. Let X and H' be the barycentric second
L . . . . . . .4
derived neighborhoods oi—gjb...UBh in BlU...Uﬁn and in Rep
resvectively. It is easily seen that the nair (X<CH') is proper.

Since cl(ElU...UBn—X) is homeomorphic to cl(Fn—aB)X[U,lj,

B U, .. UB is ambient isotopic to X by an ambient isotopy of Rg.

a ie ig i 3 i IS 213 ! I}
s ambient isotopy, the desired pair .(BlU...UBnC.HlL...LHn)
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Next, by using the uniqueness theorem of regular neighbtorhoods, we

nay assume that H, = N(.Q,i,ﬁg)x[—l <t<1), i=1,2,...,n, where

Ré= c1(R°[0]-B) and N(Q&,Rg) is a regular neighborhood of .Bi in
Rg meeting the boundary /BR? regularly. More precisely, we can
assume that RJIN(L,,8)) = (3B B,.
Now we need the following lemma:
ol 2

1.5.Lemma., Let a l-gsphere O be contained in a Z2-sphere O

. . Py
and consider a vpropver surface Y in S°X%X[0,1], (abstructly)

1y - : 1
nomeomorphic to S°X[0,1]. If YIsX0 = 51X0 and YISX1 = v7X1,

then Y is ambient isotonic to Slx[O,lJ by an ambient isotovv of

sX[0,1] keeving S°XOU 8X1 fixed.

By using Lemma 1.5, cl(aBi—aB) is ambient isotopic to
cl(w(.ei;ﬁg)-a}a) by an ambient isotopy of cl(3H,-3X[-1 =t =1])
keeping the boundary fixed. Hence by using a collar neighborhood of
cl(BHi~3BX[-1 <t <1]) in Rg, we obtain that by an ambient isotopy
of Rg keeping gﬁg fixed. This implies that Fn is ambient
isotopic to the boundary of a regular neighborhood of\ Ln in RB{GJ.
Since the converse is obvious, the oroof is completed,

f) -~y
- - . ~ ol
1.6. Proof of Lemma 1.5. Let D <€ S° be a 2-cell with 3D= 3

The 2-sphere YUDXOUDXL bounds the 3-cell C in S%XEO,l], since

-

SQX[O,lJCSB. Let ve€Int(D) and choose a preoper simple arc o in

C to which C collapses and such that oil3 X 0= px0 and KHE?XI = pgl.
Since there is an ambient isotopy of &S X[O,l] keeping S%KOUS%KI

fixed and carrying ] to px{U,lJ, it follows from the unigueness

-6 -
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theorem of regular neighborhoods that C 1is ambient isotovnic to
el . . P~ \ . Pt G
DX[0,1] by an ambient isotopy of S5X[0,1] Xkeeping S5°X0U X1

fixed. This vnroves Lemma 1.5.

As one consequence of Theorem 1.2, we have the following
corollary:
. L4
1.7. Corollary. For anyv unknotted surface Fn in R, the

. . . . . . . L4
vounding solid torus Tn is unigue uv to ambient isotopies of R,

Proof. Let Tn be a solid torus in R4 with aTn = Fn. It

sufficies to construct an ambient isotopy .{ht} of % such that
hl(Tn) is a regular neighborhood of an n-leafed rose in RBEO]. By
Theorem 1.2, we can assume that Fn is the boundary of a regular
neighborhood of an n-leafed rose in RB[OJ. Let N(Fn) be a

sufficiently thin regular neighborhood of F = in R7[0]. Then we

may consider that the union of Tn and one component C(Fn) of

N(Fn)— Fn is a solid torus Tﬁ. Since C(Fn) is homeomorphic to

FnX(D,lJ, T) is ambient isotopic to T . Let 1T be a regular

neighborhood of an n-leafed rose in C(Fn) such that cl(Tﬁ—Tg) is

homeomorphic to FnX[O,l]. Since T)! is ambient isotopic to o

we complete the vroof.

1.8. Note. It should be noted that for n > 1 the bounding
) . . . . . 4

solid torus Tn is not unique up to ambient isotonies of &
keeping Fn setwise fixed. Consider, for example, an unknotted

surface Fl of genus 1 as in Fig.b5.

-7 -



Fig. 5

This surface Fl bounds two kinds of solid tori Tl’ Ti as shown

in Fig. 6.

‘ " -
: —¥ S
» ” = / LT
T': £é§§§§§7 é§§§§§§? — ”::::57 =
o s A LA 0 L

13 t=2 =l t=0 t=1 t=2 1=3
Fig. 6

Since the meridian curve of Tl relating critical bands of Fl is

not a meridian curve of Ti, Tl is not ambient isotonic to Ti by

. . o 4 . . .
an ambient isotopy of R keeping Fl setwise fixed,

1.9. Note. Let Fn be unknotted in R4. Consider the homectony

-8 -
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N , . . 4
group MH(R ,Fn) of auto-homecmorphisms of the pair (R ,Fn)

modulo

the homeomorphisms ambient isotopic to the identity. By Theorem 1.2,
w7y b L. .

the homeotopy group MNU(R ,Fn) is isomorphic to a homeotopy group

b . A . R .
MH(Rr ,a&n), where an is the boundary of a regular neighborhood

Tr of an n-leafed rose in RS[OJ. Lo, Wwe assume FnzaTn. Note 1.8

i

165
m

n’

)

N . cos
serts that the group M(R ,En) is non~trivial. Let Byyees2

lox
0]

. __\'Z o~
bl,...,b the standard meridian and longitude curves of Tn;:h/[oj.

n
v oG4
m'\ - () il
The homeotopy groupn R,F
py group H(R',F )

contains the elements represented by

the following auto-homeomorphisms; h(i i) and h(3> such that
1oty _
n, . . = a.
(11,...,1n)(ak) alk
h(il"“’in)(bk) = bik ,

where (il,...,in) is a permutation on {1,...,n} defined by

. . 1 ...
(l:L’--"ln):( n)’ and

1., i
h(j)(;ﬁ) = bj h(j>(ak) = a,
h(j>(bj) = a, h(j)(bk) =b, . k£ 3,
4

since Tn is contained in a %-sphere in R . ( Discussions on the

orientation are now omitted.) Details of the homeotony group

4 o )

4 . - . »
H(x ,Fn) remain as an open problem. For example, is (R F o

isomorphic to the homeotovny group }C(Fn) of the surface F_ 7

2, Hyperboloidal Transformations

Let F be a ( possibly non-connected ) closed and oriented

-9 -



. 4 . . 4, . 4 .
gurface 1in R'. An oriented 3%-cell B in R is said to span F

as 2 l-handle, if BN F = (3B)IF and this intersection is the union
’———-——____-——.—-

¥
B

of disjoint two 2-cells, and if the surface c1[FUB - (ENIT] can
nave an orientation compatible with both the orientations of
F - (@B)iix ( induced from F ) and ?B- (9B)IIF ( induced from B ).

Also, an oriented 3-cell B in R spans F as g 2-handle, if

BIF = (®B)IF and this intersection is homeomorphic to the annulus
s%X{O,lJ, and if the surface c¢l{FU2B~(3B)ilFf'] can have an orientation

compatible with both the orientations of F-(3B)IIF and 2B-(JB)IE.

2.1. Definition. IT Bl""’Bm are mutually disjoint oriented

. 4 . . 4 s
Z-cells in R which span F as 1l-handles, then the resulting

oriented surface hl(F;ll,,..,E ) = c1[FU2B,U...U3B  -Fil(2B,U..U3 )]

=

with orientation induced from I - Fﬂ(BlU...UBm) ig called the

surface obtained from..F by the hyperboloidal trancsformations z2long

l-handles B .,B . Likewise, if B,, ,B span F as 2-handles,

l,o- m __L". m

l,...,Bm):cli?uaslu...UaB -

FH(QBlU...UBBm)J ig called the surface obtained from F by the

the resulting oriented surface hz(F;B

hyperboloidal transformations along 2-handles Bl""’Bm'

We may have the following:

2.2, For arbitrary integers m and n with 1 <m<mn, if

. . 4 . .. .
Fn is unknotted in R, then there exist mutually disjoint m 3-gells

Bl""’Bm in R*  which svan F,  as 2-handles and such that

2 N :
h (Fn;bl,...,Bm) is an unknotted surface of genus n-m.

- 10 -
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We shall show the following theorem which was partially
suggested to the authors by T.Yajima:s
. 2.3, Theorem. For arbitraryv integers m and n with 1<m< n,
F is unknotted in R4, then one can find mutually dicjoint m

. . . o4 .
-cells Bl""’Bm in R which span Fn as_2-handles and such

that h (Fn;Bl’°"’Bm> is a knotted surface of genus n-m. Further,

. S4 . . . .
every knotted surface in R is ambient isotovic to a surface

hg(Fn;Bl,...,Bm) with an unknotted surface Fn and spanning
2-~handles By,...,B, for some m and n (m<n ).

The proof will be given later.

Combined 2.2 with Theorem 2.3, we conclude that the knot type

of the surface hZ(Fn;B ,...,Bm) in r* depends on the choice of

1
Bl""’Bm? even if Fn is unknotted. (In case Fn is knotted , the

assertion has already known by T.Yajimal7].)
Un the other hand, concerning l-handles; we shall obtain the
following:

2.4, Theorem, Given an unknotted surface Fn and mutuallv

disjoint m 3-cells Bl,.,.,Bm in R which span Fn

then the resulting surface hl(Fn;Bl,...,Bm) of genus n+m is

as . l-handles,

necessarily unknotted.

2.5. Note, In case Frl is a knotted surface, then the knot

tyve of the surface hl(Fn;B Bm) depends on the choice of

170
Bl,...,Bm. For example, let us consider the 2-sphere S8 illustrated

in Fig. 7.

- 11 -
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Fig. 7
This Z—Sphére S is certainly knotted, since the fundamental group
Kl(R4—S) has a presentation (a,b: aba=bab) whose Alexander
polynomial is t2—t+l.{1n fact, this 2-sphere has the same knot type
as the spun 2-knot of a trefoil.] Let B, B' ©be two 3-cells that

span S as l-handles, as shown in Fig.8.

B

A ' LA /4
N /A7,

|
@ @é‘? _CJCEQ__ |=

1=-1 t=-0% t=0 t=05

(s

l

\
hi
N/
?@

frocncrome

+
1}
H

Fig. 8
The surfaces Fi= hl(S;B) and Fi ~nl S;B') of genera 1 related

to the 3-cells B and B' are illustrated in Fig. 9.

- 12 -
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1=-2 t=-1 £=0 t=1 t=2 t=3

Fig. 9

It is easily seen that the fundamental group ”ﬂl(R4—Fl) is an
infinite cyclic group [ In 2.7 we shall show that this P, is

actually unknotted.] and the fundamental group ‘Ki(R4-Fi) is
isomorphic to the fundamental group ’Ri(R4—S) that is non-abelian.
Hence the knot types of Fl and Fi are distinct.

2.6. Proof of Theorem 2.4. We shall show the existence of a

, - 3 . 4 . T TR
solid torus T ~ of genus n in R with 3T =F and Int(Tn)HBi_ﬁ,

i =1,2,..,m, Then the desired result follows , since 'i‘nUBll.J..UB'n
. . o . 1 :

is a eo0lid torus of genus n+m and since h <Fn;Bl"”Bm)=2xTnU51U‘°
.UBT). Choose for each i, i = 1,2,..,m, a simple proper arc di in

T . p . . .
B; so that the union FnUJlU...Udm is a spine of the union

- 13 -



™o
-1

' ] Si .$ A v - .\-\' 3 A S
FnLBlU...UBm. Since Fn is unknotted, we may consider Pn 2s the

curface of genus n illustrated in Fig. 10,

Fig. 10

By sliding Bl,...,Bm along Fn and by deforming Bl""’B
themselves, we can assume that dl”"’qxn are attached to the circle
in the level t = 0,i.e., FnHRB[O] in well order and that for each
the two attaching points of ‘xi to FnHRBEOJ have compact and
connected neighborhoods n; and n; in CKi which are contained in

the level t= 0., For m = 3% we illustrated the situation in Fig.ll.




For each 1, let Bj_ be the part of FnHRJEOJ divided by ‘Xi as
in Fig. 12. (For m =1 1let §1_ be any one of the two components of
N I A e s A . + .~
Enuﬁ’[uj divided by dl.) Further, for each i, let o = ol(qi-nibni).
Now we join , for each i, the end points of c{i with a simple arc
, . + ., - . :
Ei such that the loop BiUniUniUbi bounds a non-singular disk Di
in R2[0] with Int(D)I(F UdjU...Ud ) = #, as in Fig. 12.

SaRLe3

Fig. 12
The simple closed curve 'FiUdi is in general not homologous to 0 in
4 - F . However, by twisting 7& along the circle FnHKB[O] ( See

for example Fig. 13.), we can assume that the simple closed curve

: . . 4
1
}iUdi is homologous to 0 in R'- F .
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Since Fn is unknotted, we have the Hurewicz isomorphism Ttl(R4—Fn)
-4 . . . ~4

g;HjKﬁ -F,3%Z). Hence )&Utﬁi is null-homotopic in R'- F . By
general position and by slight modifications, jiUdi, i=1,2,..,m,
bound mutually disjoint non-singular disks di in R4— Fn. Thus,
0 H ig nbient isotoni o + =i | +‘ .
;nUa&u...Luﬁ is ambient isotopic to rnU(nlU)iUnl)L...L(nmLYQan).
Hence FnUdiU...UQm is ambient isotopic to the standard surface of

genus n with .m attaching curves, as in Fig. 14.

Fig. 14
Now by using the uniqueness theorem of regular neighborhoods, one
can easily find a solid torus Tn of genus n in R4 with T = Fr

and Int(Tn)nBi =@, i=1,2,...,m. This completes the vroof.

2.7. Proof of Theorem 2.3. We shall show that , for an

unknotted surface Fl of genus 1, there exists a 3-cell Bl in

R4 which spans Fl as a 2-handle and such that hZ(Fl;Bl) is a

knotted 2-sphere. Then it is easy to find mutually disjoint 3-cells

El,...,Bm which span an unknotted surface Fn as 2-handles and such

- 16 ~
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2, . B . . -
that h“(rn;sl,...,ﬁm) is a knotted surface of genus n-m for

arbitrary given m < n. Wwe consider the surface Fl in Fig. 9. This

surface is actually unknotted. In fact, let B be the 3-cell which

spans F; as a 2-handle, illustrated in Fig. 15.

N

L
=) |g=

=05 =1

i
Fjla

[l
O

? t=-1 +=-~05 t

Fig. 15
The resulting 2-sphere Soz hz(Fl;E) is clearly unknotted. Then
Theorem 2.4 shows that the surface Fq= hl(SO;E) is unknotted.
Consider the 3-cell B in Fig. 8 +that spans Fl as a 2-handle. The
resulting 2-sphere hz(Fl;B) is knotted, because hZ(Fl;B) is S in

Fig. 7.

Secondly, we shall show that any knotted surface F in R4 is
ambilent isotovpic to .a surface hz(Fn;Bl,...,Bm) with an unknotted
surface Fn and. spanning 2-handles Bl”"’Bm for some m and n

) . . . 4 .
(m < n). Consider a compact, connected 3-manifold M in R with

oM = F, It is not difficult to find mutually disjoint 3-cells Bl""B

in M which span F as l-handles and such that T=cl(M-B,U...UB ) is

m

a solid torus._In fact, take a 2-complex K that is a spine of U

- 17 -
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and 1t KL

be the l-skelton of K. Take the regular neighborhood
- NEY ) o k(1) in M. We may comsider that cl(X-T')
consists of m 2-cells [¥i’Z§2""’£&m for some m, For each i,
let Bi be a 3-cell thickenning Ai in c¢l(M=T'). The union M'=
T‘UBiU,..UBé is a regular neighborhood of XK in . Using the
unigueness theorem of regular neighborhoods, we obtain that M' is
homeomorphic¢ to M. Divide M into a solid torus T and 3-cells

Bl,...,B corresponding to T' and B’,...,B&, respectively,

m

utilizing this homeomorphism. The result follows.] Let Fp: o5,

3

where n 1is the genus of . By definition, Fn is unknotted. From
. 2 . .
construction, we have F = h (Fn;bl,...,Bm). This completes the proof.

A'basic unsolved problem still remainé that asks whethef, given
a knotted surface Fn of genus n, n> 1, one can always find
mutually disjoint n 3-cells Bl""’Bn in R4 which spans Fn
2-handles and such that h?(Fn;Bl""’Bn) is a 2-sphere. (The

W
6]

resulting 2-sphere will be necessarily knotted by Theoren 2.4.)

The following shows that there is a knotted surface from which
one can never produce a 2-sphere by the hyperbolic transformation
along 2-handle without changing the fundamental groups:

. - - . 4
2.83.Theorem. There exists a knotted surface rn in R®' ( for

each n > 1) such that

o]

(1) One can find mutually disjoint n 3-cells B;,...,B

S

e

. 2
with h (Fn;Bi,...,Bg) a 2-sphere,

(2)1Ti(R4-Fn) is not isomorphic to “ﬁi(R4_h2(Fn;Bl""'Bn)> for

C . . 2 /s i .
any mutually disjoint n 3-cells Bl""’Bn with h (Fn;Bl,.,ﬁn}_g

2-sphere.
- 18 -



Proof. It suffices to prove for the case n = 1. We shall show
that the surface of genus 1 described in Fig. 16 is such a

surface.

2,

i
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’
)
t

[}

1
ot}
t

(]
O
0
'—i
~}

1}

N

Fig. 16
This surface certainly satisfies (1). To see that it also satisfies
(2), consider the fundamental group Jf of the complement of this

surface in R4. T has a presentation (a,b]| ab = b32

, ba5:a5b).(See
for examole R.H.Fox[]]or T.YajimalT] for a calculation.) Obviously,
Hlfﬁ;Z)Q:Z and, by sending b of this presentation to t, a
generator of an infinite cyclic group, the abelianized commutator

subgroup T'/w' of T is isomorphic to Z[t]/(1-2t,5t-5) as

zlt ]-modules, where (1-2t,5t-5) denotes the ideal over ARS

- 19 -
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generated by the polynomials 1-2t and 5t-5. Using the identity
5 = 5(2t-1)+2(5-5t), =7 /" 1is, consequently, isomorphic to
+1/(2t-1) as 2Z[t]-modules. In particular, 1/-"  is isomorphic

Z5 T/

£0 25 as abelian groups.

Now we need the following theorem that seems essentially the
same as a result of M, A.Gutiérrez[3] (, although our approaoh‘is
gifferent from his.):

¢ be a finitely presented group with
S2 in

2.9.Theoren. lLet

-
-4L

\(
/

Hl(G;Z) = 7 and such that G'/G" is a finitely generated torsion
= a(t

group. If G 1is isomorphic to TTl(ﬂ -8) for some 2-svhere
7 +the first polvnomial invariant

34, then for anv finite field
a(t) of (G'/¢")@,F as F[t]-modules is reciprocal: a(t)
F(t].(The first polynomial invariant a(t) is

up to units of
defined to be the product f;(t)f,(t)...f () for a cyclic
decomposition (”'/G“)@ZF Q"r‘[t]/(fl(t))@F[tj,/(fZ(t))@...@P‘[tj/’(fr(t))

F[t]-modules.)
(' /3 KB
2.9 that

as
5t-1 is the first polynomial invariant of

Note that
gince 2t-1 is not reciprocal in ZB[tJ, it follows fTrom

T is not the fundamental group of any ?—-sphere in R . This

(2). This completes the proof.
is isomorvhic 1o

Fal
AT
-
5, Let

N

enough to show

2.10. Proof of Theorem 2.9. By assumption,
S in a 4-sphere
Moo= el(sT-n ().

st and

>L1C

the group 1(1(84~S) for some 2-sphere
5 in S

N(S)

be the regular neighborhood of
Note that M is homeomorphic to ‘SIXS2. Consider fhe infinite cycl
- 20 -
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cover I of [ associated with the Hurewicz epimorphisnm T\‘l(us)——>
..... o ™. : . s .
Hl(b’;;z’;). Since H, (M;2)=~ G'/G" 1is a finitely generated torsion

r - v \ .
group, it follows from A.Kawauchil[5,Theorem 2.3] that H*(M;Z) is

finitely generated as an abelian group and that there is a duality

1y 72 (H;2) ~ 8 (lu,’A“'T' ).
By the universal coefficient theoren, H (;"',I‘ is canonically
isomorphic to the torsion product Tor{ﬁ“(i\ﬁ;Z),FJ , for Hl(/f)‘f;z) = 0,
“ince the inclusion map ™ - (ﬁ,aﬂ’) induces an isomorphism
H’l(’z?a’;z)-z Hl(@f,'ai-‘f;z) as Z[tJ-modules and H (“,Z) is a finitely
generated torsion group and F is a finite field, we obtain the
composite isomorphism
I.E())‘)' Hl(ﬁ;F)z Tor{H2('ﬂ;Z),FJ 1 Tor[H (%,30;2),7
~ Tor(H, (T;2),F] =~ B (7).
The identity (tu)l?}.&,: 1 l uJ/b,) for any uéH“(M;Z), then, induces

the following commutative square of isomorphisms:

*
ct

Since Hl(ﬁ';}?) and Hl(ﬁ;F) are isomorphic as F[t]-modules, the
first polynomial invariant a(t) of Hl(ﬁ;F) must be reciprocal:

a(t) = a(t™7). This completes the proof.
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