INTEGRABLE PLURICANONICAL FORMS and KODAIRA DIMENSIONS OF COMPLEMENTS OF DIVISORS

Fumio SAKAI

Let X be a complex manifold (possibly non-compact) of dimension n and ω a holomorphic m-ple n-form on X. We write ω as $\omega=\psi(w)\left(\mathrm{dw}_1\wedge\cdots\wedge\mathrm{dw}_n\right)^m$, using local coordinates (w_1,\ldots,w_n) . We associate with ω the continuous (n,n)-form $(\omega\wedge\bar{\omega})^{1/m}$, given locally by $|\psi(w)|^{2/m} \pi_{i=1}^{n} (\sqrt{-1}/2\pi) \mathrm{dw}_i \wedge \mathrm{d}\bar{w}_i$. Then ω is called integrable $(L_{2/m}$ -integrable) if $\int_X (\omega\wedge\bar{\omega})^{1/m} < \infty$. Let $F_m(X)$ be the set of all integrable holomorphic m-ple n-forms on X. When X has a compactification, $F_m(X)$ becomes a vector space. Using $F_m(X)$, we shall define the Kodaira dimension $\kappa(X)$ of X, which is a generalization of the notion of Kodaira dimension of compact complex manifolds introduced by Iitaka [8] (cf.Ueno [19]). Here we want to discuss the properties of $\kappa(X)$ and some related aspects. Details will appear in [17].

1. Kodaira Dimension.

Let X be a complex manifold of dimension n and $F_m(X)$ the set of all integrable holomorphic m-ple n-forms on X as above. Set $N(X) = \{m > 0 \mid F_m(X) \neq \{0\}\}$. If $m \in N(X)$, for a finite set of elements $\omega_0, \ldots, \omega_N \in F_m(X)$, we can define a meromorphic map $\Phi_{\{\omega_0, \ldots, \omega_N\}}$: $X \ni w \longrightarrow [\omega_0(w) : \cdots : \omega_N(w)]$ of X into P_N . Next we put $rk_m = max[rank \ \Phi_{\{\omega_0, \ldots, \omega_N\}}]$, where the maximum is taken over all choices of finite elements in $F_m(X)$ for N=0,1,2,.... The rank of a meromorphic map is the maximum rank of the Jacobian matrix where it is holo-

morphic. Now we define the Kodaira dimension $\kappa(X)$ of X by

(1.1)
$$\kappa(X) = \begin{cases} \max_{m \in N(X)} \{rk_m\} & \text{if } N(X) \neq \emptyset, \\ -\infty & \text{if } N(X) = \emptyset. \end{cases}$$

Note that $\kappa(X)$ takes one of the values $-\infty,0,1,\ldots,n$.

(1.2) Theorem ([17]). The Kodaira dimension $\kappa(X)$ is a bimeromorphic (in the sense of Remmert) invariant of a complex manifold X.

<u>Proof.</u> Let X' be a complex manifold such that there exists a bimeromorphic map $f: X' \to X$. Then f^* induces an isomorphism of $F_m(X)$ onto $F_m(X')$. To see this, take an element $\omega \in F_m(X)$, then $f^*\omega$ is a holomorphic m-ple n-form on X'-S(f), where S(f) is the set of points where f is not holomorphic. Since codim $S(f) \geq 2$, it extends holomorphically on X'. Clearly $\int_{X'} (f^*\omega \wedge \overline{f^*\omega})^{1/m} = \int_{X} (\omega \wedge \overline{\omega})^{1/m} < \infty$, which implies $f^*\omega \in F_m(X')$. Considering the inverse map, we get the surjectivity. Consequently we have, by definitio $\kappa(X') = \kappa(X)$. Q.E.D.

We list some properties of $\kappa(X)$ (cf.[17]).

- 1. Let \mathbb{C} be the complex plane and $\mathbb{C}^*=\mathbb{C}-\{0\}$. Then $\kappa(\mathbb{C})=-\infty$, $\kappa(\mathbb{C}^*)=-\infty$. Further $\kappa(\mathbb{C}^*Y)=-\infty$, $\kappa(\mathbb{C}^*\times Y)=-\infty$, for any complex manifold Y.
- 2. Let X, Y be complex manifolds of the same dimension such that XCY. Then $\kappa(X) \geq \kappa(Y)$. In particular, if $\kappa(X) = -\infty$, we get $\kappa(Y) = -\infty$.
 - 3. Let X be a complex manifold and Z an analytic subset of X with codim $Z \ge 2$. Then $\kappa(X-Z) = \kappa(X)$.
 - 4. Let X, Y be complex manifolds of the same dimesion.

Suppose that there is a surjective proper meromorphic map $f: X \longrightarrow Y$. Then $\kappa(X) \geq \kappa(Y)$.

In case X is a complex space, we define $\kappa(X)$ to be $\kappa(X^*)$, using a desingularization X^* of X.

2. Complements of Divisors.

In this section, we deal with the case in which X has a compactification \overline{X} . We assume that \overline{X} is a smooth compactification in the sense that \overline{X} is a compact complex manifold and $D=\overline{X}-X$ is a divisor of normal crossings. Let $K_{\overline{X}}$ be the canonical bundle of \overline{X} and [D] the line bundle determined by D. In this case, we have

$$(2.1)\underline{\text{Theorem}}([17]). \quad F_{m}(X) \cong H^{0}(\overline{X}, O(mK_{\overline{X}} + (m-1)[D])).$$

The proof is based on the fact that if $f(z)(dz)^m$ is integrable on the punctured disc Δ^* , then the Laurent expansion of f(z) becomes as $\sum_{j=-(m-1)}^{\infty} a_j z^j$ ([14], Appendix).

(2.2) Definition.
$$\gamma_{m}(X) = \dim F_{m}(X) = \dim H^{0}(\overline{X}, O(mK_{\overline{X}} + (m-1)[D]))$$
.

We can redefine the Kodaira dimension as follows.

 $(2.3) \underline{\text{Definition}}. \quad \text{Let } \psi_0, \dots, \psi_N \text{ be a basis of } H^0(\overline{X}, O(mK_{\overline{X}} + (m-1)[D])).$ Let Φ_m be the meromorphic map defined by $[\psi_0 : \dots : \psi_N]$ of \overline{X} into P_N . Put $N(X) = \{m>0 \mid \dim H^0(\overline{X}, O(mK_{\overline{X}} + (m-1)[D])) > 0\}.$ Then

$$\kappa(X) = \begin{cases} \max_{m \in N(X)} \{\dim_{\Phi_m}(\overline{X})\} & \text{if } N(X) \neq \emptyset, \\ \min_{-\infty} \{\dim_{\Phi_m}(\overline{X})\} & \text{if } N(X) \neq \emptyset. \end{cases}$$

(2.4) <u>Example</u>. Let D be a hypersurface of degree d in \mathbb{P}_n which has at most normal crossings. Then $\kappa(\mathbb{P}_n$ -D)=n if d>n+1 and $\kappa(\mathbb{P}_n$ -D)

=- ∞ if d \leq n+1. Next put $U_a = \{z_1^{a_1} + \cdots + z_{n+1}^{a_{n+1}} = 1\}$ in \mathbb{C}^{n+1} . Then $\kappa(U_a)$ =n if $\sum_i 1/a_i < 1$. Here we represent a classification of complements of finite points on compact curves.

K	$\gamma_1 = g$	$\gamma_{\underline{m}} (\underline{m} \geq 2)$	structure
<u>-</u> ∞	0	0	$\mathbb{P}_{1}, \mathbb{P}_{1}^{-\{a_{1}\}}, \mathbb{P}_{1}^{-\{a_{1}\}}, -\{a_{2}\}$
0	1	1	elliptic curve
	0	m(k-2)-k+1 (except k=3, m=2)	$\mathbb{P}_{1} - \bigcup_{i=1}^{k} \{a_{k}\}, k \ge 3$
1	1	mk-k	elliptic curve- $\bigcup_{i=1}^{k} \{a_k\}, k \ge 1$
	g <u>≥</u> 2	m(k+2g-2)-k+1-g	curve of genus $\geq 2 - \bigcup_{i=1}^{k} \{a_k\}, k \geq 0$

Let X be again a complex manifold of dimension n and \overline{X} a smooth compactification of X with $D=\overline{X}-X$. We remark that $F_m(X)$ has an invariant Hermitian metric. So $F_m(X)$ is a finite dimensional Hilbert space ([17]). The Kodaira dimension $\kappa(X)$ has the following relation with $\kappa(K_{\overline{X}}+D,\overline{X})$.

(2.5) <u>Proposition</u>. If $\kappa(X) \geq 0$, then $\kappa(X) = \kappa(K_{\overline{X}} + D, \overline{X})$. Further $\kappa(X)$ = n if and only if $\kappa(K_{\overline{X}} + D, \overline{X}) = n$.

The first part of this relation also holds without the assumption that D has normal crossings (See [17], Appendix).

 $(2.6)\underline{\text{Remark}}$. When \overline{X} is a smooth compactification of X, Iitaka calls $\kappa(K_{\overline{X}}+D,\overline{X})$ the logarithmic Kodaira dimension of X and writes it by $\overline{\kappa}(X)$ ([9]). He proves that $\overline{\kappa}(X)$ is a proper birational invariant of X. From Theorem (1.2) and Proposition (2.5), it follows that if $\kappa(X) \geq 0$, then $\overline{\kappa}(X)$ is a bimeromorphic invariant. But the following examples show that in case $\kappa(X) = -\infty$, $\overline{\kappa}(X)$ need not be a bimeromorphic invariant of X. We consider several

compactifications of \mathbb{C}^{*2} . We have, by $(1.3) \ltimes (\mathbb{C}^{*2}) = -\infty$. 1) $\mathbb{C}^{*2} = \mathbb{P}_2^{-\bigvee_{i=1}^3 H_i}$, with three lines H_1 , H_2 , H_3 in general position. In this case $\overline{\ltimes}(\mathbb{P}_2^{-\bigvee_{i=1}^3 H_i}) = 0$. 2) $\mathbb{C}^{*2} = \mathbb{P}_1^{\times} \mathbb{P}_1^{-\bigvee_{i=1}^4 L_i}$, where $L_i = a_i \times \mathbb{P}_1$, i = 1, 2 and $L_i = \mathbb{P}_1^{\times} b_i$, i = 3, 4. We have $\overline{\ltimes}(\mathbb{P}_1^{\times} \mathbb{P}_1^{-\bigvee_{i=1}^4 L_i}) = 0$. 3) $\mathbb{C}^{*2} = S - E$, where S is a Hopf surface given by $S = \mathbb{C}^2 - \{0\}/\{g\}$ with $g: (z_1, z_2) \longrightarrow (\alpha^p z_1 + \lambda z_2^p, \alpha z_2)$, $\lambda \neq 0$, $0 < |\alpha| < 1$, for a positive integer p and E is an elliptic curve given by $E = (\mathbb{C}^2 - \{0\}) \cap \{z_2 = 0\} / \{g\}$ (See [7], for details). In this case, we have $\mathbb{K}_S = -(p+1)[E]$ and then $\overline{\ltimes}(S - E) = -\infty$. 4) $\mathbb{C}^{*2} = F - D$, where F is a \mathbb{P}_1 -bundle over an elliptic curve constructed by Serre ([5], p232) and D is a section with $D^2 = 0$. We also have $\overline{\ltimes}(F - D) = -\infty$.

In case X is given by $X=\overline{X}-D$ with a singular divisor D on a compact complex manifold \overline{X} , it is not so easy to claculate $\kappa(X)$. Here we give a method. According to Hironaka, there exists a desingularization $\pi\colon X^* \longrightarrow X$ such that $\pi^{-1}(D)=D^*$ has normal crossings. Let $\pi^{-1}(\operatorname{Sing} D)=\sum_i S_i$ be the irreducible decomposition of the exceptional set of π . Let R_{π} be the ramification divisor of π . Set $\mathcal{E}_D=\pi^*D-D^*-R_{\pi}$. We can write $\mathcal{E}_D=\sum_i t_i S_i$ with integers t_i .

(2.7) <u>Definition</u> (Shiffman [18]). Let A be a divisor on \overline{X} passing through the non-normal crossing points of D. If we write $\pi^*A = \overline{A} + \sum_i p_i^A S_i$, where \overline{A} is the strict transform of A, then $p_i^A \ge 1$. Define $\gamma_{A,D} = \max_i \{t_i^+/p_i^A\}, \quad \text{where } x^+ \text{ means max } (x,0).$

(2.8) Proposition. We have

$$\begin{split} & \gamma_{\mathfrak{m}}(X) \geqq \text{dim } H^{0}\left(\overline{X}, O\left(\mathfrak{m}K_{\overline{X}} + (\mathfrak{m}-1)\left\{[D] - \gamma_{A,D}[A]\right\}\right)\right). \\ & \overline{\kappa}(X) = \kappa\left(K_{\overline{X}} * + D *, \overline{X} *\right) \geqq \kappa\left(K_{\overline{X}} + D - \gamma_{A,D} A, \overline{X}\right). \end{split}$$

<u>Proof.</u> Note that $[\mathcal{E}_D] = \pi^*(K_{\overline{X}} + [D]) - (K_{\overline{X}} + [D^*])$. We have, by definition $\kappa(\gamma_{A,D}\pi^*A - \mathcal{E}_D, \overline{X}^*) \ge 0$. The assertion follows from this.

- (2.9) <u>Corollary</u>. Let D be a singular hypersurface of degree d in \mathbb{P}_n . Let A be a hypersurface of degree a in \mathbb{P}_n passing through the non-normal crossing points of D. If $(d-n-1-\gamma_{A,D}a)>0$, then $\kappa(\mathbb{P}_n-D)=\overline{\kappa}(\mathbb{P}_n-D)=n$.
 - 3. Quasi-Projective Manifolds with $\kappa(X)$ =dim X.

A complex manifold is called a quasi-projective manifol if it is given as a complement of an analytic subset of a projective algebraic manifold. In [17], we prove the following facts.

- (3.1) Theorem. Let X be a quasi-projective manifold of dimension n. Assume that $\kappa(X)=n$. Then X satisfies
 - 1. Any non-degenerate holomorphic map $f: \Delta^* \times \Delta^{n-1} \longrightarrow X$ can be extended to a meromorphic map from Δ^n to any compactification of X. Here Δ is the unit disc and $\Delta^* = \Delta \{0\}$. An equidimensional holomorphic map is called non-degenerate if the Jacobian does not vanish identically.
 - 2. Every biholomorphic transformation of X extends as a meromorphic transformation of any compactification of X.
 - 3. Let Aut(X) be the group of biholomorphic transformations of X. Then Aut(X) is a finite group.
 - 4. X is measure-hyperbolic.
 - 4'. Every holomorphic map $f: \mathbb{C} \times \Delta^{n-1} \longrightarrow X$ degenerates.

These properties show that in this case X behaves like a projective algebraic manifold of general type.

- 4. Concluding Remarks.
- A. Let $\mathfrak D$ be a bounded symmetric domain of dimension n and Γ a totally discontinuous group operating on $\mathfrak D$ such that $X=\mathfrak D/\Gamma$ has a compactification. Let $\pi:\mathfrak D\longrightarrow X$ be the projection. In many cases, the space $\pi^*F_m(X)$ corresponds to the vector space of cusp forms on $\mathfrak D$ (For instance, see [6],[10]). So it is expected that this phenomenon holds in general. Moreover we have the following question: Let X be a complex manifold of dimension n. If the universal covering manifold of X is a bounded domain in $\mathfrak C^n$, is it true that $\kappa(X)=n$?
- B. Let Y be a complex manifold of dimesion n and Z an analytic subset of Y. We set $F_m^Z(Y) = \{\omega \in H^0(Y-Z,O(mK))/H^0(Y,O(mK)) \mid \omega \text{ is locally integrable across Z, i.e., for every point } x \in Z$, there is a neighborhood U of x in Y such that ω is integrable on U-Z(\Omega). If codim $Z \ge 2$, then $F_m^Z(Y) = \{0\}$. In case Z is a divisor D having normal crossings, then we obtain

 $F_{m}^{D}(Y) \cong H^{0}(Y,O(mK+(m-1)[D]))/H^{0}(Y,O(mK))$

(cf.Theorem (2.1)). Take neighborhoods U, U' of Z in Y. If UDU' then we have an inclusion $F_m^Z(U) \hookrightarrow F_m^Z(U')$. Hence we can define $\widehat{F}_m^Z(Y) = \lim_{M \to \infty} F_m^Z(U)$. Put $\gamma_m^Z(Y) = \dim_K F_m^Z(Y)$ and $\widehat{\gamma}_m^Z(Y) = \dim_K \widehat{F}_m^Z(Y)$. Then $\gamma_m^Z(Y) \leq \widehat{\gamma}_m^Z(Y) \leq 0 \, (m^n)$. Further we can define $\kappa^Z(Y)$ and $\widehat{\kappa}^Z(Y)$ in a similar manner as in (1.1).

Next in case Y is a complex space, letting $\pi: Y^* \longrightarrow Y$ be a desingularization of Y, we put $\gamma_m^Z(Y) = \gamma_m^{Z^*}(Y^*)$, $\hat{\gamma}_m^Z(Y) = \hat{\gamma}_m^{Z^*}(Y^*)$ with $Z^* = \pi^{-1}(Z^*)$

(4.1) <u>Proposition</u>. Let \overline{X} be a compact complex manifold of dimension n and D an effective divisor on \overline{X} . Put $X=\overline{X}-D$. Then

$$P_{m}(\overline{X}) \leq \gamma_{m}(X) \leq P_{m}(\overline{X}) + \gamma_{m}^{D}(\overline{X}).$$

We consider the special case in which Z=y is an isolated singularity of an n-dimensional complex space Y. For simplicity, put $\gamma_m = \widehat{\gamma}_m^y(Y)$. Let $\pi: Y^* \longrightarrow Y$ be a desingularization of Y. For a neighborhood U of y, put $U^* = \pi^{-1}(U)$. Define $r_m = \dim \frac{1 \text{ im}}{U} H^0(U^-y, 0(\text{mK}))/H^0(U^*, 0(\text{mK}))$. Put $\sigma_m = r_m - \gamma_m$. Then $\sigma_m \ge 0$. and $\gamma_1 = 0$. It is easily seen that if y is a quotient singularity, then $\sigma_m = 0$ for all m (cf.[1],[2]). Question: When $\sigma_m = 0$? When $\gamma_m = 0$? (4.2) Example. Suppose that $\pi^{-1}(y) = E$ is \mathbb{P}_{n-1} and $E \mid E \sim (-e)$, where (1) means the hyperplane bundle on \mathbb{P}_{n-1} . In this case, we get easily that $\sigma_m = 0$ for all m and if $e \le n$, then $\gamma_m = 0$ for all m.

In case dim Y=2, Laufer showed in [15] that σ_1 =0 if and only if y is a rational singularity. Precisely he proved dim $R^1\pi_*O_{U^*}$ = σ_1 . Knöller [11] calculates r_m and $\lim_{m\to\infty} r_m/m^2$ for several singularities. In particular, the condition r_m =0 for all m characterizes the rational double points (See also [12], for an application).

References

- [1] Burns,D.:On rational singularities in dimension>2. Math. Ann.211, 237-244 (1974)
- [2] Freitag, E.: Über die Struktur der Funktionenkörper zu hyperabelschen Gruppen. I. J. Reine Angew. Math. 247, 97-117 (1971)

- [3] Grauert, H. and Riemenschneider, O.: Verschwindungssätze für analitische Koholomologiegruppen auf komplexen Räumen.

 Invent. Math. 11, 263-292 (1970)
- [4] Griffiths, P. and Schmid, W.: Recent developments in Hodge theory.
 In: Discrete subgroups of Lie groups and applications to
 moduli. pp. 31-127, Tata Institute 1975
- [5] Hartshorne, R.: Ample subvarieties of algebraic varieties.

 Lecture Notes in Math. 156, Springer 1970
- [6] Hemperly, J.C.: The parabolic contribution to the number of linearly independent automorphic forms on a certain bounded domain. Amer. J. Math. 44, 1078-1100 (1972)
- [7] Howard, A.: On the compactification of a Stein surface. Math.
 Ann. 176, 221-224 (1968)
- [8] Iitaka, S.: On D-dimensions of algebraic varieties. J.Math. Soc. Japan 23, 356-374 (1971)
- [9] _____.:On logarithmic Kodaira dimension of algebraic varieties. to appear
- [10] Kawata,Y.:Theory of automorphic functions of one variable.
 II. Fuchsian forms (in Japanese). Seminary Notes 9, Univ.
 Tokyo 1964
- [11] Knöller, F.W.: 2-dimensionale Singularitäten und Differentialformen. Math. Ann. 213, 205-213 (1973)
- [12] _____.:Ein Beitrag zur Klassifikationstheorie der Hilbertschen Modulflächen. Archiv der Math. 26, 44-50 (1975)
- [13] Kobayashi, S.: Transformation groups in differential geometry.

 Ergebtnisse series. Berlin-Heidelberg-New York 1971
- [14] _____. and Ochiai, T.: Mappings into compact complex manifolds with negative first Chern class. J.Math.Soc.Japan 23,137-148(1971)

- [15] Laufer, H.: On rational singularities. Amer. J. Math 95,597-608(19)
- [16] Sakai,F.:Degeneracy of holomorphic maps with ramification.

 Invent.Math.26, 213-229 (1974)
- [17] _____.: Kodaira dimensions of complements of divisors.

 to appear
- [18] Shiffman, B.: Nevanlinna defect relations for singular divisor Invent. Math. 31, 155-182 (1975)
- [19] Ueno, K.: Classification theory of algebraic varieties and compact complex spaces. Lecture Notes in Math. 439, Springer Berlin-Heidelberg-New York 1975