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Kodaira dimensions for fibre spaces.

Kenji Ueno

Un;vérsity of Tokyo

In the present note we shall discuss briefly Kodaira

dimensions for singular varieties and fibre spaces.

§ 1. Kodaira dimension for an algebraic variety.

There are several definitions of Xodaira dimensions for
non-complete algebraic varieties. (See Iitaka's and Sakai's
articles in this volume.) Here we follow Sakai's definition
when an algebraic variety is non-singular, and we shall show

how to calculate Kodaira dimensions for complete varieties.

Let M be a non-singular algebraic variety. For a posi-
tive integer m we set Fm(M) ={? & HO(M,Q(mKM)\ ﬂ%ﬂm<(N}

where ﬁ‘fum is defined by
QLB:Q)S 2/m 1/2

2 1 n -1 -n
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Fm(M) is a finite dimensional vector space. Let {‘fo,

fl""’QFN} be a basis for Fm(M)- Then

o, : M >y P
. m " v
z | >(?O(z):73(z):°~':f7(z))

is a rational mapping. The Kodaira demension K(M) of M
is defined by

max dim @F (M), if (M) £ ¢
medl (M) m
K(M) =
- , if NM) = ¢ ,
where (N(M) ={me W | F (M) #0 o

If M is complete and non-singular, %(M) is the usual

Kodaira dimension of M. DLet V be a non-singular complete

algebraic variety and let G Dbe a finite group of analytic

automorphisms of V. We set M = (V/G) the non-singular part

reg”

of the»quotient variety. Then it is easy to show that
) G
F() = BV, o(mk, ) .

Hence if we know the action of G on HO(V, o(mk,)), it is
easy to calculate ®(M). What is a relation between K(M)
and K(V/G)? The problem can be solved if we know how many
elements of F_(M) can be extended to elements of Ho(ﬁ*,

—%
Q(mKM*)) where M is a non-singular model of V/G. If G

Ny



166

has only isolated fixed point, the protlem is reduced to the
problem of local Kodaira codimensions, Let (U,x) Dbe an
isolated singular point such that U 1is Stein and U-x is non-

singular, We set
Ty, = dim {. HO(U"X’ 9_( mKU—X) )/ 0,. %
' 4 ’ H(U ,Q(mKU*))

*
where U is a resolution of (U,x). The problem of local
Kodaira codimensions is toc study the asymptotic behaviour of

Ty when m becomes +00 When dim U = 2, +there is a

catisfactory theory due to Kndller L12) and Ma. Kato [1].
When dim U = 3, Kuramoto is studying the problem. One of his

result is the following. Let Nn P, be the quotient space
? ?

3
€’ /<g>, when

g (zl,zz,zs)w——-? (eﬁzl, eqzz, e z

n n 3)

e, = exp(2t/-1/n),  (n,p)=(n,q)=1 .

Then for the isolated singular point of Nn 0,4’ we have
’ ’

3 r
n-p-g=1 . m 1.3
6+ S Hm—— gognto.

m

Of course we should consider a similar problem for (U,E)
where E 1s a singular locus of U, E is compact, and U-E
is non-singular. If (U,E) 1is a cyclic quotient singularity,

there are some partial results.

\H
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Let k Dbe a totally real algebraic member field with (k:f) =
Let T be a discrete subgroup of SL{(2,%x) which is commensur

o

with SIL(2,0) where QO is the ring of integers of Xk, [7 ac
n . s e n . .
H properly discontinucusly. V = H /{7 is a normal guasi-

projective algebraic variety and if we add a finite member of

1 n 5 7 s I
cusps {ﬁﬁ,...,fnhﬁ to H/U , then V = HE /i V100,000, o7
is a complete normel projective variety. It is easily
‘ UO 4 + o <
that H (Vreg’ O(mK)) corresponds to the space of modular for
of weight Z2m. Using the structure theorem of a cusp singula

O
ot
oy
[}

it is not difficult to show that Fﬁ(vreﬁ) corresponds t
i E—:

vector space of cusp forms of weight 2m. Thus k(vre”} = 1.

<

The local Kodaira codimension for cusp singularity has bveen
studied by Xnoller 12] when n = 2,
By a similar method we can study the Kodaira dimensions f

o

S /" where S_ 1is the Siegel upper half plane of degree g
g g

b

and |7 is a discrete subgroup of S_(g,R) commensurable with

Sp(g, 2).

$ 2, Kodaira dimensions for fibre spaces,
By a fibre space & : V —> W we umean that V and W

non-singular complete algebraic verieties defined over € and

mne

or
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¢ is surjective with connected fibres. In this situation there
is the following conjecture.

Conjecture. K(V) Z k(W) + K(a general fibre of ¢ ).

Very little is known about this conjecture. At the moment
there are two methods to attack the conjecture. The first method
is to construct element of HO(V,Q(mKV)) (see Ueno (41, Nakamura
and Ueno [ 3]). The second method is to find a certain estimate
for Pm(V) (see Ueno [5]). Both methods are deeply related to
each other. The first method is deeply depend on the structure
of moduli spaces of algebraic varieties and degenerations of alge-
braic varieties. The second method is related to variation of

Hodge structures.

To explain the first method we shall consider a family of
principally polarized abelian varieties ¥ : V — W. We assume
that € is smooth so that the family ¥ : V — W is obtained
locally from the universal family fU’:Qf—asg of principally
polarized abelian varieties over the Siegel upper half plane.

For simplicity we assume that % : V — W has the zero section
O(i.e. for each w e W, O(w) is the zero of the abelian variety
A = cf"l(w)). Let W be the universal covering of W. Then

W

~
there is a holomorphic mapping T : W — Sg called the period



169
mapping of the family and a group representation

@ :’Kl(W)——~ﬁ Sp(g,Z) such :that

T(r-Ww) = &(r) (W) .

ZZg acts on 'W X ¢8 in the form

B

VoW KkeE —— W x 8
The action is properly discontinuous and fixed point free.
v ' . . w8 2E .
We let V Dbe the gquotient manifold W xC®/Z . There is a

natural surjective proper morphism ¥ : V— %. The fundamen-

tal group “Kl(W) operates on .§' as follows,

r: vV > 7
(7, 1$1) —— (x@, ($-2,()]) ,

where
~ ~ -1 ' Ay By
£.(w) = (c, ™(w) + D)7, Hr) = (Cr Dr)'

The action is properly discontinuous and free from fixed points.

Thus we bbtain a quotient manifold % = %7 ml(w) and a surjec-

tive morphism % : Q —> W, It is easy to show that this fibre

space is isomorphic to the original fibre space ¥ : V — W .

If ¢ : V—> W has no global sections, ¥¢: V — W can be
~

~N
obtained from ¥ : V —> W Dby twisting the fibration (see Ueno

Lel). Let f(z) be a modular form of weight m such that



- ~ ~ . o .
£f(r(w)) £ 0, Such & forn exists if o is
sufficliently large, e set

~ “

g 7 . i

S F(TW)) e A (dflA oo A “5’0«)
yhere o~ is & nolomorphic (or mervomorphic) m-nle n-forms on W.

Then . ig a holomorphic {or meromorphic) m-ple (n+g)-form on

s

V and in view of the acticn of Ki(W) on V, 4l induces a

m-ple (n+g)-form on ¥V (or V).

L%
mK,, = ¢ (mKw + F)

an effective divisor on W defined by f£(T(W))=0.

mative answer to
,&the above conjecture in our situation,

(<

oy

D
S IR S|
)

e
IO IR T G)]

In general case, the morphism ¢ 1s not smooth. We let S

th at every point

be a subvariety of W such that Y 1is

. - -1 .
of V' =V - ¢ “(s). Then by a similar method as above we

C

can construct a holomorpiic (or meromorphic) m-ple (n+g)-form

AT on V' and the problem is reduced to extension of !

the
toxwhole space V. For that purpose we need some informations

avout singular fibres and behaviour of modular forms near the

boundary. In this way sometimes we obtain the m-th canonical

[}
43]

set us discuss the second method. Let VYV —> W b



smooth surjective morphism of a non-singular (n+m)-dimensional
algebraic variety V onto a non-singular m-dimensional algebraic
variety W. Suppose morecver that ¥ has connected fibres.

. : ¥, -1 4 ‘ . .
We set KV/W = KVGNP (Kw ) anda £ = f*(g(xv/w)). Then £ is

I
Pgl
et
Py
>
e

a locally free sheaf of rank p where p = pg(Vi), vy
. . <&

x € W and £ is the dual sheaf of ’Rm%;gv. Moreover it is
easy to see that pg(V) = dim HO(W, iﬂ@BQ(Kw)). Therefore if
we know the structure of £, we can calculate pg(V). There is

an important result due to Griffiths.

Proposition. The curvature of L is positive semi-difinite.

This is a corollary to Griffiths' results on the theory of Hodge
tundles., From this proposition if K, 1is good we can caluculate
pg(V). (e.g. W is a curve of genus g = 2, W is a non-singular
complete intersecticn with WK(W) = gim W etc.) Moreover there
is a natural homomorphism
e Bo(w, s™L)® KD —— 1V, o(mKy))

: y S W , O(mKy

m

where Sm(i.) is the m-th symmetric product of £ . Therefore

p, (V) 2 dim I f . But the locally free sheaf S'(£) has not
been studied even the classical case. For example let us consid-
er the case where ¥ : V — W 1is a family of principally

polarized abelian varieties with level n structure.

0
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Put W = Sg / P(n),n 2 3. Let T :Agn'—“> W be the universal

family of principally polarized abelian varieties with level n

étructure. Then there is the period map @ : W —> W' and

¢ : V-— W is isomorphic to the pull-back of the family 7t :

A —¥9 wX by means of W, Therefore for the study df the

sheaf §?(1:) it is enough to consider the famiiy T, It is

easily shown that the sheaf L is isomorphic to the dual of the

normal bundle N of the image of zero section in }4n. The line
2

bundle (/\\N*fam, .Q::%n(n+1) corresponds to the sheaf of modul-

ar forms of weight m and for this line bundle we have a good

theory (at least for the application to algebraic’ geometry).

The curvature of the vector bundle §@(N*) is positive definete

so that §@(N*) has sufficiently many sections for m > O.
But we don't know the way to construct these sections explicitly.
If this would be possible we would have a good information on
Imfm . Moreover if we know asymptotic behaviour of sections of
§m(N*) near the boundary, we would be able to consider the case
where 9 : V—> W is not necessarily smooth.

As was shown above, the second method is deeply related to
Griffiths! theory of variation of Hodge structure. To any family’
¢: V—> W with smooth ¢ we can attach the family of Griffiths!

intermediate Jacobians 731 : Jy—> W and the family of Weil's
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intermediate Jacobians 252 : I, W ﬁg is holomorphic
but ivé is in general real analytic. Hence the second method
is related to construct the theory of matrix valued automorphic
forms on Griffiths' period matrix domain; Of course in this
case we can only expect that these automorphic forms are real
analytic,and if we restrict them to certain subvarieties (the
image of period mappings) they are holomorphic, If this is

possible,the conjecture will be solved when the geometric genus

of a general fibre of ¢ is positive,
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