On Regular Surfaces of General Type II.

by Yoichi MIYAOKA

1. Introduction. In this paper a surface shall mean a compact complex manifold of dimension 2. We denote by $|mK_S|$ (meN) a pluricanonical system on a surface S and by Φ_{mK_S} the associated rational map (the pluricanonical map), assuming that $|mK_S|$ is not empty. A surface S is called of general type if Φ_{mK_S} (S) in the projective space P^N (N = dim mK_S) for a large number m is a variety of dimension 2. If S is a surface of general type the following results are well-known.

Theorem 1 (Mumford []). If m is sufficiently large, Φ_{mK_S} is a birational morphism and Φ_{mK_S} (S) \cong X = $\Pr{oj \bigoplus_{r} H^{0}(S, \underline{o}(rK_S))}$. X is a normal variety with only a finite number of rational double points as singularities. If S is a minimal surface, then S is the minimal resolution of X.

Theorem 2 (Mumford []). Assume that S is minimal. Then we have $H^1(S,\underline{O}(mK_S))=0$, for $m\neq 0,1$, $m\in Z$.

Theorem 3 (Riemann-Roch Theorem for pluricanonical systems). Letting \overline{c}_1^2 be the self intersection number for the canonical divisor of the minimal model of S, we have

 $\dim \ H^0(S,\underline{o}(mK_S)) = \chi(\underline{o}) + (\overline{c}_1^2/2) \ m(m-1),$ where $\chi(\underline{o})$ denotes the Euler characteristic of the structure sheaf \underline{o}_S of S.

Theorem 4 (Iitaka []). The m-genus $P_m(S) = \dim H^0(S, \underline{O}_S(mK_S))$ is deformation-invariant.

As an immediate corollary to Theorems 3 and 4, we obtain the following

Theorem 5 (Deformation Invariance of the Minimality).

If S is minimal, then any deformation of S is also
a minimal surface of general type.

From now on, we denote by S a minimal surface of general type with the following numerical conditions:

*
$$\begin{cases} p_g(S) = \dim H^0(S, \underline{o}(K_S)) = 0, \\ q(S) = \dim H^1(S, \underline{o}) = 0, \\ K_S^2 = 2. \end{cases}$$

A surface of this type shall be called a <u>numerical</u>

<u>Campedelli surface</u>.

In section 2, we study the property of the tricanonical system $|3K_S|$ on a numerical Campedelli surface. In spite of Bombieri's comprehensive work [] on pluricanonical maps, the tricanonical system on S was not completely surreyed. And there remains still an open problem: Is the tricanonical map of S is a birational morphism?

It is an interesting but, in general, a very difficult

problem to determine the complex structures on a given underlying differentiable manifold. In our case the problem is rather easy under some conditions. In section 3, we shall determine the structure of S under the condition that the fundamental group of S is a direct sum of three copies of the cyclic group of order 2.

2. Regularity of the tricanonical maps.

Let S be a numerical Campedelli surface. Then we have the following

Theorem 5 (Regularity of tricanonical maps). The tricanonical system $\left| 3K_S \right|$ on S is free from base points and fixed components.

For the proof we need some results .

Definition. An effective divisor D on a surface \mathbf{F} is called 1-connected if

$$D_1, D^5 > 0$$

for any non-trivial decomposition $D = D_1 + D_2$, $D_i > 0$.

Theorem 6 (Ramanujam vanishing theorem []). If an effective divisor D on a regular surface (i.e.

q(F) = 0) is 1-connected, then $H^{1}(F, \underline{O}(-D)) = 0$.

Theorem 7 (Bombieri []). Let F be a minimal surface of general type and P a point on F. Let p: $\widetilde{F} \longrightarrow F$ denote a quadric transformation at P and E the exceptional curve over P. If an effective divisor D is numerically equivalent to $2p^*K_F - 2E$, then D is 1-connected except in the case where $K_F^2 = 1$.

Now we proceed to the proof of Theorem 1. Let $p\colon \widetilde{S} \to S \quad \text{be the quadric transformation at a point } P$ and $E \quad \text{the associated exceptional curve. Let us}$ consider the following natural exact sequence of sheaves:

 $0 \longrightarrow \underline{O}_{\widetilde{S}}(3p^*K_S - E) \longrightarrow \underline{O}_{\widetilde{S}}(3p^*K_S) \longrightarrow \underline{O}_E \longrightarrow 0.$ Then it is obvious that $|3K_S|$ is free from base point at P if and only if $H^1(\widetilde{S},\underline{O}(3p^*(K_S - E)) = 0$. By the Serre duality we have

dim $H^1(\widetilde{S}, \underline{0}(3p^*K_S - E)) = \dim H^1(\widetilde{S}, \underline{0}(2E - 2p^*K_S))$. Hence Theorem 7 yields the vanishing of the cohomology group under the condition that $|2p^*K_S - 2E| \neq \emptyset$. Now assume that $|2p^*K_S - 2E| = \emptyset$. Since $\dim H^0(S, \underline{0}(2K_S))$ = 3, this implies that the rational map Φ_{2K_S} assoctived with the bicanonical system $|2K_S|$ is a local isomorphism at P. Therefore there exists an effective divisor $D \in |2p^*K_S - E|$ such that D is irreducible in a neighbourhood of E and that the unique irreducible component D_0 which simply intersects E satisfies $D_0^2 \geq 0$. Now we shall take the following exact sequence of cohomology groups:

$$0 \longrightarrow H^{0}(\widetilde{S}, \underline{o}(2E - 2p^{*}K_{S})) \longrightarrow H^{0}(\widetilde{S}, \underline{o}(E)) \longrightarrow H^{0}(D, \underline{o}_{D}(E))$$

$$\longrightarrow H^{1}(\widetilde{S}, \underline{o}(2E - 2p^{*}K_{S})) \longrightarrow H^{1}(\widetilde{S}, \underline{o}(E)).$$

Note that $H^0(\widetilde{S}, \underline{o}(2E - 2p^*K_S)) = 0$ and that $\dim H^1(\widetilde{S}, \underline{o}(E)) = \dim H^1(\widetilde{S}, \underline{o}(p^*K_S)) = \dim H^1(S, \underline{o}(K_S))$

= q(S) = 0. Hence, for the proof of Theorem 5,

it is sufficient to show the equality

$$\dim H^{0}(D,\underline{O}(E)) = \dim H^{0}(\widetilde{S},\underline{O}(E)) = 1.$$

On the other hand we have the following natural commutative diagram

$$0 \longrightarrow H^{0}(D,\underline{o}) \longrightarrow H^{0}(D,\underline{o}(E)) \xrightarrow{r} H^{0}(D^{\cdot}E,\underline{o})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \text{identity}$$

$$0 \longrightarrow H^{0}(D_{0},\underline{o}) \longrightarrow H^{0}(D_{0},\underline{o}(E)) \xrightarrow{r} H^{0}(D.E,\underline{o})$$

of which the rows are exact. But it is obvious that the virtual genus of $\,^D_0\,$ is not 0. Since the degree of the divisor E on $\,^D_0\,$ is 1, the restriction map r is the zero-map. This implies that

$$\dim H^{0}(D,\underline{O}(E)) = \dim H^{0}(D,\underline{O}).$$

Moreover we have dim $H^{0}(D,\underline{0})=1$. In fact, there exists the following natural exact sequence

$$0 \longrightarrow H^{0}(\widetilde{S}, \underline{o}(E - 2p^{*}K_{S})) \longrightarrow H^{0}(\widetilde{S}, \underline{o}) \longrightarrow H^{0}(D, \underline{o})$$

$$\longrightarrow H^{1}(\widetilde{S}, \underline{o}(E - 2p^{*}K_{S})),$$

where dim $H^1(\widetilde{S}, \underline{O}(E - 2p^*K_S)) = \dim H^1(\widetilde{S}, \underline{O}(3p^*K_S))$

- = dim $H^1(S,\underline{O}(3K_S))$ = 0. Thus dim $H^0(D,\underline{O})$ = dim $H^0(S,\underline{O})$
- = 1 and the assertion is proved.

3. The structure of Campedelli surfaces.

In this section we shall study numerical Campedelli surfaces of special type.

Definition (cf. Campedelli []). A numerical Campedelli surface is called a Campedelli surface if its fundamental group is isomorphic to $\mathbb{Z}/(2) + \mathbb{Z}/(2)$.

If S is a Campedelli surface, the universal covering \bar{S} of S has the following numerical characters:

$$\begin{cases} \chi(\bar{s}, \underline{o}_{\bar{s}}) = 8 \chi(s, \underline{o}_{\bar{s}}) = 8, \\ q(\bar{s}) = 0, \\ p_{g}(\bar{s}) = \chi(\bar{s}, \underline{o}_{\bar{s}}) - q(\bar{s}) - 1 = 7, \\ K_{\bar{s}}^{2} = 8 K_{\bar{s}}^{2} = 16. \end{cases}$$

The fundamental group G of S acts on \overline{S} as the covering transformation group of the unramified covering e: $\overline{S} \longrightarrow S$, and G naturally operates on the vector space $H^0(\overline{S},\underline{O}(K_{\overline{S}}))$ as linear transformations. Hence we obtain a canonical representation k: $G \longrightarrow GL(7,C)$ and the induced representation k': $G \longrightarrow PGL(6,C)$.

Lemma 1. k' is a faithful representation.

Proof. Let $g \in G$ be an element of ker k'. Since $g^2 = id$, k(g) = + id. Hence $p_g(\overline{S}/\langle g \rangle) = 7$ or 0. But $p_g(\overline{S}/\langle g \rangle) = 3$, if g is of order 2. Hence g = id.

Let V denotes the image of \overline{S} by the canonical map $\Phi_{K_{\overline{S}}}$ associated with the canonical system $|K_{\overline{S}}|$.

Then k'(g) $(g \in G)$ induces an automorphism of V. Thus we obtain a natural homomorphism a: $G \longrightarrow Aut(V)$, where Aut(V) denotes the automorphism group of V.

Lemma 2. a is injective.

A inval consequence of Lemma 1.

Proof. Assume that g G induces the identity on

V. Then V is contained in an eigenspace of k'(g).

Since V is not contained in any proper linear subspace

Since V is not contained in any proper linear subspace of P^6 , this implies that k'(g) = id. Lemma 1 yields the equality g = id.

Lemma 3. The canonical system $K_{\overline{\overline{S}}}$ of $\overline{\overline{S}}$ is not composed of a pencil.

Proof. _Assume that V is a curve. Since $q(\overline{S}) = 0$, V must be a (possibly singular) rational curve. An automorphism of V induces a unique automorphism of the non-singular model P^1 of V. Hence, in virtue of the above lemma, we infer that there exists a faithful representation a': $G \longrightarrow PGL(1,C)$. On the other hand, it is obvious that PGL(1,C) does not contain a subgroup isomorphic to $(Z/(2))^3$. This is a contradiction.

Since G is a commutative group, we may assume that k(G) is contained in the diagonal subgroup of GL(7,C). Let w_1,\ldots,w_7 be a basis of $H^0(\overline{S},\underline{O}(K_{\overline{S}}))$ such that $g^*(w_j)=\frac{+}{-}w_j$ for any $g\in G$.

Lemma 4. The linear subspace W of $H^0(\bar{S}, \underline{o}(2K_{\bar{S}}))$ spanned by $w_1^2, w_2^2, \ldots, w_7^2$ is 3-dimensional.

Proof. Lemma 3 implies that the transcendental degree over C of the field $C(w_2/w_1,\ldots,w_7/w_1)$ is 2. Hence the transcendental degree of $C(w_2^2/w_1^2,\ldots,w_7^2/w_1^2)$ is also 2. This yields the inequality

dim
$$W \ge 3$$
.

On the other hand, since w_j^2 is G-invariant, W can be regarded as a subspace of $H^0(S,\underline{o}(2K_S))$. But the Riemann-Roch theorem geves an equality $\dim H^0(S,\underline{o}(2K_S))$ = 3. This completes the proof.

Lemma 5. Let K be an extension of the rational function field $C(x_1, ..., x_n)$ defined by

$$K_r = C(x_1, \dots, x_n, \sqrt{Q_1}, \dots, \sqrt{Q_r}),$$

where Q_j is a quadric polynomial in x_i . Assume that K_r : $C(x_1, \dots, x_n) = 2^r$. Then the integral closure of $C[x_1, \dots, x_n]$ in K_r is $R_r = C[x_1, \dots, x_n, Q_1, \dots, Q_r]$. Proof. Trivial.

Corollary. Let K be as above. Let Q_{r+1} be another quadric polynomial in x_i . Assume that $K_{r+1} = K_r$. Then $\sqrt{Q_{r+1}}$ is a linear combination of $x_1, \ldots, x_n, \sqrt{Q_1}, \ldots, \sqrt{Q_r}$.

Let w_1^2 , w_2^2 , w_3^2 be a basis of W. From Lemma 4, we infer that there are quadric relations

$$w_j^2 = a_j w_1^2 + b_j w_2^2 + c_j w_3^2,$$

 $j = 4, 5, 6, 7.$

The above corollary asserts that, if the complete intersection defined by the above quadrics is reducible

then its any irreducible component is contained in a hyperplane in P^6 . Since the image V of \overline{S} is contained in the complete intersection V' defined by the above 4 equations and V is not contained in any hyperplane, V' = V is a irreducible surface. Thus we obtain the following

Corollary. V is a complete intersection of type (2,2,2,2) in P^6 .

As an immediate consequence of this corollary, we have Theorem 8. The canonical homomorphism

$$\bigotimes^{m} H^{0}(\bar{S}, \underline{o}(K_{\bar{S}})) \longrightarrow H^{0}(\bar{S}, \underline{o}(mK_{\bar{S}}))$$

is surjective.

Proof. Let $O_V(m)$ denote the sheaf of the hypersurface section of degree m. Since V is a complete intersection of type (2,2,2,2), we have

 $\dim \ H^0(V,\underline{O}_V(m)) \geq 8 + 8 \ m(m-1) = \dim \ H^0(\overline{S}, \ \underline{O}_{\overline{S}}(mK_{\overline{S}}))$ Moreover $H^0(V,\underline{O}_V(1))$ generates $H^0(V,\underline{O}_V(m))$. This proves the theorem.

Now the following theorem is trivial.

Theorem 9. The canonical model \bar{X} of \bar{S} is isomorphic to a complete intersection of type (2,2,2,2) in P^6 . The canonical model X of S is the quotient of \bar{X} ty the action of following subgroup G of PGL(6,C).

The following theorem is a corollary of Theorem 9 and the forms of the defining equations.

Theorem 10. The moduli space of Campedelli surfaces is a normal unirational variety of dimension 6.

REFERENCES

- [1] E. Bombieri, Canonical models of surfaces of general type,
 Pub. Math. I.H.E.S., 42 (1973), 447-495.
- [2] L. Campedelli, Sui piani doppi con curva di diramazione del decimo ordine, Atti della Reale Acad. dei Lincei,

 15 (1932), 358-362.
- [3] D. Mumford, The canonical ring of an algebraic surface,
 Ann. of Math., 76 (1962), 612-615.
- [4] P. Ramanujam, Remarks on the Kodaira vanishing theorem,
 Ind. J. of Math.,

Yoichi MIYAOKA,

Department of Mathematics

Faculty of Science

Tokyo Metropolitan University.