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Classical invariant theory

Herbert Popp

This report describes the use of classical invariant theory in
the theory of moduli of algebraic varieties and in elementary
geometry.. Haturally there is some overlap with the recent parer

of Dieudonné [2:]and the book Dieudonné and Carrell [3] .

Invariant theory was first related to number theory going back
to the Disquisitiones“Arithmeticae of GauB and the theory of
quadratic forms in two variables. Let f = ax2 + 2b Xy + cy2 be
such a quadratic form; then if the variables x,y are changed by
x=4Lx' +py', v =3~x' + X‘y‘ with (";g)e SL(2,€), another quad-
ratic form f' = a‘x'2 + 2b'x'y' + c'y'z is obtained. The dis-
criminants of these forms are related by b'2 - a'
(b2 - ac)(g;V—ﬁ@)z and therefore are the same. Gauf3 knew that
the discriminant A= b2 - ac is the main invariant of binary
quadratic forms, i.e. that every polvnomial F{a;b,c) in the
coefficients a,b,c which is invariant when SL(2,€) is applied
according to the above rule, is a polynomial in Dj). Starting
from this observation, Gaufl developped his arithmetic theory of
positive definite quadratic forms with integral coefficients.

ile determined the number of possible representations of an
integer by a given quadratic form and introduced the fundamental
notion of equivalence of quadratic forms and the class number of

the discriminant. We refer to LSt]for this beautiful theory.

.»g)

Gaufl knew this fact also for quadratic forms in three
variables. Compare [6 ] .
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In the middle of the 19th. century, invariant theory branched
away from humbér theory in various directions. Cavley [/{], and
later F. Klein in his Erlanger Progranmn [ﬂi}, considered
invariant theory to be the algebraic counterpart of the geometry
of those days (elementary geometry in todays language) and used
it to classify the elementary geometries. Sylvester, Hermite,
and the German school with Aronhold, Clebsch, Gordan and others
treated invariant theory as a purely algebraic theory. Their
aim was to find explicit: algorithms. In 13890, Hilbert solved-
the main problem of classical invariant theory by showing that
there exists a finite basis for the invariants of the n-arv
forms of degree r with respect to the action of SL(n,C). After
Hilbert's success, a big unsolved problem did not exist anymore,
mathematicians lost interest in invariant theory until the
1930's. At this tiﬁe, representation theory of the classical
groﬁps was being develépped by Schur, Weyl and others, and a
prart of classical invariant theory was recognized‘to.be a
special case of this. But even then, no éssential new contribu-
tion was made to invariant theory.'In1963FMumf0rdEﬂaPeViV@ithe
study of classical invariant theoryband found the geometry
behind the in&ariant theory of n—ary;forms, in particular,beﬁ%nd
Hilberts papers[??] and(&O] , and showed that the theory of
moduli of aigebraic varieties is the geometric frame for

classical invariant theory.

We first deal with the relationship of classical invariant
theory to the theory of moduli of algebraic varieties, and then,

in a second part, describe its connection to elemenary geometry.
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(Unless otherwise stated, we take the comprlex number field to be

our pase field.)

In 1345, Cayley posed the problem of determination of all
relative invariants of the n-ary forms of degree r. Vhat does
this mean?

Consider the general n-ary form of degree r, f(x1,...,xn) =

~— W o . - . . .
2; Aix;*...xn” with coefficients A‘ which are indeterminates

over €. Consider the action of GL(n) on the tuple (Aa) given by

the rule
( (Aﬁ) —_— ((p,)) = (A& ) where
Ay and Ay are related via the corresponding
(*) 4 rolynomials and by having et-GL(n) act on
the variables x1,...,xn, i.e. by
~ = 1] % d’M
\_ f(T(Jc»l)r---lw(Xn)) ZAOLX1 -.-Xn .

A homogeneous polynomial F(A, ) in the indeterminates A, is

called a relative invariant if

F(o(r,)) = X(&) . F(B,)
holds for all GTeGL(n,C), with 'X(T) a character of GL(n). It is

called an absolute invariant if H(s) = 1, Yo € GL(n). Cayley's

aim was to determine all these invariants explicitly by an
algoritihm. ‘

In today's context of algebraic geometry, we may formulaﬁe
Cayley's problem as follows: First check that if you take the
group SL(n,C) instead of GL(n,¢) and its action on (A*) by (%),
the relative invariants of GL(n) coincide with the absolute

invariants of SL(n).
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ilext consider all n-arv forms f = %ﬂx1‘...xg“ of degree r
(with coefficients in €) and parametrize them by the noints of
Al

the affine space A (€) via their coefficient (+1)-tuples

(ao,...,aq). Then () induces an action of $L(n) on the affine
i

YJ‘i"‘l 3 1 1 3 (; ‘
space A" and also on the polynomial ring R = GLAO;...,AV of
iv
N+T v s . 1s
A which is homogeneous with respect to the natural grading

of R. The absolute invariants of this operation form a graded
subring S8 = S(n,r) of R consisting of all polvnomials which are
fixed by the action of SL(n). Cayley‘s problem was to deter-
mine the structure of S as a ring in today's mathematical

terminology.

At this point, Mumford's interpretation of the invariant theory
of forms can be explained. Mumford's intention is to classifv

’ n-1
the hyvpersurfaces of P (

€) of degre r up to projective
equivalence and to make the set of isomorphism classes of these
hypersurfaces (isomorphism classes according to projective
equivalence) into an algebraic variety in a natural way. As the
hypersurfaces in question are parametrized by the points of

N

P” = Proj(R), and the equivalence under consideration is given

by the action of PGL(N) or SL(U) on R via the rule (»), HAumford

o
<3

looks at the rational map {: P = Proj(R) —s Proj(s) and at

those points of @H where ? is defined. If NO is the set of all
points of PN where all the non-constant invariants of R wvanish,
(The set of Nullforms, in Hilbert's terminologyv), then g is a
closed subvariety of PN and Y is defined exactly for the noints
in PN—NO, the complement of NO in PN. In “tumford's terminoclogy,

[} . L) 3 27 L] 1 1
P "No is the set of semistable points of P with respect to the
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action of SL(n) on P and is denoted by (PY) 5%, The man
' (Pﬂ)ss-$-Proj(S) is a categorical cuotient of (PN)SS witn

respect to the action of SL(n) in the cateqorv of schemes
satisfying certain additional properties. liowever Proj(S) and

S8

™y
the map § ¢ (P7) 77 -—> Proj(S) do not vet give the desired

classification for hypersurfaces corresponding to the points

1, ss 855
o) )

(r . In general the action of SL(n) on (P™ is not with
closed orbits and therefore ¥ does not separate orbits. We have
to restrict ourselves to the subset of stable points (PN)Szﬂ’s
of (PN)SS, which are defined bv the properties that their orbit

N)SS and is of maximal dimension. The stable

is closed in (P
points form a Zariski open subset of Pm;fﬁﬁis an open subset of
Proj(S) which parametrizes the orbits of Ps,by SL{n). In

]

. ; : LSy s . .
lumford's sense, the map ?: P7—> X(P ) is a geometric quotient

S ar 1S A
of P” by 3L(n), and Y(P ) classifies the hvpersurfaces of

T
Ly

n=-1 . , . .
which correspond to stable points of P up to projective

P
equivalence. This internretation of the invariant theory of
n-ary forms of degree r leads Mumford to his theory of aquotients
by group actions in the categorv of schemes and to his proof of
the existence of a quasi-projective scheme which is a coarse

JTor !
moduli space for curves of genus g aﬁé“ﬁglarized abelian varie-
ties of a fixed dimension. In this sense, the invariant theory
of forms becomes a part of the theory of quotients bv group
actions in the category of schemes and of moduli theorv and
nrovides us with the rossibility to describing modull spaces
explicitly.

Let us return to the structure of the ring S. The problem can
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be attacked on two levels. The first and easier is to determine
the graded parts of S. This is a linear problem and can be
solved by representation theorv. The method for the second
level is to determine the rinc structure of S by finding gene-
rators and relations for S. This is nuch more difficult and
only in a few cases is the result kncwn explicitly.
Ve first treat the linear problem, but brieflv, since it is well

explained in the literature (cf {47{—1, \_Z] ' \:3]).

Consider more generally the following situation: Let E be a

vector space over € of dimension m. Let CL(n,{) operate on I.

linearly and let £ : E —» € be a relative homogeneous polynomial
invariant of degree r (i.e. £(x) is a homogenecus polynomial

and f(v(x)) = X(v)f(&) holds for all geGL(n,C). )‘) e show
that to determine all such f£'s it suffices to determine the
1-dimensional invariant subsraces of an action of GL(n) on a
certain other linear space. Consider for this purpose

f(’/\,l_}_{_.1 + ... +7\rXr) =Lc S‘j: 1,...,X ) with vectors -:f:—i& )
&’-(d1| W‘f)

and indeterminates )i’ Then £ §1""’5r) is a relative

(1,...1)(

multilinear invariant of the vectors Zy provided £ is a relative

homogeneous invariant and vice versa. loreover f( (X0 ,%)
§F 7

1)
= r! £(x), and hence f(1 1)(§4 A ) determines £ (x).
re ey Pss g

2 :
)For applications, it is later necessarv to consider more gene-
ral rational relative invariants f: — ¢, i.e. rational
functions f(x) for which £ (sx) A(7) £(x) holds for all

¢ GL(n). An easy argument (cf. L3] ,P. 3 ) shows, however,
that the rational relative 1nvar1ant are known, provided

the homogeneocus relative invariants can be determined.
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Vle may therefore consider the nultilinear invariant u,. =
L

~ &

.r A®r
B le - B —3 ¢ bhe

£ ' —» € instead of f. Xext let
(1,...,1)

the linear map determined by u.. Then U, is a linear relative
invariant of % as ue is a relative invariant and conversely .

. . . . . B ey NG (3
Finally consider the natural isomorphism hom(é‘r,t)-rQyﬂ3 C

; N : - *Qr g . .
with the action of GL(n) on L & €. induced by the ¢iven action
of GL(n) on E and by the character X(s+) of £ on €. Then u

, - , ST s

determines a 1-dimensional subspace of E & € which is G-
invariant. Conversely every such subspace leads to a linear rela-

: . . ﬁ&r . ~ a . :
tive invariant of L with A(s") as character. So, we attempt
to determine 1-dimensional invariant subspaces of the represen-

. o . *Rr m
tation as described above of GL(n) on E =~ (9 €. Therefore we
now consider the representation theory of GL(n).
Let X ——=»F(X) be a homogeneous representation of GL(n,T) in
GL(1,C) of degree f, i.e., F defines a group homomorphism and
the matrix elements F,, (2) of the matrix F(X) = (Fhk(g))e.GL(N)
are homogeneous polynomials of degree £ in the coefficients Xij
» 3

of the matrix ¥ = (xij)e-GL(n,G). Consider F as a map from

ﬁ N m IR (N33
GL(n) to End(€). Then F factors over End((€ )~ ") as follows.
There exists a comnmutative diagram

6L(n) —_% .  Ena(ch

N A

“End ((€M®)

£
where ¢ is the tensor representation ¥ : GL(n) -—aGL(Cnf&‘) and

o~

o . . : . . nGof
G is a ring homomorphism from the subring A, of End((C ﬁ@ ),
3 1In deneral rational representations X—= F(X) of GL(n) in

GL (1)) have to be considered. llowever , cf. [3], the homoge-
neous representation determine the rational representations.



generated by y (X) with X e GL(n), to End(@J). To prove this fact,

. . . s - n ’
we recall that if e re--se  is a basis for © = €, the set
1 L
& . &fF
e, = e, ... e¢ of vectors in EY- forms a basis of L " where

o
= 4
A= (&1,...,¢f) ranges over ‘all multi-indices g;=(11,...,if);

KE

< n. The matrizes of End(E~ ") can then be written as

t&é) where i,liis a rair of rmultiindices and the tensor

Fn Y =

. £, . )
representation GL(n) —» GL(E") is described by

&£
X=(x..)-—-—>( ) = X
where X K, p ees¥y a. 18 the nmonomial in the coefficients
-L *1 1 XePf '
%x;. of X determined by & and ». Obviously x = X, 1if there

ij = ®p Tep

: . e i
exists a permutation WeG. with T# =2, ¥ B=3'".
Hext, the homogeneous polvnomials Fhk(g) can be unicquelw

written as
() T B = 2 Bnpys Fup

if we impose the condition a} on the coefficients

LTS ahkvgg_

for all Wwel3 .. Using the expression (»), we define a map

T = (t.:f;&) —> (G, (T))
where G, , (T) = ;; t One may check that r(h F) = F(X),
hk = lko_t’_}._ wi ’ = -t =

T
,-, +

and that G is a €-algebra homomorphism of ”f into End{cC™).
A simple but very important observation is that the ring Af is

closely related to the natural representation of the permuta-

. . N&Ef
tion grour T . of £ elements on the linear space (€ f& .
P . &L .
Clearly weS. acts linearly on (€) by the rule we, = e
£ ©— ——

with T = (¢- Ty ﬂ‘(f)) This induces an action of the

©f .
groupr ring b?é} on & and a C-algebra homomnorphisn
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§ ¢ GLG%] —> End(E" 7). As A_. consists exactlv of those matrices

T = (ta.\&) & Lnd (¥7) for which tffg_t,’rra,_ = tw:é holds \7‘-1&5"5’

we conclude easily (cf.‘:Sl, r. 14) that Af is the commutator
of &(@ET%] ) in End(EéE). ow Maschke's theorenm (Cf-[3i}%
states that @ES%] is semi-simple, and therefore g(@ B?f ) is
also semi-sinple. Then Schur's commutator theorem (cf.{jgi])
inplies that Af, as the comnmutator in End(n{ ) of a semi-simple
algebra containing the centre € is semi-simnle as well. But
then the image Q(Af) is semi simple too and hence the represen-

tation I : CL(n) —» GL(N) is completely reducible. In this way,

we obtain the theorem

Theoren Every homogeneous representation (and then also every

rational representation) of GL(n,C) is completely reducible.

We are now able to calculate the 1-dimensijional invariant sub-
spaces of the representation F of GL(n). As a matter of fact,
Schur's commutator theorem even describes explicitly the

simple Af~modules of the f's tensor representation of GL(n)

(or equivalently the minimal left ideals of Af) in terms of the
minimal left ideals of the group ring CBS%]. If ¢ is a
generator of a minimal left ideal of @[ﬁ%l ;, then Af~module
c-ﬂgr is a simple Af—module and all simple Af—modules are
obtained in this way. It suffices, therefore, to determine the
minimal left ideals of CBT%] . It is possible to do this
explicitly by the method of Young frames; we refer to (:3_] for

a detailed description. In particular, Young's method allows

us to describe exrlicitly the 1-dimensional GL(n)-stable
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subspaces of E and then also those of €.
We discuss some applications:
a) The sinultaneous multilinear invariants of f vectors
o n . . . . .
x1,...,xfé,£ = ¢ appear in the linearisation process from
page 6 and are therefore of fundamental interest. The akove
method yields the following theorem, called the first
fundamental theorem of invariant theory:
. D)
Theorem Simultaneous nultilinear invariants’of £ vectors
of E exist if £ is a nmultiple of n, i.e. £ = g.n. They are

all linear combinations of invariants of the form

EPRERE T PRI EPPPS )
where (i1,...,if) is a permutation of (1,...,£f) and
[?1,...,251 denotes the determinant of the (nwn)-nmatrix
with 21""’Zn as column vectors. All the invariants have

weight g.

b) In applications of invariant theory to elemenary geometry,
the simultaneous multilinear invariants of £ covariant

n 4 .
and h contravariant vectors

vectors x1,...,xf<3E = ¢
Yqreee1¥py€ E*, E¥ the dual space to E, all with respect to
the natural action of GL(n), are needed. The above method
yvields the following result, called the second main theorem
of invariant theory:

Theorem All simultaneous nultilinear invariants of the
vectors Xy and y; are linear combinations of products‘of
invariants of the three typsr

1) [§i1”'xin] of weight 1

Q) Invariant = relative invariant, also in the following.
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2) Ly. ceaYe ] of weight -—1
3’] Jn,

3) Scalar products (%i,y£7 of weight 0.

“loreover, they only exist 1f »n-ag is divisible bv n.

The honmogeneous invariants of decree h of an n-~arv fornm of
deagree r can be determined also.

First, a unicue symmetric r-linear form Wf associated to a
form £(x) = Zzéﬁ xﬁﬂ..xi“of decree r in the variables

¥ = (X4,...,¥_) is obtained as follows: Rewrite the form
= 1 n

(%) £(x) = S Pgre.. i) Xj oo ¥y

where the r indices i, run from 1 to n independently and

where the symmetry condition @(i},...,i;) = plig, ... ,i)

holds if (i%,...,i;) is a permutation of (i1""'ir)' Then
the expression (®) is rolarized according to the rule of
nage 6 to obtain the desired syrmmetric multilinear fornm \yf
of oxder r.
If we consider 'Wf instead of £, the problem becomes deter-
nination of the homogeneous invariants of degree h of the
rultilinear form ﬂ%. Ve know (see page # ) that this is
equivalent to finding the simultaneous nultilinear invariants
of h svmmetric tensors Uqseee Uy of the srace (Cnf&r with
respect to the natural action of GL(n). But this again is
equivalent to findinj the sinultaneous multilinear invariants
n

of hsr w

0]

ctors of €, which we are able to do. So we write
down a basis [or the simultaneous multilinear invariants of

; n . . . , .
h-r vectors of € using the first main theoren, and must
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then translate and rewrite the obtained invariants in terms
of the coordinates of the form f£(x). There is a formal
symbolic procedure, the famous syvmbolic method for writing
the sinmultaneocus linear invariants of the h.r vectors in a
certain way and then for rewriting them in terms of the

coefficients of f. We refer to [ﬂ?] and LSQ]for details.

What do our considerations give for Cavlevs rroblem of deter-
mining the structure of the ring S(ﬁ,r) of invariants of n-arv
forms of degree r?

Clearly without additional considerations we can onlv obtain

the c¢raded parts of the ring S(n,r); the ring structure is not
obtained in this way. But what 1s then known about the structure

of S{n,xr)?

)

Firstly, S{n,r) is, as the fixed ring of C-a;} by the action of
the group SL(n), an integrally closed integral domain which is
finitely generated over €. The last fact was proved in 1389 by
Hilbert [ﬁ‘]vﬁm>showed that everwv ideal in @ {B;]is finitely
generated (this is Hilbert's Basissatz) and that a finite
system of generators of the ideal I of @i:A;} which is cenera-
ted by the non-constant invariants, generate the ring S(n,r)
over ¢.

We remark, that for n-ary forms of degree r over an arbitrary
field k, the ring Sk(n,r) = k [A¢iSSL(n) of invariants, with
respect to the obvious action of SL(n) on k;EA;] is also
finitely generated. As a matter of fact, by lHaboush's recent

result [8i}, for k with any characteristic, SL(n,r) is
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geometrically reductive and therefore S(n,r) is finitely
generated (c.f. [L{—] ).

But what about the explicit structure of the ring 5({n,r)? Only
in a few cases is the structure known explicitly. First, by

he classical theory [45], generators and relations are known

in the following 3 cases.

(1) n =2, r £6
(2) n=3, r £3
(3) n-arbitrary, r = 2.

In all these cases, the structure of S(n,r) is simple; S(n,r)

is essentially a polynomial ring.

The next (according to the classical theory) unknown cases are
S(2,3) or S(2,7) and S(3,4). They have been treated by Shioda
Ain Eﬁf]. For 5(2,8), Shicda has determined explicitly a system
of generators consisting of 9 homogeneocus invariants J2,...,J10
of decgree 2,...,10 and has described 5 bhasic reiations between
the Ji,which he states explicitly. All other relations are
derived from these basic relations. Moreover Shioda determines
the higher Syvzygy-noduls of $(2,8) and, as a consequence, finds
that $(2,8) is Gorenstein. For the ring S5(3,4), Shioda's paper
states what a generator system and a bhasis for the relations
should be without giving the proof. The method used by Shioda
is the classical one (cf. [4@]), consisting of determining the

generating function of the ring S

h(t,s) = Zdv s4t

4z

d

‘which 1s a rational function and for S(2,8) equal to

! ! 0 F . -
8+t9+t1o+t1°) ‘WT1—td). Knowing the generating function,

d=2

(1+t
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one can estinmate the minimal number of gonerators,for 5(2,83)
the number ist 9. Then it is to a great extent a nmatter of

kill to f£ind generators explicitly by the symbolic method and

9]

it is even more difficult to find the basic relations between
the choosen generators.

It is of interest that the rings $(2,8) and S5(3,4) are related
to the moduli space of curves of genus 3. 'lore generally,
5(2,2g+2), with g2 2 an integer, is related to the moduli space
of hyperelliptic curves of cenus g. To make this precise, we
recall that for a hyperelliptic curve X; defined over an
arbitrary closed field k of characteristic # 2, the 1-canonica
map ¢K:X _;?91 is a map onto T1 of deqree 2 with 2¢+2 ramifi-
cation points Pi = (&l,ﬁl). The homogeneous nolvnonial

flz,v) = fr(ﬁix—xiy associated to X has discrininant D(L) F 0.
MR

Conversely, this determlnes X, as X is birationally equivalent

i

23t2
' w2 '(L L . .
to the plane curve Y j X - %:); provided all ﬁj £ O, o

1=4 3 T

o
o
o

asily obtained by a change of the coordinate

-

condition
of P1. Moreover two such polynomials £ and g of degree Zg+2
with discriminant different from O determine isomorphic h
elliptic curves 1if ana only if £ and g are eguivalent with
respect to the action of SL(2) or PEL(1) induced via a
coordinate change in P1. This indicates a fact proven bLv closer
considerations, i.e., that the open affine scheme
Proj(s(2,2g+2) - {D‘= O} is the ceoarse noduli space for hyper-

elliptic curves of genus g in the sense of L4~] 9 . In

3

particular Proj(s(2,8) - {D = O} is the coarse noduli for

hyperelliptic curves of genus 3 and this facts holds over anv
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algebraically closed field of characteristic F 2.

To the ring 5(3,4), the non-hvrerelliptic curves of genus 3 are
related as follows: 3By the Riemann-Roch theorer, the canonical
A £~ - 1 7 > 1 3,74 £ ] 2 mi
nap P, of such a curve X gives an embedding of ¥ into P”. The
. i L orwey ; . 2 ; ' L. 1w
image curve @K(A) has degree 4 in €7, and two curves X and X

are isomorrhic if and onlv if the curves $((K) and ¢", xX")

I
. 2 . . . ~
in P” are ecuivalent with respect to the action of PGL(2) (or
equivalently with respect to the action of SL{3)). A Zariski
open subset of Proj(S(3,4)) is a coarse moduli space for the
non-hyperelliptic curves of genus 3.

: 7

Besides the paper of Shioda, the papers[ﬂ{] of Igusa on curveé
of genus 2, and E}] of Gever on the structure of the ring
5(2,20+2) and the moduli variety for hyperelliptic curves of
genus ¢, should be mentioned. Both papers deal mainly with the
reduction of these rings modulo p and show that if p >2g+2,

the ring in characteristic p is the reduction of the corres-
ponding‘ring in characteristic 0. For small characteristics
(with respect to g), particularities appear.

Summing up, we can say that classical invariant theory does not
contribute much explicitness to the theorv of moduli.

Professor Shioda, with whom I had several interesting conver-
sations on this matter, expressed the situation as follows:

If you have to describe generators and %elations of a ring of
invariants of the tvpe S(n,r), then if the structure of S(n,r)
is simple, vou will find the structure. llowever if vou are
unlucky and the struéture of S(n,r) is complicated, vou will

not be able to do anvthing.
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So nuch for the relationship of classical invariant theory to
p . . th
moduli theoryv and to present algebraic geometrv. In the 19

century, as was already stated, elementarv geometry was closely

elated to invariant theory. This we describe next.

"Projective c¢eometry is: all geometry" Cayvley has stated in[ﬁi]}
then Felix Klein introduced his LErlanger Programm in 13872.

-. -

What does that mean? First, we scuss Cayley's statement.
Projective ceometry (over the complex or real number field k)

ieals with points and forms. A sentence of nrojective ceometrv

in % involves finitely many points (i_l)) = (7;,...,3§) and
finitely many forms f }E@ v) :* and nust be independent from
the coordinate systen and therefore invariant with respect to
the action of PCGL(n). In nalvtlc terms, such a sentence is
agiven by a rational function F(j}i),qivﬁ in the coordinates of
the points and forms which satisfies the following properties.

1) F is homogeneous of degree 9, i.e. P() 1 ?EJV) = F(i (v))'

V')l,if- ﬁ”{ }. Equivalently, the valuesof F depend onlyv
on the points and the forms and not on their rerresenting
tuples.

2) F is a relative invariant with respect to the action of

GL(n+1), i.e. F(s(3h,sal")) = (aetc)fﬁp(-f,a;“’),

5€GL(n+1), with m an integer, called the weight of TF.

A rational function F as above is called a homogeneous invariant.

The homogeneous absolute invariants have meaning in the
n
geometry of the P

: n o, . s o : . . . N
A theorem in P is a (polvnomial) identity involving finitely
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many honogeneous invariants or, in Klein's terminology, a

syzygy between homogeneous invariants. In this way, the invari-
. .o . 5 n
ant theory of GL(n+1) determines the geometry of the P .

The following simple example makes the situation more precise.

. o 1 Ly T
Consicder P /k with (x,v) as homogeneous coordinates. Let Pi =
1 Xy
¥ %
is an invariant of weight 1 which is not homogeneous in the

xi;yi), i=1,2,3,4 be 4 points in P . Then Akij =

cooxrdinates XYy A has therefore no gecmetric meaning in

ij
projective geonetry. If it happens that lxij = 0 then this
statement is homogeneous and has a geometric meaning, namely
that the points P, and P! are the same.

1 J
To obtain hcemogeneous invariants from the lﬁij’ we have to con-

sider mora then three roints. Four points lead to the rational
AA;',” Aa*f-
A D

well known cross ratio of the points PT""’P4'

fraction which is an absolute invariant and the

The syzygy

) BB+ 8,0, + B, By =0
leads to a theoren in P1 which has its geometric interpretation
in the well known reiation between the 6 values of the cross
ratios of the points P1,...,P4 aepending on the order of the
points. To indicate this, we divide (%) by the last sumnand

androbtain
Aar - Dy = 4 — AVERAYY:
A4‘(‘ A‘sz Doy Aza '

This completes our description of projective geometry by

invariant theorv.
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How, we move on to Cavlev's statement that projective gecmetry
is all geometry. llow are affine geometry, Iuclidean geometry%nd

the non-—-Luclidean geometries a part of projective gecnetry?

\ . noo. . ,
Let ¥ ,...,%x_ be a coordinate system in P . Let i = 4 3 =§J}
n ‘ o0 o)
!

o
PR S S § T 1 1 P N F=4 1 1. - . YT
and A7 =P - be the complement of the hvperplane I _ . N
o0 - AT 0o
. . - . . N e
is the affine space of dimension n embedded in P~ with I as

infinite hyperplane.

Cavley noted the principle. that the statements and theorems
. . n . . . . s

of the affine space N on a geometric configuration, which

. . - n . . 2 : )
consists of finitelv many points of AW and finitely nany
. n - s s .
rolynomials or hvpersurfaces of A7, are the projective state-
nents and theorems on the associated vnrojective configuration

extended by the hvperrlane iI _ . (iJote, that to a »clvnomial

f(xj) of degree r inh the affine coordinates Ei ==L, i=1,..,n,
. ) 4'\0
. ~ - r "
cone nay associate the form f(xi)'xo = f(xo,...;xn) of degree r
. . - , A0 . ;
in the variables x,. LEvery point of A" is considered as a noint

Y : ; . -
cfE P )'Ene statements and theorems of Huclidean ceometry on o

. . . n_ .n . .
geometric configuration of A"c I are the projective statements

1

of the associated projective configuration which is extended by

M
. - « . - - . ) 2
the guadratic hypersurface of I, defined by x_ = Q,Z:K. = 0.
- N Q0 - i

o

124
The following examples make this principle clearer.
First we examine affine geometry.

- . . n . s . -
Consider, in A, n+1 points Pi = (1,—7,-~,£2);1 = 0,...,0. Then
7]

o bt ber o

.P_ﬁ'e Poc Pee pee ~-- - Po
V(P = 1|4 P P pe 4 ‘
V (EOI . o0 ,Prl) - E‘{! ’1 P40 P’lO P‘W - m‘ I

PPec 7 Puo [

P Per P -
1 Pac Puo Puweo Pro
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is the well known expression for the volume of the n-symplex

i - Pov - — Pa\«
determined by the points Pi. How, the determinant | ¢
t

P‘° - - -y)m-h
is clearly an invariant with resrect to GL{(n+1),
y . A . . . . .
Furthermore the fraction ————— is an invariant, as it is the

(2 Pmo

inverse of the nroduct of the values of the linear form 2y at

the point Pi. V(Pi) is therefore a rational invariant which is
also homogeneous of degree O with respect to the points

Pi = ( puo ,...,PQ“), but homogeneous of degree - (n+1) with

respect to the coefficients (1,0,...,0) of the linear forn K.

oo . . . n s
Ve £ind that V has no geometric meaning in °. This is not
surprising for any measurement needs in general a unit measure.

In other words, we should f£ix a non degenerated svmplex

V(Pi)
V(0;)

n

0 ,...,M> in A whiagl

—

and consider the fraction V(Pi)
is an absolute projective invariant and belongs then to affine
gqeometryvy. This fraction is the volume of the n-symplex
<%0’P1""’P5> normalized by the symplex <@O,...,Qg> .
Hext we turn to Duclidean geometry, and consider first the
. “
angle & of two hyperplanes zia.x. = 0 and zib.x. = 0 (the
A N} ~"171
. = =0
. n g . .
hyperplanes are in A, i.e. different from Hoo); their projec-
tive extensions are as above. Ve nust consider the geometric
' .
configuration consisting of the two linear forms z:aixi’zzpixi

RYY 1zo

with coordinates (a ), (bi) and the infinite hyperquadric

2 2 , . . , .
*(A. = 0% +xyt ..z . The expression of this quadric in hyper-
- n
rlane coordinates Ureee 0y of the P [?o""’un dual to
. * 2,2 2
K seeesX is @ . = Deyu_+u,+ ... +u_.
o7 d ﬁ] 5 Pluy) CHeTH n

The values of the quadratic form ¢*(ui) at the linear form (ai)

M N -
14 1 ¥ - = - 2 ™YY 1 < * = S 2 oy 2
and (b;), i.e. ) (a;) —zzai respectively ¢ (b,) ZLbi are

l:-1
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- 2 O_
M
absolute invariants. Also the polar form O-aobo + aibi is
i ) 2‘“ b-." =4
an absolute invariant. Therefore cos W =

Vrear) - *(bi)

is an invariant. Moreover cosw is homogeneous of degree O

with respect to the coordinates (ai), (bi) and also the coeffi-

a
cients (0,1,...,1) of the quadric form O.ug+u$+...+ui. lience,
co3 W 1s an absolute hoﬁogeneous invariant of the two hyper-
planes and the quadric ¢(xi which belongs therefore by

Cayley's principle to Euclidean geometry.

The distance between two points P = (1,{%,...,-£E)Vgnd
- 2
% Iny e o g o 130Ppe)
D= (T, .00 is determined bv r = B2y = .
( ’ 1/0 ’ r 1/0) VZ(PD 1-';;) Fv "yo

We analyse this expression.

First one checks that

OOO~——’--OOP01/0

C 00 --~-- oo 6vo---0¢

e a oA 20 b !".‘1:0
0 06 4 ' LI 0 1 Co

2 _ . . ‘ o !

r = i ~ ® ¢ o ' b
o iy R | e |
[ — H o . .
0T g e ST N P
P papr == oo o < T R 19~
% ---- =00 Popa----puo fo-~~ == 0|

and that therefore r2 is relative invariant of the two points
P,Q and the form ¢(xi). Next, r2 is homnogeneous of degree O in
the coordinates of the points P and 0 but homogeneous of
degree -1 in the coordinates (0,1,...,1) of the form ¢(xi).
Also r2 has weight -2 (notice, every determinant has weight 2)
and is therefore not an absolute invariant. The numerical
value of r2 has no meaning in projective ceometry which is
again not surprising. As a matter of fact, one can measure the
distance between two points only if a unit distance is chosen.
We must consider quotients of invariants of the above type to

obtain absolute honogeneous invariants. If we fix two
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different roints EO,E1 in An, which will determine the unit
. . . " r(P,9)
distance, and consider the fraction R(P,Q) ETE"—E ) as

: fRcp

distance between the points P and Q, then R(P,Q) belongs by

Caylev's principle to Zuclidean geometry.

The described nrojective treatment of Euclidean geocmetry using

3 + ...+ x2, suggested to Cayley

. 2
the quadratic form O-xo + x n

that he considers an arbitrary non-degenerate real cuadratic
. n . . , . . . .
form in P and, using this quadratic form define a quasi-metric
and then the angle and the length as in the case of Euclidean
geometrv. This is what Klein calls Cavlev's "projective MaR-
bestimmung". Later, (cf.[4i]), Klein showed that by this
principle of Cayley a new foundation of the non-Euclidean
geometries is possible. For simplicity we describe this for the
two-dimensional (real) non-Luclidean geometries. These are
; . - . . . 2
obtained by taking a coordinate system (xo,x1,x2) in P7/C and
- - _ 2 2 2
then a real non- uedener 1te quadratic form ¢ = axg + x1 + x2,
aeR, a ¥ 0. (¢ = 0 is called the absolute quadric of the
. . . 2 .
geometry.) The non-Luclidean angle Y of two lines in IP” which
. ' _ X . a1 . _ Zi? ‘
are not tangent to $ = 0 1is defined by (gat1t2) = e ;, where
t1 and t2 denote the tangents on $ = 0 through the intersection

, 5
roint gn h and (ght1t2) is the cross ratio of the four lines.)

-

The non—-Euclidean distance d of two distinct points P and ¢ not

' . S e 1 +2ikd. v
on P = O is defined by (PQA1A2) = e-— ; where A1,A2 are the

5)

By this definition also the angle in Euclidean geonetry can
be ob ta;neg. If g,h are two lines in A2 which intersect in P
and iq, i, are the lines in A2 intersection the infinite line
’O=O in the zeros (0,1,-1) and (0,1, i) of the quadric xg=0,

x +x§~0 then e2i¥ = (g,h,iq,ip) gives the angle. Compare(ﬂ@]
p.34 '
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intersection points of the line PQ with ¢ = 0. k + 0 is & factor
which can be chosen suitably, allowing one to introduce unit
distance . k has to be chosen real and > O if a> 0, and purely
imaginary if a<0 to obtain a real distance, at least for
certain points of 02. If a< O the geometry of J. Bolyvai and
N.I. Lobatschewsky is obtained. Klein calls this geometry the
hyperbolic geometry, as opposed to the elliptic geometry which
corresponds to the case a>O0 and which was introduced by
Riemann in his Habilitationsvortrag [4{1 . This notation of
Klein has nothing to do with the fact that @ = 0 is an ellipse
br hyperbola. The points‘of the 2-dim, hyperbolic geometry or
the geometry of Bolvyai-Lobatschewsky consist of the real points

2

in P”, i.e the points with real coordinates with respect to

the chosen coordinate systenm (xo,x1,x2) of Pz, which are in the
interior of ¢ = 0. The interior, here, is characterized by the
fact that the tangents to @ = O are imaginary. The lines of

the hyperbolic geometrv consist of the parts of the crdinary
real lines in P2 which are in the interior of $ = 0. Every

i

such line has two "infinite points", the intersection points
with @ = 0. Two lines have angle 0 if and only if the inter-
section point is on ¢ = 0. Hence, in Bolyai-Lobatschewski's
geometry,for every line g and every point P4 g there exist

exactly two lines l1 and l2 hrough P which are parallel to g,

i.e. have angle 0 with g.

The real elliptic 2-dimensional geometry of Riemann consists of
. . 2, . -
all real points in P”(with respect to the chosen coordinate

system) and of all real lines. No line of this geometryv contains
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an infinite noint, i.e. a point on @ = 0 and no two lines have
angle 0. Exercise XNo 19 in[ﬂgl ;, § 33, shows that the 2-~dimen-
sional elliptic geometry is essentially the spherical geometry

on the real 2-sphere.

liistorically, the various elementary geometries were developed
at the beginning of the 19th century in the spirit of Euklid
in an axiomatic way (cf.[Agj and the literature Fhere). As
already stated, it was Klein who first realized the connection
between these geometries and that Cayley's principle of
projective measurement gives a foundation for the elementary
geometries. There is still another principle of a group
heoretic nature which allows a foundation of elementary geo-
netry within projective geometry. This principle waé stated

by Klein in his Erlanger Prograrm.

Cayley considered exclusivelv invariants with respect to all
pfojective transformations but of an extended geometric confi-
guration. Klein states that the various geometries can also be
obtained according to thg rule described on vage 44 for
projective geonetry, if one considers instead certain subgroups
of PCL(n) and the invariant theory of these subgroups. The
subagroup of a particular geometry consists of those elements
of PGL(n) which map the added object into itself. Affine
geometry in Al = pft - Hoo’ for example, is obtained according
to this princinle by the invariant theory of the "affine group
which consists of the projective transformation of el mapping
Hoo into itself. Buclidean geometry in A" = p" - is

(o @]

obtained via this principle as follows. Consider all real
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. . - . n ‘e ]
projective transformations of the P (real with respect to the

chosen coordinate system xo,...,xn) wnich man the absolute

n-2 2 2 -+
i(‘ 2) = Y ul + x% + ..+ xT =0, Xy = D}(anu then alsc the
< .
hyperplane Hoo = ﬁxg = 3%) inte itself. Thev form the groun of
similarity transformations. The suzgroun generated Ly those

w0
ot
)
6]

similarity transformations wiich are involutions i
orthogonal group. By the rule of page A{ the invariant thecr
of this group gives the Zuclidean gconetrv.

The group which characterizes the non—Zuclidean geometry deter-

(n-1)

nined by the quadric @ O-is the grouwn of all real

@(n"1) = O dinvariant.
The corresponding invariant theory givas the non—tuclidean
geoﬁetry. Ve refer to{hj} and Pickert's book [43], especially
chapter 33 and exercises 16, 17 and 18 of this chapter for nore
details.

In general, Klein's Irlanger Programm states that eﬁery subgroﬁg
of PGL(n) determines a geometrvy via the corresponding invariant

theory.

Final remark That Caylev's vrinciple of projective measurenent
and Klein's group theoretic principle in his Erlanger Programm
always vield the same geometries, aé Klein states in E4ij,p.4@5]
is not obvious. It is cléar that the notions of angle and length
are obtained according to both principles. It is also clear that
every geomeﬁric statement and theorem according to Cayley's

principle, is one in the sense of Klein. But it is not obvious

that the converse is true and it would be interesting to see
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of an elementary geometry according to Klein can be

t

which nar

obtained Ly Cavley's method. For the subgroups G of CL(n) for

which both rrincirles are equivalent, the invariant theocry of
1

GL(n) contains the invariant thecry of G which appears in

connection with the considered geometries and is very powerful.
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