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Dissipations and Derivations

A. Kishimoto

Department of Physics, Kyoto University

§1. Introduction.

Recently various authors have studied unbounded defivations
of C*algébras [2,3,4,6,7,10,11,13]. In particular Powers
and Sakai [10] have studied unbounded derivations of UHF
algebra.

- The purpose of the present note is to show a usefulness of
the notion of "dissi?ative operators" [9,17] in the study
of derivations of Cgaigébras.

Our first result is that an everywhere defined "dissipation™
is bounded, which Implies the well-known theorem concerning
derivations [5,12].

Our second result is about a normal ¥derivation of
UHF algebra satisfying a special condition discussed in
1,10,14,15]. For such a #*derivation, we prove that its
closure is a generator of a one-parameter group of

*automorphisms, As its application we .consider one-dimensional

lattice system.
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§2. Bounded derivation
Let (L be a Banach space. For each Y ¢ ([ there iS_-é.t least
one non-zero element je' of the dual Banach space [Z,*isuch that
<X, f > =ux)- Hf" by the Hahn-Banach theorem. An fz: denotes one

of them throughout this note.

Definition 1. [9] A linear map X with domain J)(¥) in a

Banach space is called dissipative if there is anrﬁ such

that |
Re<¥x,fy > 40

for each x & ,@(7‘), |

Definition 2. A linear map § with domain H¢f) in a Banach

space is called derivative if there is an f;c such that
Re < §%, fzz > =0
for each % ¢ D0(J),
% :
Let Ol be a C -algebra. A linear map 5 of J! is called

a derivation if it satisfies

for Z,yéméf), where @[f), the domain of f » is a i-subalgebra
in 0. A derivation § is a ¥-derivation if Jz)* = J(Z*]

for Ié,ﬁ&f). In the following we will bé concerned with only
*—deriva’cidn and so omit ¥. ’

A linear map § of 0 is a derivation if { and — /-
are dissipations whose definition is:

' : *
Definition 3. [8] A linear map ¥ of a C -algebra 7 is

called a dissipation if it satisfies
Yeo*r =rizt)
Flrx) > yr)x £ 2770



&)
4

for each x e D()), where P()) , the domain of ) , is a

¥_-subalgebra.

Remark 1. Call f an "n-dissipation" if Y ® 1 5 172@ F%

— Z® Fjy is a dissipation where F_  1is an algebra

of all nXn matrices and ] is an identity map. If )/

is a 2n-dissipation of a C¥-algebra with identity and D(2) 2 1)’
then ¥/ defined by F{X)= ¥ —F 3Kz + 2o §

is an n-dissipation. Note Y (1)£0 and 3”(1): 0.

( See [8] for the arguments of bounded complete dissipations;

a complete dissipation is defined to be an n-dissipation for

all n.)

Lemma 1. Let )’ be a dissipation with domain ﬁ)(f) . Suppose
that for any positive Y¢ g}(}) there is e\m ?fx such that
Re< YT, fx> <0, Then )  is dissipative.
Proof. Note that 762’ is positive for a positive 2 e [121.
If we define f;(’f and l’f in 07* for 7L and 7‘€6Z*by
La,fxX7> = Kata, £> and La, Xf>=<azx, £> (ae 0T),
then :zfxfi-:.j;,and Frrg X7=fo - For any xeD()) , there is an
: f’fzfl such thét ()[Zi;‘())f)é 0. Then we have
D2 FA), £>

2 o xf> +LTX, f27D

= 2 Re <jyx, f2r>,
Lemma 2. ( Lemmas 3.3 and 3.4 in [9] ) A dissipative operator
with dense domain in a Bénach space is closable and its crlosure'
is also dissipative.
Sketch of the proof. Let Y be the dbisysirpative operator..‘ Let 1, € D())
with 171'9 0 and 14 "93" . For any ayéj)(d’) and A€/ , let f?z,/l_
=D§I;f‘/l7L with 'ﬂfﬂ/l” =1 aﬁd Re<3’(a-f')2’n)7 j;l,/1>éa . We may suppose
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3‘;&1,,—930,1 (yz%pa) and {,——>f’()-}a¢) . Then we have f/—,—f‘band
Rﬁ(ﬁ,-f’)é-(? . We may suppose {/——> f(a——??) . Then + = fg
and %l =Re< 4, f)éo, i.e. 3"'0 . The rest of the progf; is easy-

Ih tﬂe rest of this section we'will treat only everywhere
defined operétors.
Theorem 1. A dissipation X of a C*—algebra OZ(ﬂD(a"))is
dissipative and bounded.
Proof. We suppoée 31 . 1e131, we can consider a dissipation
Y of 07,:0_1%@‘1 defined by &} (%+11) =IQ) (xeq, he()-
Let X¢{] ve positive. Setting }L; (/72’1?*]—2’)'%' we have for
f= :fz,
vz, £> £ < ylx-nzn1), £>
— <A, £

S KUk, £ =KAYA £
o

]

{

. 2 -
where we have used the Schwartz inequality and the fact <4% f,>—~0
and fzd . Hence )/ is dissipative by Lemma 1 and closed
by Lemma 2. An everywhere defined closed operator is bounded

by the closed graph theorem.

Corollary. A derivation of a C*—algebra is derivétive and
bounded.

Proof. The proof is quite similar to the abové. | Or Ait follc;wsw”
from the above theorem by the following remark..‘ |
Remark 2. From the proof ofv Theorem 1 we can conclude that if y
is a dissipation, for any fc s Re<dx, fo<0. It is immediate for
X>0 . For a general € (X, any fr 1is equal to fz™ where

f = fl,\:z‘:“Z(l—‘lﬁ[. ( Let X =ulZ] be the polar decomposition of

in the enveloping von Neumann algebra ofﬁz . Then {fx[ "'J;-ZC N



from which we can deduce Ifz] 4—3‘,1;'—']"1*1 <) The same situation
prevails for derivations. (See Remark 2 in [9]) » .
Remarik 3. [6] A dissipation ) generates a uniformly continuous
one—para.meter semi-group of positive contractions §t = etr .
Lindblad showed the equivalence of (i) and (ii);

(1) @‘b is uniformly coptinuous, E’t“) =] and

G (X)) (X) £ Py (¥ ),
(11) ) is a dissipation with y()=0.
Finally we remark the following pfoperty of a derivation

d . Let X be self-adjoint and {(z) be the commutative
C*subalgebra generated by X and ] . Let § be a character
of (£(Z) and 5‘; be any norm-preserving extension of ? ( f_; is

a state). Then <{{§% 9.;)'—‘0 which is considered as generalization

of derivativeness (see [5]).

This is easily seen; if a polynomial P(x) of x satisfies
<P, 9>=P/( <% $>) =0 , then & §P), §>= O
The set of such () is dense in ((x) and so < {§z, 5'7):0 by the

continuity of § .
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53. Unbounded derivations
In the following the domain of a derivation or dissipation,
of aC —algebra is a dense *—subalgebra. ‘
Theorem 2. Let )’ be a dlss:n.patlon of acC —algebra DZ If D)
is closed under the square root operation of p051’c1ve elementsA,
then (}’ is dissipative and hence closable.
Proof. [4,10] The proof that ¢ is dissipative is quite
similaf to that of Theorem 1. By Lemma 2 it is closable.
Let (] be a uniformly hyperfinif,re C*algebra (UHF algebra).
A derivation § in [ is said to be normal [o] if ﬁ(&)bis the
union of an increasing sequence'of finite type I subfactors
{0l |7=1,2, == §  in UL .
Corollary' . A normal derivation of a.UHF algebra is derivafive
and hence closable. Its closure is also a derivative derivation.
Let 7T be a unique tracial state on a UHEF algebra oL .
A derivation g in (L is said to be regular [ie] if ( (j’(a.))'(f}:U
for Qe D). | |
Let § be a normal derivation. Since <a®,7f > =<%a, Ts§>
for @, 4 € D(5)=2 U, and <1, TefD> =0, o8 [eg, =C
for any 72 . Hence [ is regular [io]. |
Theorem 3. If a derivation § in a UHF algebra is regular,
then (Y is derivative. | |
Proof. Let [_2(01/ T) be a Hilbert space completion »of a UHF
aigebra {{ with inner product gx,?)t;<y*z, T . Let
X be a positive element of D(f)and .[_2((‘[1),?) be the closed
subspace spaned by C(Z). Let Ex be the orthogonal projection
onto [2((C(z) T) . If § is regular, »
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L1*, Tod 2
= nLx* T po0), T
N §L), 27>,

\

Hence [F, §(z)=0 - Let ¢ bea character of ((z) and f; be

any norm-preserving extension of §0 into L (C(,z) z‘) . Since
Exi0L= LW(OZ,'()-}L‘”((‘[Z) T) is a contraction, §a ?"Ez is an
element of UZ . Let ? be a character such that {x, &> =[x g
- x| and let §=HeFy . Then ¢ =fy and L5z, §>=0. Now

the proof is completed by Lemma 1.

A

Let § be a normal derivation in (7 . Let J be the great-

est linear extension of J in all linear extensions Q) satisfy-

-

ing
Y(AxX4) = Sadx—4 + Q306 + ax Pib)
(%, To¥>=0 , a,4 eD(F), <e Dr)

&

; is called the greatest regular extension of a normal deriva-

tion § [jol.

e

Theorem 4. Let (f be a normal derivation. Suppose that cf
is a derivation (or 3“, is: derivative) and that there is an
j.nfinitesimal generator J/. of a strongly conti;'iuous group of
*-automorphiéms such that &26‘ Then 15\ é‘

Proof. Since 5} is regular .[10],(}7§§ As (lff)@(/f)? (128,)26, )=t
and f is derivative by Theorem 3, g;, is an infinitesimal

s
generator by the following theorem and remark. Hence J}'—‘f .
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Theorem 5. Let § be a derivation of a C -algebra (J . If § is
derivative and closed and (J# §)D(f) is dense in Ol , then g
is an infinitesimal generator of a strongly continuocus group of

¥—-agutomorphisms.

Proof. If fz satisfies ﬂ<dﬂz’lf;}=o and //fz// =/ s

H(F+0z 2 £ R <(F+A>x, f2>
= L RA NIxi
e, W(S+X)z = (ReA-uzu

The rest of the proof is standard [2, 3, 4].

Remark 4. The assumption that 5’ is a derivation in Theorem 5

can be replaced as follows: Let J be a linear operator with
dense domain J(J) such that 2(4)>1 and S(ND=0 . It is shown
as follows: By a result in the Hill-Yosida semi-group theory [17]
5 gene»rates a strongly continuous group of contractions )Qz on
OU . Since f()=] (by the assumption §(y=0 ) and [ L j =]
they are positive contractions. As they form a group, they are
order-isomorphisms. Thus % is a strongly céntinuous one-
parameter group of Jordan automoi"phisms. Hence we have to show
that any strongly continuocus group of Jordan automorphisms‘ of‘

the C*-algebra G[ is a group of §—automorphisms. Let 72 .be
any irreducible representation of (] and X:{, be its represen-
tation space. Then the Jordan homomorphism 72“0}%. o_f 07 onto .
Tg(é’l'}(“@(,}fﬁ.) is a homomorphism or an anti-—hombmorphism [i6,
Theorem 5.1]. Let

H = ‘{ te R Ze Pz is a homomorphism %

A = § teR > Z°P is an anti- homomorphism }' o



Then H and A are both closed subsets of /H as easily shown: .,

Let Ji;§ be a sequence in H such that 3,2 ¢ . Then

Lo fi(25) = Lim Zofp (%) .
=l Tl P ) £ (30)
= Lo fe T 7o )
Hence <$eH . (Similarly for ,4 . ) Now ir dl‘mo‘fz_'—‘ t L HAIR.

If dim_)@czz , then R=HUA and H(’\A=¢ . -This shows }f
and A are both open and closed subsetsof R . Since R
is connected and H is non—empty(Ha 0) s we have H=b@ .
Since the direct sum of all irreducible representations of the
C*—algebra O] 1is faithful, )01; is a homomorphism and hence
a #-automorphism. (This remark cannot be applied in th case of
von Neumann algebras. O. Brattel_i' sl:;c?wed me an example of a
g™ -weakly continuous group of Jordan automorphisms of a von

Neumann algebra which is not a group of x-automorphisms.)

(2%
Remark 5. 4 1is in general not a derivation. (see Problem 1

of [10]). PFor if § is a normal derivation which has more

than two different extensions to infinitesimal generators,

then éy is not a derivati.on, as easily shown by using

Theorem 4. ( We can construct such § . See Remark 3 of [10]. )
Let P?z ‘be the canonical conditional expectation of O

vonto Q%. Let ﬁ'n be a self-adjoint element of (J/ such that

§(a)=[19hn, 0] = §i4,(2) for all @€ Oy, . Then me(z)f‘-ipmfmh(x)

for x e D(F) [101. For it Qe A, ,
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LapPn f(l’), r>=<af(z),z> ‘

= Kax, to > - (da)x, T>
- <lipp,a )=z, T>
><Q<5‘//M%) >
<a Bdy,x, T> .

s defined by

]

1

'_h

In [10] Wc DE)
W= {xeDf); bin PPz =0}
It we set f,(A)=k,,
W= Yxe D) bim Othe P = F O}
In [6] an operator ex-Lfim Jik, ( the extended limit
of the 5&,;157& is defined, whose graph is the set of (x ,%)

€ Olx gl such that there is a sequence X €& {f,, with Hlz,—xl] 20
and || Jux.(2n) = 91> 0.

In [7] an operator { ( the graph limit of the d}kn )
is defined, whose graph is the set of (X ,g’ ye A x T such .

that there is a sequence xdeDZ , with [/Z,,“I//‘P‘U and
I i, @)= O-

Then
o , A -
§C §|w C elim ik € §F C §.
A _
Theorem 6. § 1is derivative.

Proof. Let X e—,@(f)and -[2’;,? be a sequence such that Z, >
Cand  Jie (X)) 5‘\(1) . Let f,= fzn be of norm 1. We may suppose
'fm"af . Then f‘«‘fz and .
Re< fx, 5 = tim Re < Qg T, T2 >
= 0



where we have used Remark 2.
Remark 6. [6,7] f and ex—Lin d‘,kﬂ are closed derivations.
Lemma 3. If {jha—k,ll f is uniformly bounded, ,’f is derivative.
Proof. Let %¥¢ 9(451’) and fa':me:c with £l =] . We may
‘suppose fméf . Then f'}fz and
< $2, > = bim Re< Pl R, fa>
2 2b Re < Pl 1Pz, fr >
= i Re < P dﬂz‘/ih—z‘/g‘ =)z, L2

o~
where we have used &4}2,,4‘/9,,2, j$,>= o, P A\z‘k,, (= Pr)=0
and &ﬁh"ifnz." A}/l,,’&.kn . The last term is dominated by

20k —knl)-U (1= Pr) X |
" which tends to zero as N->00 .

Theorem 7. Let § be a normal derivation. If .{({}(h-—[%yﬁ,

'is uniformly bounded, § , the closure of §J , is an

infinitesimal generator of a strongly continuous group of
-— o
*_automorphisms and § = { .

Proof. Suppose that (/+§)PD(8)is not dense in (7 . Then

there is an element -f in LZ* such that [/f/l=] and <1+J’,Z;J F>=p
for all Z ¢ D) . There are X € (Ol C P ) = ()029-1
~ such that (&,f >»=, 1Zn il Ilf/az,l{l ={£|oy,l. Then

0= bmlld <tn, £> + {82, £>4
= M}Zé‘[‘”f/éznll “+ < T Xn, £> ;
B H”. + LS Tih- ik Xn, F >
2 ) - Tl;:z. 2 =

- 10 -
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where we have usedﬂ('&}h Zn, £ =0 - Suppose Phn—kadl < to—-¢ (€>0),
Then it is a contradiction and hence (/+ §)P(L) 'is dense
in 07 . .Quite similarly we can conclude that (1—4) 4)(:?)
is dense in Ol . Since f is derivative by Corollary of

Theorem 3, 5‘ is an’ inflnltesimal generator by Theorem 5.

If Jin—k, I <C for any 71, we may cons1der 5/30

A/

. instead of 5 - J={ follows from Theorem 4 and Lemma 3.

Remark 7 Under the assumption of Theorem T the one-parameter

—

group fé- generated by §  satisfies
, + 8k |
Pp(x)= lim € ), Xe
where the convergence is uniform in 't on every compact
subset of (-so, 00 ). This follows from Theorem 7 comblned
with Theorems 6 and 8 in [10] (ef. the proof of Theorem 8
below). '

As an application of Theorem 7, we consider one-dimensional
lattice system. Let {UL-: jezg be a family of type I finite
factors and let (7= ®DZ~ be the infinite tensor product

jez ’
of them. Let § be a map from the family 86(2) of finite

subsets of 2 into (7 such that &(¢)= 0 and ®(A) is a

self-adjoint element of OZ(A):@ Dl; . Put
dé/\

: 00
N3ly = 2 e° su;b p INCA) I
= ' AZ], NA)=k

where N(A) denotes the number of points in /\' and >0 .

It is known [ cf. 1 ] that if [I@iy< o0 for o >g 5

there exists a one-parameter group of ¥-automorphisms such

1=



that :
81wy

S € R EelT

2

R T OMA) Tt UN)
P;(@)=éll/§wez Q€1 M:

peay = = (7).
JTCTA

Now we give another sufficient condition for thé existence
of -the abdve automorphism group:
Theorem 8. Suppose that (i) I&€(, < o9 and (ii) there is
an increasing sequence . § Ap %C ?f(z) such that UAx =2
and the flol'lowing element W {/n) of Ol is bounded in norm

unif"ormly in 97 : . |
W) = % '{ g2(3) ; Je EL(Z)) Jnh= ¢, J’n/\c,.{;qy%

where AC denotes the complement of A in Z . Then there
exists a strongly continuous one-parameter group of ¥-automorphisms

such that
v ‘ L5,

fetay = Lo € 7(Q) (*)
where (5}; = 5‘500,”) and the convergence is uniformly in 2
on every compact interval of Z .
‘Proof. By (i), WI(An) is well-defined. Let p= 02 (Ar)
and let b= U(An )FWh). Let J  be the normal derivation
‘such that | 7

Sl o = Bity,, DEI=0AA
Then [1] |

Bhn—Kenll & Uhn —UMI I + 8 Ulda) —Enll

< 2 1wl

where ,%,,,:Paa(/ln). Hence J§ 1is an infinitesimal generator



i

by Theorem 7. Now the proof of the convergence in (%) follows
as in [10]: It is shown by (i) that Joud,=d on D).
Then for x & D(S) '

Ot $™ = D75 axd)x])

= Gd ™ a2 iox - (i § 0

S i2l)x = (1280l

< W fx - 8ax1l

—> 0 as Mmoo,

where we have used I (18 )_' <1,
Hence [w (12 §n) = (128)71 since (1£8§)P(S)  is dense _
in 00 . . By the Trotter-Kato theorem [ef. 17j

we get (¥).
Finally‘we remark that the assumption (i) can be weakened
by (i') 3 IF(A)l<wfor any jeT .
A2 4
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