Boundedness and Convergence of Solutions of Duffing's Equation

Kenichi Shiraiwa

We shall discuss boundedness of solutions of the equation

- (1) x'' + f(x)x' + g(x) = e(t) (' = d/dt) under suitable conditions. Furthermore, we shall discuss asymptotic stability of a periodic solution and convergence of solutions for the equation
 - (2) x'' + cx' + g(x) = e(t),

where c is a positive constant and e(t) is a periodic function.

This work is motivated by the work of H.Kawakami [2], which gives some numerical computations on the equation $x'' + kx' + x^3 = B \cos t$ for positive constants k and B. There are also very interesting results by C.Hayashi, Y.Ueda and H.Kawakami [1]. Also, our paper heavily depends on the work of W.S.Loud [3].

Theorem 1 In the equation (1) we assume the following conditions (a), (b) and (c).

- (a) There exists a solution of (1) under any initial condition.
 - (b) There exist positive constants c and E such that $f(x) \ge c \quad \text{and} \quad | \; e(t) \; | \le E \; .$
- (c) g(x) is a differentiable function satisfying the following conditions (i), (ii) and (iii).
 - (i) g(x) is bounded on any finite interval.
 - (ii) $g'(x) \ge 0$

(iii) $\lim_{x\to\infty} g(x) > E \text{ and } \lim_{x\to-\infty} g(x) < -E.$

By the condition (c), g(x) is a monotone increasing function, and there exist numbers x_1 and x_2 ($x_1 < x_2$) such that

$$g(x_1) = -E$$
 and $g(x_2) = E$.

Let x(t) be any solution of (1). Then there exists a number t_{α} such that

$$x_1 - 4E/c^2 \le x(t) \le x_2 + 4E/c^2$$
 and $|x'(t)| \le 4E/c$ for any $t \ge t_0$.

Our proof is similar to that of Theorem 1 of W.S.Loud [3]. He assumed that $g'(x) \ge b$ for some positive constant b in his paper and got an additional information.

Corollary In addition to the conditions (a), (b) and (c) of Theorem 1, we assume the following two conditions,

- (d) f(x) and e(t) are continuous, and f(x) satisfies the local Lipschitz condition.
 - (e) e(t) is periodic of period $\tau(\tau>0)$.

Then the equation (1) has a periodic solution of period $^{\tau}$. The equation (2) is a special case of (1), and it is equivalent to the following system of equations.

(3)
$$\begin{cases} x' = y \\ y' = -cy -g(x) + e(t) \end{cases}$$

Theorem 2 Assume the following conditions A(i), A(ii) and A(iii).

A(i) e(t) is a continuous periodic function of period $\tau(\ \tau \!\!>\!\! 0), \text{ and E is a positive constant such that } |e(t)| \leq E.$ A(ii) g(x) is of class C¹ such that

g'(x) \geq 0, $\lim_{x\to\infty} g(x) > E$, $\lim_{x\to-\infty} g(x) < -E$, and g'(x)=0 only on a countable subset of the real numbers.

A(iii) c is a positive constant.

Now, let n be a positive number and let $x = \phi_1(t)$, $y = \phi_2(t)$ be a non-constant periodic solution of period n τ for the equation (3). Suppose that $|\phi_1(t)| \le \beta$ for all t and $c^2 > H(\beta)$, where $H(\beta) = \sup \{g'(x)\}; -\beta \le x \le \beta\}$.

Then the periodic solution $x = \phi_1(t)$, $y = \phi_2(t)$ is asymptotically stable.

This is a generalization of Loud [3].

Corollary 1 Assume the above conditions A(i), A(ii) and A(iii). Let A = max { $|x_1 - 4E/c^2|$, $|x_2 + 4E/c^2|$ } where $g(x_1) = -E$ and $g(x_2) = E$. Further, assume that $c^2 > H(A) = \sup \{g'(x); -A \le x \le A \}$.

Then every non-constant periodic solution of period n $_{\text{T}}$ (n a positive integer) of the equation (3) is asymptotically stable.

Corollary 2 In addition to the assumptions of Corollary 1, we assume that e(t) is non-constant.

Then there exists a non-constant periodic solution $x = \psi_1(t)$, $y = \psi_2(t)$ of period τ for the equation (3) such that any periodic solution of period n τ (for a suitable positive integer n) for the equation (3) coincides with solution $x = \psi_1(t)$, $y = \psi_2(t)$.

Theorem 3 Under the same assumption of Corollary 2 of Theorem 2, there exists a unique periodic solution $x = \psi_1(t)$,

 $y = \psi_2(t)$ of period τ for the equation (3) such that for any solution x = x(t), y = y(t) of (3) the following equalities hold.

 $\lim_{t\to\infty} |x(t)-\psi_1(t)| = \lim_{t\to\infty} |y(t)-\psi_2(t)| = 0$ This also generalizes the results of Loud [3]. Details will appear elsewhere.

References

- [1] C.Hayashi, Y.Ueda and H.Kawakami: Transformation
 Theory as Applied to the Solution of Non-Linear Differential
 Equations of Second Order, Int. J. Non-Linear Mechanics, 4 (1969),
 235-255
- [2] H.Kawakami: Qualitative Study on the Solutions of Duffing's Equation, Thesis (1973), Kyoto University.
- [3] W.S.Loud: Boundedness and Convergence of Solutions of x'' + cx' + g(x) = e(t), Dnke Math. J.24. (1957), 63-72

Department of Mathematics

College of General Education

Nagoya University