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A categorical consideration of parallel flows

Kobe University Jiro Egawa

In this lecture, we reinvestigate parallelizability of
dynamical systems from a categorical point of view, and classify
parallel flows on a fixed phase space by isomorphisms. Finally,

some remarks related to isomorphisms are-given.
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§1. Notations and definitions

R denotes the set of real numbers with the usual topology.

D(X) denotes the set of dynamical systems on a topological
space X. C_(x) denotes the orbit of nm through x e X. STr

denotes the set of singular points of . J;(x) denotes the
positive prolongational limit set of x with respect to .
Let 7 ¢ D(X), and p e D(Y). A homeomorphism h of X onto

Y is called an NS-isomorphism of 7 onto p iff we have

h(CW(x)) = Cp(h(x)) for all x e X. In this case, we say
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that 7 and p are NS-isomorphic or topologically equivalent.
Let m and p be topologically equivalent. Then it is known
that there exists a mapping ¢ of X x R into R, which is
called the reparametrization for h, such that h( (x, t)) =
o(h(x), ¢(x, t)) for all (x, t) € X xR and ¢ 1is continuous

on X xR - §_ X R.
n

When we consider an NS-isomorphism h with the reparametri.
zation ¢ for it, we say, in acoordance with T.Ura, that

(h, ¢) 1is a GH-isomorphism of m onto p. Further, if ¢

satisfies the following condition (n), then (h, ¢) is said to
be of GH(n)-isomorphism of m onto p.

(3) ¢ 1s continuous on X X R.

(2) There exists a continuous function ¢ on X such

that ¢(x, t) = c(x)t for (x, t) & X X R,

(D (h, ¢) is of type 2 and c 1is constant.
(0) (h, ¢) 1is of type 1 and c = 1.

Let 7 e D(X). =¢C X is called a section of nw iff for

every x € X there exists a unique number t(x) € R such that

mT(x, T(x)) € E and T 1is continuous on X. 7 is called a

parallel flow with the section & iff X = & x R and for each

(6, r) ¢ E xR and t e R, we have w((&, 1), t) = (&, r+t).
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m is said to be parallelizable iff there exists a section of .
In order to consider parallelizability of dynamical‘systems from

a categorical point of view, we introduce the following notions:

m 1is said to be NS-parallelizable (GH(n)-parallelizable) iff

there exists a parallel flow NS-isomorphic (GH(n)-isomorphic) to

§2. Parallelizability and Parallel Flows
The following is well known.

Proposition 1. Let X be locally compact and separable.

Then 7 € D(X) 1is parallelizable iff for each x g X we have
Jr(x) = ¢. (Such a flow is usually said to be dispersive.)

The following theorem holds for parallelizability introduced

above.
Theorem 1 ([4]). The followings are equivalent.
(1) m is parallelizable.
(2) m 1s NS-parallelizable.
(3) m is GH(n)-parallelizable.

Next we consider the problem of the classification of

parallel flows. Let m™ and p be parallel flows on E x R

and H x R, respectively. Then we have
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Theorem 2 ([4]). The followings are equivalent.
(D) m and p are NS-isomorphic.
(2) m and p are GH(3)-isomorphic
(3) 71 and p are GH(0)-isomorphic
(D) & and H are homeomorphic.

By the above theorem, every isomorphism considered in this
lecture is equivalent, and the problem of the classification of

parallel flows on a fixed topological space X 1is completely

reduced to a topological one: How can the space X be repre-
sented in the form X = W x R ? As an example, we consider
parallel flows on Rn(n >4). It is known that there exist
uncountable many open manifolds {WA} such that all of them are

not mutually homeomorphic, and but WA x R 1s homeomorphic to

R™. Using this result and Theorm 2 we can assert that there
exist uncountable many parallel flows on R"™ which are not

mutually isomorphic.

3. Remarks on topologically equivalent flows

By Theorem 1 and Theorem 2, isomorphisms considered in
this lecture are equivalent for parallelizability or parallel

flows. In other words, the reparametrization does not play any



2

roles for them. But there are several notions in the theory of
dynamical systems, in which the reparametrization plays an

important role. It is important to c}arify them. We shall exhibit

‘some examples.

Example 1. The first example is related to the existence

of invariant positive measurc. Let X be a separable metric

space, and T € D(X). Let w1 be a Borel measure on X. We
say that u 1is an invariant positive measure with respect fo

7 1iff uw satisfies the following two conditioﬁs:

(1) pu is positive, that is; for every open subset U C X

we have u(U) > 0 and for each compact subset K CX we have

u(K) < o,
(2) W is invariant, that is, for each B CX and t € R
we have u(m(B, t)) = u(B).

Assume that me D(X) and p € D(Y) are topologically

equivalent. Then we can prove the following theorem.

Theorem 3 ([1]). If 7 admits an invariant positive
measure,  then we can construct an invariant positive measure

for p|Y - Sp (the restriction of p to Y - Sp).



22

As an easy application of Theorem 3, we have the following

corollary.

Corollary 3.1 ([1]). If s =49 and 7 1is strictly
ergodic, then p 1is also strictly ergodic, where m is said

to be strictly ergodic iff = admits a unique invariant positive

measure.

In Theorem 3, if S1T + ¢, then we can not assert, 1in
general, that p admits an invariant positive measure. This
is verified by the following simple example. Let m and ¢

be flows on 2-dimensional torus T2 defined by the following

differential equations (E) and (F):

x!' M(x, v) x'!
(E) (F)

y' = aM(x, y) y!

N(x, y)

aN(x, y)

where o is an irrational number, M and N are continuous

periodic function on R2 with period 1 and positive except at

(x, y) = (0, 0) (mod. 1). Assume that

1 1 =
fz“mt—yrd"d“” and jzm dxdy = =
T T

We can easily see that S_ = Sp = {(0, 0)}, and that wm and o

are topologically equivalent. Further, we can show that the

positive measures u and v defined by
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. 1 1
U(B) = jB m dXdy and \)(B) = JBWXC}Y

for B C T2 are invariant positive measures with respect to

ﬂ|T2 - S1T and p[T2 - Sp, respectively. (We can show that
n|T2 - STT and p|T2 - Sp are strictly ergodic.) Since the
total measure of T2 - S, with respect to H is finite by the

assumption, we can eisiiy extend u to the invariant positive

measure with respect to m. But p does not admit any invariant

. 2 .
positive measure, because the total measure of T - Sp with
respect to Vv is not finite.

Example 2. The second example is related to minimal

flows on compact metric spaces. Let X be a compact metric

space, and 1w € D(X) be a minimal flow, that is,b for each

x € X we have Cﬂixi = X. We say that = 1is totally minimal

iff for each x € X and A € R (A ¥ 0) we have {m(x, nk)}nez

= X, where Z denotes the set of integers. Cogncerning with

the total minimality, we can show the following Theorem.
Theorem 4([ 3]). If 7 is minimal but not periodic,

then there exists a fotal minimal flow which is topological

equivarent to m.



24

It is well known that equicontinuous or distal flows are
not totally minimal, where 7T 1is said to be equicontinuous

iff the family {mw_}

tter of homeomorphisms of X onto X is

equicontinuous, and w 1is said to be distal iff for each pair

of distinct points x, y & X we have %%ﬁ {dX(n(x, t), w(y, t)}

> 0. By Theorem 4, we conclude that equicontinuity, distality
and total minimality are not invariant under NS-isomorphisms.
Further, we can show._

Theorem 5 ([2]). Every minimal flow which is topologica-

11y equivalent to some equicontinuous flow is totally minimal,
if it is not equicontinuous.

As an easy application of Theorem 5, we obtain

Corollary 5.1. If m 1is minimal, but neither totally
minimal nor equicontinuous, then T 1is not topologically

equivalent to any equicontinuous flows.

Corollary 5.2. If 7 is a distal minimal flow, but
not equicontinuous, then 7 1is not topologically equivalent

to any equicontinuous flows.
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