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$IT  Macrocausality at u=0C vpoints
In ref. [ 1 the singularity spectrum of the S-matrix
at u#0 points was derived from the macrocausality principle.
This principle states that momentum-energv is carried over
macroscopic distances‘only by stable systems. More specifi-
cally, it states that the probability of a transfer of
momentumaenergiﬁhat is not attributable to a network of
stable particles (or objects) falls-off exponentially under
snace-time dilation. The aim of this section is to extract
from this principle a general condition on the singularity
soectrum of the S-matrix that covers both u#0 points and
uv=0 nroints. |
The mathematical formulation of macrocausality depends
on the well-known close correspondence between claasical and
quantum phvsics. The usual quantum mechanical expression for

the scattering transition probability

(=.1) ?((Pl,"”,q)m; ¢m+19 "",‘Pn)

2
= IS((pli"_' 9 (pm; (pm_l,l"”)(pn) I

. - 2
= '<¢m+l’ ;¢n's‘¢13 ;¢m>!
can be converted to the classical form
(2.2) Plog, 505 @ 997 99)

m "‘ 5 .» 5
- S f%éf:?;é xi»yi(pis Xi})
1=1 - (em)®

S(pl’ Xy 9777 5Py Fpd Pryyr Fp10 T2 P xn)
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by introducing the expressions [ ]

(2.3} f:i(pi’ xi)

-1q,x, M,
) ‘oo 1 171 ,771,1/2
Sw (livi- 5 qi)cp(Nivi+ Py qi)e (m*;)
- 4
d'q,
§ (q,ov,) —=
"t

and

(2.4) S(D15X1;_—9pm’ X3 Ppyys Fpipo~-or Py x,)

4 ;
n d ~lq.x. M,
=\ JTI 4 on 5(q.7v.)e qJXJ(—iJl/?1
. 4 JT g m,
=1 (om) : J

1 3% 1
S({M,v, ¥ sty v, &

where the upper sign 1s for initial particles and the lower

sign is for final particlés, pj= mjvj, and

- (o2 1 2,1/2
2:5 M. = e = . .
(2.5) 3 (mJ 4 qJ)

The right hand side of (2.2) is identical to the expression
for the scattering transition probability occurring in
classical statistical mechanics. Classically the statistical
weight j)i(pi’ xi} for an initial particle 1 1is intervreted
as the probability density that the associated statistical
ensemble has a particle that carries morentur-energy Dy and
moves on & svace-time trajectory passing through Xge For
final particles the statistical weight _Fi(pi, xy) is
interpreted as the efficiency for detecting a particle that
carries momentum-energy Py and moves on a trajectory
vassing through xi. The function
S(pll’ Xys777 7% Pryr Fpd Pryys Fped 77 0 pﬁ, xn) represents

2=2
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probability that a system of m 1initial particles carrying
momentum=energies Pys~"" s Py and moving on trajectories

passing through the space-time points X937 "7 s X s respect-

m’

fvely, will SCafter into a svstem of n-m final particles
carrving momentum-energies Prt1s 77 s Py and moving on
trajectories passing through the space-time points X1 ? s X
respectively. | 7

The quatum mechanical functions S’i(pi, xi) and S{(p, x)
are not necessarily positive and are subject to uncertainly
principle 1iﬁitations. Put they are otherwise very similar
to their classical counterparts. (See ref. [ ] for a detailed
discussion) The formulas given above thus provide a very
close correspondence between classical and quantﬁm physics,

- Macrocausality furthers this correspondence by asserting

that the claésical idea that momentum;energy is transferred
bv physical particles becomes valid asymptotically. The
agvmptotic 1limit T — o° +that we shall diccuss is’essen-
t1ally the same as the classical 1imit ® —> O, since H a
parame ter that fixes the snace~time scale.

The macrocaussality principlé asserts that the vrobability
of transfer of momentum-energy not attributable to a network
of stable particles falls off exponentially under space-time
dilation. This condition is made quantitative with the aid
of a semi-classical model of the scattering process. In

this model the momentﬁm-energy of the initial particles is



transferred to the final particles by some network of

mechanisms, as indicated in Fig. 1.
'7
>
7

//)7/}“~M2 space
‘ [————étime

Fig. 1 A space-time diagram showing a typical network

of mechanisms that transfers the energy-morentum carried
by the initial particles 1, 2, and 3 a scattering
process to the final particles 4, 5, 6. Momentum-energy

is conserved at each vertex.

The straight lines in Fig. 1 represent transfers
attributable to stable particles, whereas the wiggly lines
represent transfers not attributable to physical particles.
A transfer attributeble to a stable particle of mass m 1s
characterized by the classical condition P = mv, where P
is the momentum=-energy carried by the stsble particle, m is
i{ts mass, and v = dx/d¥ is its covariant veloclty.

A transfer revresented by a wiggly line can occur only with
a probability that falls off exponentially under space-time
dilation.

The wiggly lines represent varilous mechanisms for
momentum-energy transfers other thaﬁ stable particles. It
is possible, however, that morentum-energy can he conveved
also by stable particles traveling slightly off their mass

shells. In this case macrocausality demands that the

2-4
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mrohability of such a transfer fall-off exponentliallv under
srace-time dilation.

Tre various possible networks are represented by points
in a space of parameters &, and P(E€) 1is the probability
density that the momentum-energy of the initial particles of
tre network will be transferred by this network to the final
particles. Thus P(&) 1is related to the function

S(Dls T xn)EE S{p, x} of (2.2} by the equation

. : n .
(2.6)  S(p, x) = Sagwa)gjlmf’wpi- py (€N x,- x, (EN].

For any network i there are others obtained from it
bv an overall space-time dilation. Let T be a dilation
parameter that increases linearly with the space-time sige
of the network. Let the network & dilated by the amount

T be represented by iT.. Then macrocausality asserts that
there are a palr of nonnegative continnous functions LC( £)

and o (&) such that
(2.7)  PX& Y] < C(£)exn(- x(§)T)

where C(& ) 1is integrable when restricted to compact sets
in p svace, and & (&) 1is strictly positive (X > 0)
unless each line of the network satisfies-the condition

P = rv associated with some stable physical particle. There
is a positive cohtribution to ®(5) from each wiggly line
of g that has nongero lingth, and the continuity of A(E)

means that for any sequence of networks 811 the quantity
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ol (%h) tends to zero only if the sum of the lengths of
wiggly lines tends to zero, and all physical particle go to

their masses shells:

(2.8a) d(§)—> 0

imnlies
(2.8b) 2 la, l— o,
T “in V
1EW
where ;Aiﬁy'iis the (Euclidean) length of line 1 of En,

and the sum is over all wiggly lines of the network g’n’

and also

(2.8¢) PN !pi - mil —> 0
i1€P

where the sum is over all physical particle (solid) lines.
The set of variables (p, x)= (py,~=- P53 X9s°7" x.)
specifics the space-time trajectory lines of the set of
external particles. In particular, vy T pi/ my defines
the direction of the trajectory line of external particle i,
and Xg is a point lving on this trajectory line. Define
v=x/T . A set (p, u) is satd to be causal if and only‘if
the corresnonding external trajectories can be joined by
a nontrivial network of trajectories corresponding to stgble
particles. A trivial network is a network such that all of
the vertices lie at a single point.

The ordinary Landau equations define the set of caussal

(p, u):

(2.9)  {causal (p, W} = {(p, w): (p, u) is a solution of

the Landau equations for some D+}

2-6
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If for a given P there is a causal set (p, u)=(p, 0)
then P 1is céiled a u=0 point. For any such point one
can easily cthtruct a bounded sequence of causal sets
(pn, un} satisfying p,——>p such that the corresponding
sequence of causal space-time dlagrams is unbounded in thé
sense that no bounded space-time region Rw contains all
the vertices Wy of all the diagrams of the seqﬁence.
Conversely, if there 1s a bounded sequence of causal points
(pn, un) satisfying pn——ﬁ-p' such that the corresponding
sequence of causalvspace-tiMe diagrams is unbounded (in this
same sense) then pl is & u=0 point. This follows from
the fact that the sequence of growing diagrams can be scaled
down bv the minimum amount such that each vect@@flies inside
the closure RW of some neighborhood of the origin. The
sequence of écale changes increases without bound. Hence
the rescaled wu , called uI;, satisfy u! —> 0, Let w:i;iEi,lRéﬁ'
be the collection of vectors that describes the positions of
the n! verticesfof the n-th rescaled diagram. The W,
lie in a compact subset of lR4n' and hence have accumulation
point w, which defdnes a causal space-time diagrm. If this
disgram is nontrivial then it defines a causal (p,w}=(p, 0).
Ir §t is trivial then the common vertéx must lie on the
surface of Rw, and all of the external lines must pass
through 1t, and also the origin. Placing another vertex at

the origin one again gets a causal (p, u)=(p, 0).

The conclusion is this:

2=7
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(2.10a) {p; p 1is not a u=0 voint}
= {p; every bounded causal sequence (o?, u™)
with p —» p corresponds to a bounded
sequence of disgrams (i.e., to a sequence
of diagrarms whose vertices remain in a

- bounded R_)}.
w
This result entails that

(2.10b) {p: p is not a u=0 point}
= {p; for any bounded set ‘T of vectors u of
p and some Rw such that for every causal
(p', @} with p' € Np sand u in U the
corresponding camsal diagram has its vertices
in ERW},
A similar result is this:

(2.11) {{p, w); (p, w) is not causal, p 1is not u=0 point}
> {(p, u); there is a neighborhood N = of D
and & neighborhood Nu of u such that
evervy network € with its set (p', u')
in (Np, Nu) has X (&) > a(ND, Nu) > 0}

Here the dilation parameter T 1is set to unity: u=x.

To prove (2.11) assume that the condition on the right-
hand side is false. Then there must be a sequence of networks
in such that the (p,u)“’ (p, u} and o<(E")--"‘O.

The condition & (% )—) 0 implies that the sum of the

2=8
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lengths oj&he wiggly lines goes to zero. Thus if all the end
points of all the stable lines of all the networks % n are

confined to a bounded region Rw and if one has to consider
only networks with a finite number of stable-particle lines, °
then the compactness of the space of variables describing

the end points of these stable particle lines implies that

an accumulation voint in thils space must exist. At this
accurmlation point the wiggly lines all have zero length.

Thus the 1imit voint defines a causal space-time diagram
~aving a set (p', u') that equals (p, u). Put then (p, u)
is causal, contrary to the first assumption on the left-hand
side of (2.11),

The remaining possibities are either that in the sequence
of networks E;n the end points of the stable-particle lines
do not remain in any compaet region Rﬁ or that networks
with an unbounded number of stable-particle lines rust be
considered.

We shall not consider the possibility that an infinite
mumber of stable particles consvire together to gi#e a point
in the singularity svectrum. We simply assumethat the
singularity spectrum of the S-matrix union over all finite
¥ of the singularity spectrums obtained by considering
nebworks with only N stable particles. This assumption
disnosed of one of the two remaining cases.

The final case 1s that in which the end points of the

2=9
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(finite set of) stahle particle lines do wmot remain in anv
corpact region Rw' Fowever, the sum of the lengths of

the wiggly lines tend to zero. Consequently the construction
that was used to prove (2.10) works 2lso in tris case =nd
shows that p must be a u=0 voint.

The bound (2.11) on «(&'), inserted into tre hound
(2.7), gives, with the aid of (2.6}, a bound on S(p, ur):
for any noncsusal set (p, u) such that p is'not a u=C
oéint there are neighbhorhoods Nn' of » and ﬁu of u,

and numbers C > 0 and & > 0 such that for all »' € I'_,.

2ll u'eé Nﬁ, and all
(2.12) S(p', v'T) < Cexpl-aT)

This bound on S(p, x) 1is a quantitive exvression of
macrocausality in the semi classical framework. The quantita—
tive expression of macrocausality in quantum thecrey 1s the
set of bounds on transition probabllities obtained by
ihserting the semi-classical bounds on S(p', u'?T) into (2.7).

To derive conditions on the singularity spectrum of S
from this macrocausallty pfoperty one can use ih (2.2) wave
functions of the form
(2.12) ¢, (p,) = X, (p;)exf -Fy- By) 7Vt + ipyu, )

= @i(ni; Pys Uy, Y,<).

Heré '3i and Pi are the vector parts of two mass-shell

variables p, and P,, and 7(i(pi) is an infinitely

2-10
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differentiable function of compact supvort that satisfies
],Xi (pi)l <1 and is analyvtic at D= Pi' The prodﬁct oi;’
functions | fi(pi, xi)‘l correspondens to these functi‘ons
Py enjoys a strong exvonential fail of f nroperty: Eeﬁ EP
and Nu be anv open neighborhoods of the points P and wu,

resnectively, and let (NP x NJ}' be the complement of

" T T ’

Np* N, wherg N, =1{x; x=u'r, u’e N,}. Then there are
strictly vositive numbers ¢ > 0, > 0, and Yo > 0, which
depend only on NP and Nu’ such that for all O gy =< bjo
}t

T
and all (pi, ;) in- (Np x N,

(9.12) IT;rfi(pi, xi)l < Cexp(=otd T)

Moreover, this function I'ITfil has compact support in p
space. Thus the integrability property of the function C(&)
of (2.7) entails that a bound of the form (2.13) holds also
for the part of the integral (2.2) coming from the region

(Np x Nu’:)'. Ir .(P,u) - 1is a noncausal set, and P is not
a u=0 point, then the condition (2.12) ensures that the
contribution_fo (2.2) from the remaining set NP;( N, is
also exponentially bounded. In particular, there are three
strictly positive numbers ¢ > 0, > 0, and Yo > 0 such

that the function
(2.14) P loy(py; Py, uq, Yty ¢ (b5 Pos up, Y, Ty
= (BD(P;:\‘“.::X% 1)

as defined in (2.1) and calculated by (2.2), satisfies

2-11
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(2.15) P (P, u,7,T) < Cexpl- ')

The continulity properties of all the functions involved in
the derivation of (2.15) entail that this bound hold uniformly
in some neighborhood of the original point (P, u}.
The condition (2.15), holding uniformly in a neighborhood
of‘ (P, u), is, by definitién, the statement that (P, ul}
l1ies outside the essential support of S. But the concepts
of essential support aﬁd singularity spectrum have been
shown to be equivélent [ ], at least for distributions, and
hence for S. Thus macrocausality implies that all noncausal
(p, u) with ‘p not a u¥0 point lie outside the singularity
gpectrum of S'.
| Consider now the u=0 points. The new féature at these
points is that the condition that the u remain in a Eounded
region Ru does not entail that the vertices remain in a
bounded region Rw. Thué there may, for u € Ru, be
sequences of networks EI; such thgt the sum of the lengths
of the wiggly lines tend to zero and all physical particle
momenta tend to thelr mass éhells but no causal disgram exists.
Because of this fact the macrocausality condition falls
to yield at u=0 points the conclusion that the singularity
gpectrum of S' 1is confined to the solutions of the positive- &
Landau equations. It leads rather to the conclution that
the singuiarity spectrum of S 1is confined to the set of
points (p, u) for which there is a sequence of networks

ﬁ(m) satisfying

2-12
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If such a sequence exists then the oroof that (p, u) 1lies
outside the singularity spectrum fails. On the other hand,
if no such sequence exists then there must be some neigh-
borhoods Np and Nu of p and u and an associated
number a(Np, n,} > 0 such that (&) > a(Np, N,) for
all & svch that (p(£), u( €)) 1ies in NoXN .

Over this informstion the proof proceeds exactly as before,
ahd one can conclude that (p, u} is not in the singularity .

spectrum of S.

In view of (2.8) the final conclusion is this:

(2.17) 8.8, s(p} < {(p, u); g (m) such that
(o0 £y, w(g™) —>(p, w),

(m)
Za5 ™ — o, na

i%};?i( %(m)) - mfi—) o}

In S-matrix theory the eiternal particles of one scatter-
ing process are internal particles of some larger process.
It is thus unnatural to treat them differently, and doing so
would be expected to lead to inconsistencies. Thus the
natural, and conse;vative, course iz Lo 2]low in (2.17) both
the internal and external solid lines of the networks gn

to be off-mass shrell.
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