ooooobpooooo
2870 19770 138-168

136

Ultradistributions, TI
The kernel theorem and ultradistributions

with support in a submanifold

By

Hikosaburo Komatsu

The purpose of this paper is éo prove the analogues for ultradistributions
of two major theorems of L., Schwartz for distributions: the kernel theorem
[12], [13], [14], [15] and the structure theorem of distributions with support
in a submanifold [11]. We obtain also a Whitney type extension theorem for

ultradifferentiable functions as the dual of the second theorem.

This is the second part of our study of ultradistributions and we use the
same notaﬁions as the first part [5], which we quote as [I]. However, we change
the terminology of locally convex spaces a little. According to [6] we call a
nuclear space a Grothendieck space and an S*-space a Komura space. Therefore,
an (FN)-space in [I] is called an (FG)-space (= Fréchethrothendieck space) .

An (LFG)-space is the strict inductive limit’of a sequence of (FG)-spaces and
‘a (DLFG)-space is the strong dual of an (LFG)-space.

Mp, p=0,1, 2, ..., is a sequence of positive numbers satisfying the

following conditions:

M.0)
(0.1) MO =1 3
(M.1) (Logarithmic convexity)
2
0.2 = .
(0.2) Mg M Mg P=h2

(M.2) (Stability under ultradifferential operators) There are constants

A and H such that



R

(0.3)° M < AP min Mqu-q’ p=0,1,...
| P 0<asp

(M.3) (Strong non-quasi-analyticity) There is a constant A such that

0o M M
-1
(0.4) S o Sapge, L2
q=p+l ¢ T Tptl

(M.2) and (M.3) may sometimes be replaced by the following weaker conditions:

(M.2)' (Stability under differential operators) There are constants A

and H such that

P. = .
(0.5) Mp+1éAHMp, P 0,1, ...
M.3)" (Non-quasi-analyticity)
s Mpoy
(0.6) S, —— < e .
p=l 'p

_An infinitely differentiable function ? on an open set . in R"  is

said to be an ultradifferentiable function of class (Mp) (resp. {Mp}) if for

each compact set K in  and h > 0 there is a constant C (resp. there

are constants h and C) such that

o
IlM , laal=0,1,2,... .

ol
0.7) sup |D ¢ (x)] £ Ch Lol

xeK
The space of all ultradifferentiable functions of class M) (resp. {M }) on

§L 1is denoted by €(Mp)(n.) (resp. YE{MP}(IL)). The spaces é'(Mp )
M3

and § P () as well as

™) ™) {M ] M
(0.8) D P =H(ng P () and I Py =0 al P
have natural locally convex topdlogies.'
M) My ™)
An element of the dual 09 P '(f1) (resp. B PPra)) of B P

M7
(resp. 09{ P (L)) 4is called an ultradistibution of class (MP) (resp. {Mpi).

The associated function
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0.9) ° M(f) = sup log(fP/Mp) . 0 §f < 60
P

plays a very important role in our theory. If ; is a vector in Cn, we

write

(0.10) M(L) = MUY,

in § 1 we prove the Paley-Wiener theorem for ultradistributions saying

n

that an entire function £ (;) on € is the Fourier-Laplace transform of an

ultradistribution f with support in a compact convex set K in Rn if and

only if it satisfies the estimate
(0.11) 1ECDI g cexp {ML D +R (D], ¢ e €,

where HK(;) is the support function of K defined by

(0.12) H.K(;) =sup Inm {x, {7 .
xeK

C. Roumieu [10] and M. Neymark [7] have obtained a similar theorem with
the right hand side of (0.11) replaced by Ce exp{M(Lg) +H.K(;) +&l¢ I} for
any £ » 0. We eliminate the term ¢ |f| with the help of the Phragmén-
Lindeldf theorem. In this process condition (M.3) plays an essential role.

As Roumieu shows in [9] we cannot obtain estimate (0.11) in general without
conditions (M.2) and (M.3).

Section 2 is devoted to the proof of the kernel theorem. Our proof is

similar to that of F. Treves [16] in i:he case of distributions. Condition (M.2)

is important in this section.
"

n' : n
as (x, y) with x €R and ye R .

"

We write a point in R" = g" X &"

Let
] "
(0.13) F={(x,0; xeR", 0¢R"

be a linear submanifold in R". We prove in § 3 that f£(x, vy) is an ultra-
distribution with support in F if and only if it is developed in the convergent
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(0.14) f(x, ¥) = 2, fp(X) ® D'SS'(Y).
A

Roumieu [10] proves that if f(x, y) is an ultradistribution of class {Mp}
with support in F, then it has the development (0.14) which converges in the
topology of ultradistributions of class { Jiﬁiﬁ;} . We prove the convergence
in the tbpolcgy of the original class.

In the last §‘4 wé prove that if an infinitely d;fferentiable function ?
in the sense of Whitney on a smooth submanifold F satisfies an estimate of
class (Mp) (resp. {Mp}) then it can be extended to an ultradifferentiable
function of the same class on a neighborhood of F. This generalizes L. Carleson's
theorem [1] in the one-dimensional case. We prove this by showing that the
theorem of §3 is equivalent to this theorem together with the fact that every
ultradifferentiable function whose derivatives all vanish on F can be approxi-
mated by ultradifferentiable functions whose support does not meet F. We note
that the last fact is by no means trivial.

We will employ the theorem of § 3 to characterize those weakly hyperbolic
§perators for which the Cauchy problem is correctly posed in a Gevrey class of

ultradifferentiable functions and ultradistributions.



-
T

1. The Paley-Wiener theorem for ultradistributioms. Suppose that f

is an ultradistribution with compact support in Rn. For each ge ¢® the

function exp(-i{x) in x belongs to é *(an) and it is easily shown that

exp(-1{ x) depends on g holomorphically in the topology of g *(iRn)’. Hence
(i.1) £() =exp(-18x), £(x))

defines an entire function om ¢n, which we call the Fourier-Laplace transform

of f.
The Paley-Wiener theorem holds also for ultradistributions. The associated
function M({) and the support function H'K( ) have the same meaning as in

§3 of [I]. The asterisk * stands for either (Mp) or {MP}

Theorem 1.1. Suppose that Mp satisfies conditbions»(M.O), (M.1), (M.2)"

and (M.3)' and that K 1is a compact convex set in R®. Then the following

conditions are equivalent for an entire function ?( {) on "

(a) :‘:'"( ’;) is the Fourier-Laplace transform of an ultradistribution

) M

M
fed P 'K (resp. B P K) with support in K;

(b) There are constants L and C (resp. for each L > 0 _there is a

N

constant C) such that

(1.2) IEC8)| s cexpMLE), Few",

and for each € > 0 there is a constant Cs such that
(1.3) E(E)) sCe exp {H (D + 1L}, Lec .

If Mp satisfies (M.2) and (M.3) in addition, then they are also equiva-

lent to the following:

(c¢) There are constants L' and C (resp. for each L' > 0 there is

a constant C) such that
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(1.4) 1TCy)l s ¢ expfMLie) + B AL}, (e €.

A subset B of ,&*'K is bounded in d*'(R"™) if and only if we can

choose constants L and C (resp. for each L > 0 a constant C) independent

of f € B such that (1.2) holds.

M) M
e H P "% (resp. .9 P 'K) converges if an@ only if

A sequence f

h
for some L (resp. for any L > 0)

(i) exp(-M(L E ));‘.}( 'g) converges uniformly on R".

If Mp satisfies (M.2) and (M.3), then this is also equivalent to each ome

of the following:

(11) exp(-M(LY ))'Ej(g) converges uniformly on a strip IIm {l€a<eo;

(iii) exp{—M(L; ) —HK( |4 )}gj ({) converges uniformly on c®.

Proof. (a) a (b). Suppose that B 1is a bounded set in ] *'([Rn) in~-
cluded in _9*'K. By Proﬁosition 5.11 of [I], it is also bounded in the dual
E*' (®™) of the reflexive space £*®"). Hence there are a regular compact
set K. in R and constants h and C (resp. and for each h >0 a con-

1
stant C) independent of f € B such that

o
D ¢(x)|
.5 l((r , £>|s¢C sup—l——-—z—x——

%, 1
1 e ETED .
x€ky b M e

If we take So (x) = exp(~ix ’gA), ‘g € an, then the right hand side of
(1.5) is bounded by

o 1|
——!—i—‘—- <c sup—lz—l—— = C exp M(§/h).

latt = l&]
LI L WY

C sup

Hence we have (1.2).
Since ultradistributions are imbedded in the hyperfunctions without changing

the support, (1.3) follows from the Ehrenpreis-Martineau theorem (H3rmander [4],

-6 -
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Theorem 4.5.3). We will give here a direct proof, however.

Let & >0 and let K, be the set of all points x in R" such that the
distance from x to K is less than or equal to &. For éach h >0 we can
find an ultradifferentiable function X(x) € é{Mp},h/Z('Rn) with support in
the interior of K, which takes the value 1 on a neighborhood of K. Then

we have
¢, >=<X9, £, ge £*®™, fe B.

In view of  [I], Proposition 2.7 we have for SOI';Ie Cl

12%(x 9) (®)]

1<%, £>| S C sup
b Ll

x€K
- x 1

o
£ C, sup .D = | s ?e 6*(Rn)1

xeke (/2)!*' M

(L1

loc

Let <‘>(x) = exp(-i{x) with ; € ¢". Then we obtain
| £(5)1 € ¢, expfM(28/n) + HKg(';)} .

Since HKS(;) §HK(§)+ e£l&] and since M(f) ‘=°(f) as f — o0 ([I],

(4.7)), this implies (1.3).

(b) => (a). Suppose that B is a set of entire functions va(‘g) on ¢

satisfying (1.2) and (1.3) with a uniform constant C.

) (M} ~
If (f €edb P (an) (resp. of P (IRn)), then it follows from the Paley-
Wiener theorem for ultradifferentiable functions ([I], Theorem 9.1) that for
each h > 0 there is a constant C (resp. there are constants h and C)

such that the Fourier-Laplace transform ?(‘;) satisfies
(1.6) 1Y) € C; exp{M(G/h) + B, (Y],
1

where K. is the convex hull of supp 50 .

1

-7 -
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Hence for each ?e B
| $C5IEC5)] € C, Cexp{M(L §) -M(E /h)}
is integrable on " by Proposition 3.4 of [I]. Thus

1
)"

1.7 <?; £)= fmn §(§)'E(~§)dg

defines a linear functional f on o8 *@®™). The boundedness of {£; fe ?f}
follows from the proof because we can choose a uniform constant C1 in (1.7)
for all ¢ in a bounded set in &*®R™).

The fact that supp £ € K may also be proved by the Ehrenpreis-Martineau
theorem but we prove it directly.

'Suppose that ‘f € .Q*K , Where Kl is a compact convex set in Rn' with
Ky
Kn I(1 = ¢ We choose a & > 0 smaller than the distance between 'Kl and K.

Then there exists a real unit vector EO such that

(LY )+ H(-1F ) = sup<x, F >-inféx, § > < -§
Hxl §) tH (18, ek, o e %o

We consider for each {&R" the holomorphic function
Bz) = §(5+§ D%~ Eg2)
defined on the upper half plane Im z 2 0. By (1.2), (1.3) and (1.6) we have
|F@) | € C; Cexp{M((} + ) /M) +MAL(E+E ], *x€R,
and |
|F(2)) € ¢ Cg exp{-M((E+5 ;2) /D) +uKl( €2 +E(EgD) ¥ £ |5+ g2}

<cc, exp{-M((§ + 2)/h) - SIm z+ elg) +elz1}, mzzo.

Let ’g' be the component of E orthogonal to EO and E= x0£0+ i' .
Then we have by Proposition 3.4 of [I]

-8 -
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"exp{M((E + § g /B) +ML(E+E ) } S AL+ [ +5 =D

< »Al(x+x0+(l+ 1g'| )1)‘.“'11 , xeR.

+1 -
Applying the Phragmén-Lindeldf theorem to (z+x0+(l+ lE'l)i)n e ist(z),
we have finally

1

if’(g+1~c§0)?(-g-11;0)\5A1e'h(1+|g|)"“ , ;Vem“, T20.

Thus we can deform the domain of integral of (1.7) to- an+i‘t ;0 and obtain
f;?, £>=0 as T —>o0. : v

Since every (f € o *(Rn) such that supp ? n kK= ¢ can be represented
as the sum of a finite number of ? i € ,&*((Rn) with the above property, we
have supp £ C K.

In order to prove that ?(g) is the Fourier-Laplace transform of £, we

consider the regularization
(F#0) (xg) =<lxyx), £,
where \}, €d *(Rn). Since the Fourier transform of \}J (xo-x) is equal to

e g(-—g), we have by (1.7)

1
(27)

(P *8)xy) = —1— I & E\'F(g)?cg)dg :

Since \}»* f 1is a continuous function with compact support ([I], Theorem 6.10),

‘this proves that $(‘g )'f\'(E )k is the Fourier transform of \}'*f . Let
_ .-n
Y@ = 7 (/e |
with a \}«1():) € o8 *GRn) such that f\fl(x)dx =1 and that \I/l(-x) = \,fl(x).

The mapping £ > \}'ﬁ*f on £*'(an) into itself is easily shown to be the

dual of the mapping T > So* \{?& on £ *()Rn) into itself and the latter -
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converges to the identity mapping as £ — 0. Hence \.}'E %*f converges to f
in 5*'(an) so that \}75(2 )‘f\'(g) converges to the Fourier transform of f.

Since ‘FE( E) converges to one, ¥ must coincide with the Fourier transform

of f£.

(b) = (c). For each real unit vector § o ve write
SO = HK(igo) = sup(x,,g()).
xeK
Then for each g € R® the holomorphic function
F(z) = f(§+goz)
on the upper half plane Imz 20 satisfies

|F(x)| € C exp M(L(§ + § X)), x€R,

and
!F(z)\ < CE exp‘sso Im z + £|’g} +€lzl}, Im z 2 0.
.Let
% IL(Z+x%,+ 1E13)

(1.8) Pz = T @ - —————).

p=1 P
Then we have by (10.5) of [I]

i§ x

|P(x)-1e 0 F(x){]<C, x€R,

and
i§ z
I le O F@lgC, exp{glgn+uz|}, Im z Z 0.

Hence it follows from the Phragmén-Lindeldf théorem that

_ -i&‘oz
|E(z)| = c|p(z)e | & CIP(2) lexp(H (§ +§,2)).

On the other hand, we have by Proposition 4.6 of [1]

|B(2)] S A expM(L'(§+E (2)))
' - 10 -
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for zome constants A and L'. Consequently (1.4) holds.

Trivially (c¢) implies (b).

The strong topologies of o *'(Rn) and 5*'(Rn) coincide on J*'K.
In fact, if X is a function in P *([Rn) which 1s equal to one on a

neighborhood of K, then we have for every f eé*'K

(Ps Y=<Ags £>0 GedHE®D

and the multiplication by X is continuous on 5*(3“) into @*(Rn).

o) g}
In particular, @ P 'K (resp. & P 'K) is a (DFS)-space (resp. an (FS)-space

)
as a closed linear subspace of the (DFS)-space £(Mp '(Rn) (resp. the (FS)-space
{Mp‘} ‘
3 3

contained in an absolutely convex compact set B and f£

converges if and only if f, are

3

converges in norm

'@®™).In both cases a sequence f
3
of the Banach space XB generated by B ([6], Theorem I.12.3 and Theorem III,
9.5). In case % = (Mp), the least constant C- of (1.2) is exactly the norm
of XB for some B. In case % = {Mp}, the above proof shows that (i) implies

the uniform convergence of £ on every bounded set in .9*(11“). The ccnverse

k|
is clear.

If Mp satisfies (M.2) and (M.3), then the proof of the part (b) = (c)
shows that (i) implies {iii). The implications (iii) => (ii) =» (i) are

trivial.

2. The kernel theorem. We say that a subset K of R" satisfies the

cone property if for each x € K there are a neighborhood Un K of x, a

unit vector e in R" and a positive number £, such that (U N K)+ e is

0

in the interior of K for any 0< ¢ < 80.
1
In this section we denote by JfL' and J(L" open sets in R® and
" )

R" respectively. A point in JL' (resp. in [fL") is denoted'by x (resp. y)-

Similarly we denote by K' and K" compact sets with the cone property

- 11 -
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included in Jf)' and " respectively.

Theorem 2.1. Suppose that M satisfies (M.0), (M.1), (M.2) and (M.3)'.

Then the bilinear mapping which assigns to each pair of functions so(x) on

' and \’J(y) on " the product T(x) \P(Y) on 0'x J" induces

the following isomorphisms of locally convex spaces:

M) M) ™)
(2.1) EPN®E Pamed P xa™s
M} A M {Mi S
(2.2) E P ®E pi(.Q_") = & P xa™s
: : M) A~ M) M)
) P o~ QP )
(2.3) $ e VS Pz Kk
$€Mp} PURLS LS _
(2.4) 0 @O T T B T gk s

i Y
m=d Pt .

2.5) 2P ango’ T
Proof. Since E* L), '3*1( and o8 *({L) are Grothendieck spaces
(II], Theorem 2.6), the projective topology 7C and the biequicontinuous topo-

logy & coincide on the tensor products.
_ Since the polynomials are demnse in E*() ([1], Theorem 7.3), EX(LY
®8*( ") is dense in d N oM.

The continuity of multiplication * 2 x 8*( an — 8*(3)_' x 2"
([1], Theorem 2.8) implies that the induced injection E*(8Y) ®Tt£*( n"n —
E*(L' x ") is continuous.

To prove that it is an open mapping onto the image, we consider arbitrary
equicontinuous sets A in E£*'(Q") and B in £*'(A"). Then there
exist regular compact sets L' 4n fL' and L" in ", and constants b,

C' and C" (resp. for each h >0 constants C' and C") such that

A .
(2:6) p () = sup |<¢, £>|< C' sup ,
? féAl §. £l p 1!

-12 -
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l P° ¥ I

(2.7) Po(W) =sur>!< g>| s
Sip < y%. N -

Suppose that Y € 6*(.!).') %) g*(,ﬂ_"), fe A and g & B. Then we

have by (M.2)

Ios JX(x,y)g(y) dy |
(2.8) IJIX(X, V) £(x)g(y)dxdy | S C' sup )
xeL' h M,o“
o
‘ ‘ D«D ﬂX(X, y) I
£ C'C" sup kx
(X)Y)GL 'xL" h ﬂlM M'ﬁ‘
<p
|n,f S X
L AC'C" sup | .
(x,y)el'xt (b/m W
Y
Thus the semi-norm
(2.9) pB(x) = sup |<X, b

heAgB i
is bounded by a continuous semi-norm on E,*(,ﬂ_' X ‘Q‘“). In othe; words, the
£ —topology on 5 *( " e 8*( ') 1is weaker than the induced topology from
é (A x M.

Since  E*(QL' x §.") 1is complete ([I], Theorem 2.6), we obtain the

isomorphisms (2.1) and (2.2).
, M} iM
The proof of (2.5) is similar. To prove that . P(f') @8 P is

dense in 8\‘MP}(D_' x ", let 9; €d Mp}(,ﬂ_' x N"). Let L' (resp. L") be
the projection o§ supp¢ into >.Q_' (resp. f"). We choose a ‘X,' éﬁ{Mp}(J)_')
(resp. x" 6_08 p;([),")) which is equal to one on a neighborhood of L' (resp.
L"). By LemmaM7 .1 of [1I], there is a sequence ?jé R(NL*x ") which converges
to ¢ in £ p}(.ﬂ.'x a"). By approximatmg ?j by polynomials, we can find
a sequence of polynomials \h which converges to <)° in § Mp (L), where L

is a regular compact neighborhood of supp x' x supp }". Then it is easy

- 13 -
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v

| L i} ‘
to see that X'(x) X" (y) ‘/«j(x, y) € o8 P [CIRDN- ) P(R") converges to ¢

iM}
in & P('x ).
M3 M3 {M 3

The multipiication is hypocontinuous on o Payxad P (4" into B Pea'xa™

13 M

i
([1], Theorem 2.8) and 8 (') and £ P (") are (DF)-spaces. Hence

the multiplication is continuous by Théoréme 2 of Grothendieck [2] and there-

Y i} o
fore 9 " ®u_na a[m — (L' x L") 1is continuous.

fity}

. {M
Let A and B be equicontinuous sets in & (') and B p}'(.0.")’

respectively. Then for any regular compact sets L' 'in ' and L" in

fl" and for any h >0 we can find constants C' and C" éuéh that (2.6)
and (2.7) hold for all ¢e S{MP}L, and \};Q@{MP}L,, .

We have by !:he same computation as above that the semi-norm pr defined
QMP}L,"L,,. Since every compact set im Q2'x fL"
is included in a compact set of the form L' X L", it follows that pAQB is

by (2.9) is continuous on o

continuous on o MP}( alox ™.

Lastly we prove (2.3) and (2.4). Since ,8*1( is régafded as a cllosedfv
linear subspace of £*(f), ,@*K, ég P *K" is identified with a closed
linear subspace R of . 8*(.0_' ¥ . Clearly R . 1is included in ’9*K'xK"'
On the other hand, if the support of e-,8 *K'xK" is included in a compact
set in the interior of K' x K", then X can be approximated by a sequence
of elements in o@*K, Q,@*K,, as in the proof of (2.5), so that X  belongs
to R. ‘

Since K'x K" has the éone property, such X form a demse linear

subspace of §¥ In fact, let 5’ be an arbitrary element in ’8*K'xK"'

K'xK"’
There is a partition of unity 1 = Z '\fj on a neighborhood of K'x K" which
is subordinate to the open covering associated with the cone property. Every

Y 5 ¢ may be translated to a function X i with a compact support in the

interior of K'xX K". Since the translation is continuous in od *(f) . as

- 14 ~
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was shown in the proof of Theorem 6.10 of [I], ? =3, "/}j ¢ is the limit

of a sequence of functions in & with compact supports in the interior

*
K'x K"
of K'x K". Thus R coincides with o8 *K'xK"’

As for (2.4) we have the following more precise results.

Proposition 2.2. Suppose that Mp satisfies (M.0), (M.1l), (M.2) and

(M.3)' and that K°' and K" are compact sets with the cone property. Then

for every h >0 (resp. every k > 0) we can find a k> h (resp. an 0<h

< k) so that we have the following continuous inclusions of Banach spaces:

{Mi,h A {M}, M },h
(2.10) c& p K' ®7Z ’9 P K" Cﬂg P ‘K'XK" b
fM3n . {Min Mk . {M}k
(2.11) B P p® 8 " w8 T B8 s
-fM;,h’ M 5,k A éM}’k
(2.12) B T2 P ®s'8 P

fuyn

Proof. (2.10) follows from the continuity of the multiplication L P X'

) @}Mp} ,hK' R oa(mp} ,h

K!XK"’
If T:X—>X, isa nuclear linear mapping and S : Y —> Y1 is a

continuous linear mapping, them T ®S : X @a Y — X1 ®7: Yl is continuous

(cf. Pietsch [8], Satz 7.3.2). Hence (2.11) is proved by the fact that

iM J,h M 3,k '
Ko) p} K ——»ag p}’ g is nuclear ([I], Proposition 2.4).

i 1,k {M3y,k
(2.8) shows that the norm-of .2 P K,®€.8 P K"

fﬁp‘; ,k/H

is bounded by a

constant times the norm of o tuon + We can prove in the same way as

) é o ()

M1,k MY,k M1l.h

above that o8 P K" ®LH P g" is dense in P Ry K" in the norm
M 3,k/a |

of P K'XK" for some h < k/H. We can also start with h.

Let X and Y be locally convex spaces. Then we denote by BS(X, Y)

(resp. B(X, Y)) the space of all separately continuous (resp. continuous)

- 15 -
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bilin‘ear functionals on X x Y. Under a mild condition we can introduce in it
the topology of bibounded convergence or the topology of uniform convergence
on the sets of the form A x B, where A and B are bounded sets in X and
Y respectively. The space BS(X, Y) (resp. B(X, Y)) equipped with this
topology is denoted by Bsﬁ (X, Y) (resp. Bﬂ(X, I)).

L(X, Y) 'denotes the space of all continuous linear mappings T : X —>Y
and L,S(X, Y) stands for L(X, ¥) equipped with the topology of uniférm
convergence on the bounded sets in X.

The following is the kermel theorem for ultradistributioms..

Theorem 2.3. Suppose that Mp satisfies (M.0), (M.1), (M.2) and Mm.3)'.

Let * be either (Mp) or {Mp } Then we have the canonical isomor-

phisms of locally convex spaces:

BR(H* (A1), HHAM) = L(DTCAD, LA |
(2.13) A
: = Lp(-a*(.ﬂ."), H*¥ )= AR HFTAM = DF L x M-
Proof. Since H*¥(L") and H*(L") are reflexive spaces ([I], Theorem
2.6), B; (B*(0LY), H*(L")) is identified with the spage B ((aa*'(.f).'))d'_*,
8 *'(.Q."))é*) of separately weak*-continuous bilinear functionals equipped
with the topology of »bi-equi.continuous convergence. The latter space is
| canonically isomorphic to Le((-S*'(,Q_'))'_t , D*'(A") equipped with the
topology of equicontinuous .cor;vergence ([16], Proposition 42.2). Since S*(N")
is reflexive, this is‘ in turn isomorphic to Lﬁ(.ﬁ*(n_'), S*(A"). Similarly
we have the canonical isomorphism . Bsﬂ CO*(, HFA™) = L/_,(ﬁ*( am, af@mn.
Secondly, since Q*' (') and a9 *1 (") are complete .Grothendieck

spaces, we have by Théoréme 6 of Grothendieck [3], Chap. II the canonical

isomorphism
BS (D (AN, @M Y =F* AN 8 H* (M.
c , 4
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Lastly the multiplication 8 *( Q') x O*( L") —9*(' x L"), which

is separately continuous ([I], Theorem 2.8), induces a linear mapping
10 8% 2" —B5@* AN, H*am.
Let K' and K" be arbitrary compact sets with the cone property included in

' and §" respectively. By Théoréme 12 of Grothendieck [3] we have the

canonical isomorphisms of locally convex spaces:
s ' A
B/i (va*Kt ’ ‘S*K") = Bﬁ(’&*K' s ’8*1(") ='(P&*Kv® 08 *K")/'a' .

The last space is by Theorem 2.1 isomorphic to (H* and hence we have

K'xK");g
(2.14) Bl (971 » D%pn) = (B¥pipdy -

Since compact sets of the form XK' x K" form a fundamental system of
compact sets in JL' x fL", it follows that i is bijective. In fact,
suppose that 1(f) = 0 for an f € A*' (' x ). Then the restriction of
i(f) to 8 *K' X ’S*K" vanishes and hence by the isomorphism (2.14) the

restriction of f to “9*1( vanishes. Thus we have f = 0. Similarly

'XK"
if Ke B3(D*( A", SH*¥(NL")), then its restriction to 9 *K' x 8 *K" gives
, *
rise to an element fK'xK" of (& K'xK")" Since fK'xK" are compatible

1

with restriction, they define an ultradistribution £ € 9*'(N' x Q") such
that K = 1(f).

Since every bounded set in (,8*(.0_') etc. is a bounded sets in some
°8*K' etc., the topological isomorphisms (2.14) imply the topological isomorphism
(2.15) By (H*(AL"), B*(A™) = (¥ ¥ 2" -

In case * = {MP], the topological isomorphism

GH*CAN' B B = (D¥ L x "

may also be proved as the dual of (2.5) by Théoreéme 12 of Grothendieck [3],
Chap. II. (
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3. The structure theorem of ultradistributions with support in a sub-

A~

manifold. Suppose that F is a linear submanifold of 'R®. Under a suitable
P :

coordinate system it is written
nl n"

(3.1) F={(x,0; xeR , 0€R }.

5 n n' n" :
A point in R~ is denoted as (x, y) with x &R and y €R . If (L 1is
an open set in Rn, we write |
(3.2) A'=Fal -
and .,3*(11') etc. stand for spaces of functioms on Q' of n' variables.

We recall that

(3.3) aa*F'(n.) ={f€ B*'(N); supp £CF].

We have the following analogue of the Schwartz structure theorem of distri-

butions with support in a submanifold (Schwartz [11], Théorime 36).

Theorem 3.1. Suppose that Mp satisfies (M.0), (M.1), (M.2) and (M.3)

: )
and that F _is a linear submanifold as above. Then every £(x, y)é& OS(MP (R

E
M
(resp. & P 'F(.Q_)) is uniquely represented as

G £(x, y) = %fﬁmm o5 »
with | ‘
. ™) . {M3
fp(x> €ed P (resp. H P

satisfying the following conditioms:

For every compact set K' € §L' with the cone property there are constants

L, h and C (resp. and for every L >0 and h > 0 there is a constant C)

such that

(3.5) Ne, <cn'fly

' (M ,h

1l °
4" 2
K
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Conversely if a family of ultradistributions fﬂ € H*' (') satisfies

the above estimates, Vthen (3.4) converges in ,§ ¥1(f) and represents an

fe a&*F'(ﬂ_). We have moreover

(3.6) supp £ = \U supp fﬁ .
o

Proof. We prove the converse part first. Suppose that { 4 p(x)} c8*(a

satisf'ies the estimates (3.5).

"

Let K" be a compact set with the cone property. in ®"  such that K'x K"

Cf and let k= (2L)—1. Then the bilinear functional fﬁ(x) ? DﬁS (y) on

OS*K' X b *K" satisfies the estimate

1§ 9 @ g 2,0° 5 (ranay) 5 271F) cn?nﬁﬁ T yhee

M h
Thus the right hand side of (3.4) converges absolutely in the norm of B (.9 P}

cséMp} K“) (c&fM } hK'ér 8‘(%} skl(")}3 .

Hence it follows from Proposition 2.2 that (3.4) converges absolutely in the
LS P |

K xK")ﬂ

norm of (.8 for an L (resp. for all I > 0). Since the compact

sets of the form K'x K" form a fundamental system of compact sets in L ,
(3.4) converges in q&*'(ﬂ)f It is known that ,@*'F(Q_) is a closed linear
subspace of ,9 *'(f)) ([1], Theorem 5.8). Hence the sum belongs to ﬁ*'F( Q).
We have also the inclusion supp £ € \J supp £ 8" |

- If (3.4) converges in @ *'(f)), then we have for every ’?(x) € 9*( an

and P

J'{?(X)x(y)yﬁf(i,y)dxdy -<30, fﬂ>,8! ,

11
where x is a function in 09*([(“ ) which is equal to one on a neighborhood
of 0 and has a sufficiently small support. Hence F /8 is uniquely detefinined

by f and has a support included in supp f.
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‘To prove the direct part, let fe ‘9*']?(“')' First we consider the case
where supp £ 1is included in a compact convex set K' in J'.

Let E(C, f), where ; = E +i7l and f=, 6 +iT , be the Fourieré
Laplace transform of f (x, y). Then it follows from the Paley-Wiener theorem for
ultradistributions that there exist comstants L and C (resp. for each L>0

there exists a constant C) such that
VECY, Pl & C exp (Mg +M@ p) +H (D]
Hence if we write
. ~ o g
(3.7) £(3, p) % (0

with

fa (%) (Zni)?T§ f'gfl"' P af s

then we have

|?’(g$|s inf Q—ixl’—‘sw)-exp{nm)wx(;)}

ﬂ rl,...,r w>0 r
) n
(3.8) , |
€ Cexp{M(LY) + HK(;)}(,/n"L)'m/Mw .

A

Thus it follows from the converse part of the Paley-Wiener theorem that f ﬂ( 1)
are the Fourier-Laplace transforms of f p € 9 *'K( D"). Clearly ?ﬁ( %) f P e

the Fourier-Laplace transform of f ﬂ(x) ® Dﬂg (y). Estimates (3.8) prove that
; p
zﬁ; exp {MLY) - W2 Lp) - B(O}FLEIP

converges absolutely in the supremum norm. Therefore we have (3.4) by the last
part of the Paley-Wiener theorem (cf. [1], Proposition 3.6). ( 3
M,k
To prove (3.5), let K' be a compact convex set in F. 1f Cf E,ﬁ P K'?

‘then we have by Lemma 3.3 of [I]
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1Y
(4]
o

[$Cg) 18 IR exp §-MC5 /(T kD J g I

Hence we have
<4, £,>1 € C[K'| lexp{-MCY /(Yo k) +1(LY, )} Ly W P "

VBy Proposition 3.4 of [I] there is a k (resp. for each k > 0 there is an L)
such that exp {—M( 'g/(\/n' k)) +M(L ¥ )} is integrable. Comsequently we have. .
the estimates (3.5).

When the suppo'rt of f is arbitrary, we take a partition of unity
1=3 Xy00
in .8 *(") such that the convex hull of each supp xj is included in SL°.
Then each term of
E(x, y) = 22X, ®E(x, 7)

has the expansion (3.4). In view of (3.6) we can sum up the coefficients of
D/3 $(y) with respect to j and obtain expansion (3.4). . Since every compact
set K' in [L' meets only a finite number of supp X T we have also

estimate (3.5).

i: The Whitney extension theorem for ultradifferentiable functions. Let F
be a linear submanifold of an, let (). be an open set in 'R,n and let ' =

QnF as in §3. We define
.1 XL = {e&, v e £ fo (x, 0) =0 for all ).

Clearly this is a closed linear subspace of £ *Q).

(4.2) | H*F = §* ) o L*F

is also a closed linear subspace of o8 *(Jl).

. F .
We are interested in the quotient space £*(.Q.)/ 6*(,0_) . To describe
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1"
it we introduce the space ’h(.&)_') of all arrays (Qﬁ (x); ﬂ e N ) ‘of
functions 9,/5 (x) e 6*(.9.') such that for each compact set K' in Jf)' and

h > 0 there is a constant C (resp. there are constants h and C) satisfying

cnltAl
We have the following expressions of * (.Q'):
M) .
(4.4) 5 ORD) =41___ lim &L o,
() M },h

(4.5) Pia’ ) = lin lim P Y,

Cg L9 Ifcc,p_ h%vo g‘q‘

M,k

where é'n? (K'). is the Banacil space of all infinitely differentiable
functions (Du(qaﬂ) in the sense of Whitney on the regular compact set K’ (see
page 41 of [I]) which satisfies (4.3). We introduce in 5’:1(.&)_') loéaliy
convex topologies defined by (4.4) and (4.5).

Similarly we define locally convex spaces °8:L( Q') by

‘ ) ‘ EERLN I
(4.6) S 0 () =Lm lim § gy s
K'«f h0
i} fu},n
(4.7) ,a&_(&).)=_1_i§ Ulm B g,
K'&fY h-ee
i Z( h | $M3,h

where 09 Q, K' is the closed linear subspace of ¢ P (K') composed

of all (f = (¢ /3) such that every component (f’ 8 is extended by zero to a

M ‘
function in 9 p% ®" We note that

(4.8) supp? = L[{ supp Cfﬁ

is a compact set in ' for any (f € ,3}}-( an
By Proposition 2.4 of [I] the inductive limits relative to h in (4.5)
and (4.7) are regular. The inductive limits relative to K' 4in (4.6) and

(4.7) are strict. Hence all spaces are Hausdorff. A bounded set in 5 ﬁ? (18D

My (M ) M ] h
(resp. o p (")) 1is a bounded set in some 08 n, K’ (resp. 48 Q2 K.)
3

- 27 -



Similarly to Theorem 2.6 of [I] we have the following (cf. [6], Chap. III,

§ 11).

Proposition 4.1. Suppose that Mp satisfies (M.0), '(M.l), (M.2)' and
: ™) ™)
(M.3)'. Then £ Jf (f)') 1is an (FG)-space, 08 .n.p (8') 1is an (LFG)-space

"

and 98 K (fL') 1is a (DFG)-space. In particular, these spaces and their strong

duals are complete reflexive bornologic Grothendieck spaces.

Next we determine the duals of the above spaces.

Proposition 4.2. Suppose that MP satisfies (M.0), (M.1l), (M.2) and (M.3)'.

M) . M
Then the dual of o8 Jf ) (resp. ,9{ J{)} (£Y')) is the space of all arrays

M}

" M),
(x)3 ﬂeth) of ultradistributions fB(x)s D P (') (resp. § P '(Q4")) such

(f

A

that for each compact set K' in L' there are constants h, L and C

(resp. and each h >0 and L > 0 there is a constant C) satisfying

<o B!

k)’

(4.9

The dual of g*n_( S1') 1s the subspace of (,93(5}_'))' composed of all

f = (fg) such that

(4.10) supp f =Usupp f/i

is a compact set in SL°'.

The canonical bilinear functional is given by the absolutely convergent

series
(4.11) (@), (£)>= K¢, £5,0 .
I ARCA 25<?p 2 )
Proof. Let ip: ,&*(,ﬂ_') -—->09"}L(,n_') and p/3: ,83_(:9.')—?.9*([)-')

d:

.be the cancnical injection and projection. Clearly 1/5 are continuous. are

also continuous because we have by (M.2)

(4.12) o+ Bl

K+l
wrp) S A ¢ “a™ipl
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Let f be a continuous linear functional on 8§ 3 (L'). Then there

exist f/i € 9* (') such that

. = * t
<ip(@p)s £3=<Gys £55, q»ﬁe.a " .
Since for each ?e&;(&')

(4.13) ¢ =3 iﬁ°pﬁ(¢p)

>

converges absolutely, we have (4.11).
The continuity of f implies that for each compact set K' in o'

there are constants h and C  (resp. and- h > 0 there is a constant C) such

that
1%, (0|
\Z(Cf,f>‘§Csup e
| (I o*sBs% hdﬂMM"‘ﬂ!
1
. $Csup—,?r‘——||<pll M3,h
f h M'ﬁl ﬂoa P .

for all (?/5) € ,81 _ Hence (4.9) follows.
Conversely suppose that (fﬁ) satisfies (4.9). If 0< k<€ min { h/H, 1/2HL},

then we have for (?B) € 8 jl,K'

0% ¢, (x|
12 <%, £21¢ Z'(supL—-?i@—f"')CLm'/Ml |
B TS B ax h""um p
D% ¢, (%)
< S acem’ sup " 9501 n 4
A oy X k“+~M h
> +p|

11]
s 2" acligll
M,k
oy,
Q'
Hence the right hand side of (4.11)' is a continuous linear functional on ,Q*ﬂ_(ﬂ')-
The statement for the dual of 8"‘1( 5L') is proved in the same way as

[I], Theorem 5.9.
- 24 -



Similarly to [I], Theorem 5.12 we have

iM
Proposition 4.3. Under the assumption of Proposition 4.2 (£ .g- (§') and.

its strong dual are complete reflexive bornologic Grothendieck spaces.

We are now able to prove the Whitney type extension theorem for ultra-
differentiable functions.

Let 1l 8*(5)_)F —> @*(S)_) be the canonical injection and let f :
%) — &% (') be the mapping defined by plg = 9 = ((-Dy)ﬁcf (%, 0)).
Clearly  p: X)) — 5";1(,0_‘) and f : ,8*(!)_)'—>,8;_(JL') are
continuous linear mappings.

Theorem 4.4. Suppose that Mp satisfies (M.0), (M.1l), (M.2) and (M.3).

Then
(4.14) 0— exF - &y b L) —>o
(4.15) 0 — *(F = 9*) —P—>,8’jn_'( A —>o

are topologically exact sequences of locally convex spaces.

Under the dual )c' of 4 the strong duals of j‘z(.ﬂ_') and P }‘L(.ﬂ,')

are topologically isomorphic to the linear subspaces § *'F(S).) and ,9*'F(D.)

of £*'(fL) and 9 *'(L) respectively.
In particular, the set of all functions ¢ € E*(L) (zesp. ,9*(&))

such that supp ¢ n F=¢@ 1is dense in 8*(Q)F (xesp. @*(Q)F)A.
Proof. By the definition 1 1is a topological isomorphism and we have
im 1 = ker f .

Next we prove that P' is a topological isomorphism onto the closed linear

subspace L*' () (resp. H*}(L)) of E£*'(Q) (resp. H*'(L)).

0
Clearly im P' is included in the orthogonal space [E*(JL)F] (resp.’
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B*)F1%  of ker p . It is also clear that
[e*wf 1% ghe) ad BN o).
Hence p' maps (£} (A" (resp. (B% (AN im0 £ (Q) (resp.
D% (AL
If £ = (fﬂ) € (6_*“—( )Y (resp. ,,8?1(5),'))'), then we have for every
¢ € £HA) (resp. HHAN)

s pre =Lple), £

< A
= %((-Dy) ¢ (x, Q?,f ﬁ(x)>
= 246(x: 7, fﬁ(X)G) Dﬂx(y» .
(3 .
This shows that
g
4.16 YO(E)) = .
(4.16) f (( ﬂ)) % fp(x)QD Sy

In particular, P' is injective. Theorem 3.1 toggther with Proposition 4.2
shows that im f' coincides with £ *F'(ﬂ.) (resp. ,8*F'(_Q)). Its proof
shows also that ( f'?-l_ is continuous. In fact, if a compact convex set K'
in JL' is fixed, the topologies on ,9*1'(; induced from € *'() and
D* (1) coincide and make ,@(Mp 'K' a (DFG)-space and OS{MP}'K, an (FG)-
space. In view of the last part of Theorem .1.1 we see from the proof of Theorem
3.1 that (F')_1 whi_ch aSsigngx to £=73 1;9 ® Dﬂé‘ the components (fﬁ) is
continuous. Since the multiplication by a partition of unity is obviously
continuous, (f ')-1 is continuous in all cases.

since £*(), 83(&'), D*(SL) and ’jl(..Q.‘) are reflexive spaces,
the mapping f may be regarded as the bidual (P ')', Hence it follows from
the Hah-n-B’anach theorem that fJ is surjective. Since £ *() etc. have the

II.
Mackey topologies, P is also a homomorphism ([6], Theorem 3.7).

In the course of proof we have shown that [@*(Q_)F]O = a*F'(S);) (resp.
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o*ah° =D H (). since LA (R) (resp. HP(RL)) is the orthogonal
space of the space D of all (i)e g*(ﬂ,) (resp. H*(JL)) with supp $ N F
=@, this proves that D is dense in f’*(&l)F (resp. ;9*(31)F) by the
bipolar theorem.

Let Ap be a sequence of positive numbers such that Ap and Ap/p! are

logarithmically convex and that

M, 1/p
(4.17) lim(—r) >0 .
p>ee P

Then Roumieu [10] proves that the space of ultradifferentiable functions of
class {Mp} is invariant under ultradifferentiéble coordinate transformations
@ of class éAp}a Similarly we can prove that the ultradifferentiable func-‘
tions of class (Mp) are stable under coordinate transformations of class (Ap)'

If

M, 1/p
(4.18) lim (A =po ,

P

joard

we can also prove that the ultradifferentiable functions of class (Mp) are

stable under coordinate transformations af class {Ap} . Since A = satisfies

o) P {P;d}
AL AR

(4.18) for all M_, we see in particular that the spaces
M)

,8 P and B Mp are always invariant under real analytic coordinate trans-
formations.

The isomorphisms on spaces 6*(5)_) and ,9*(,9_) onto E,*(i_l(ﬂ.)) and
B i-l(ﬂ)) are shown to be topological isomorphisms. Hence we have also
iszomorphisms of spaces of ultradistributions.

We will say that a submanifold F of R" with boundary is sufficiently
smooth if there is a sequence Ap satisfying the above conditions and at each
point x ¢ F there is a local coordinate system ?j’ (x) of class pr} or

(Ap) which maps F onto a neighborhood of zero in a linear submanifold or a
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half linear submanifold.

Theorem 4.5. Suppose that Mp satisfies (M.0), (M.1l), (M.2) and (M.3)

and that F is a sufficiently smooth submanifdld with boundary of an open set

in R, If = (D'x ) is an infinitely differentiable function in the
in &% I ?

sense of Whitney defined on F and if for each regular compact set K in F

and h> 0 there is a constant C (resp. there are constants h and C)

such that

(4.19) sup |D“7:(x)| £ chn

‘s"’('=0:1:29"' ’
xeK

13

) {
then there is an ultradifferentiable function \Pé é P (resp. £ P

such that

(4.20) D“cf = 1)"‘\“F .

Proof. First we consider the case where F has no boundary. Then at
each point x ¢ F we can find a sufficiently smooth coordinatg system which
maps a neighborhood of -x in ¥ onto a linear éubmanifold. Applying Theorem
'4'4’ we can find an ultradifferentiable function \rx of class (Mp) (resp.

{MP]‘) defined on a neighborhood Ux of x in | O ‘which extends 50 ] FnUx'
We take a partition of unity
1= % j(x)
on JfL subordinate to the covering {ny‘ v {an F}. Then
VICHI DI e \ij(X)

gives the desired function.

When F has the boundary 3 F, we construct an ultradifferentiable

function +l on JdL such that

p* +1lar - Dx?laF :
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M
Then 6{ ps(.n_) is a (DLFG)-space and hence f“ P

a
Then the function <f = (D ? —D’(\/x ) on F vanishes on 9F together with
. 1 1

all the derivatives. Hence it can be continued by zero beyond the boundary @F.
Then we can apply the first method and obtain an extension t{/ 2 oh L.
\{» = \}11+ \.}'2 gives the desired extension.

For each open set . in an we can find an increasing sequence Kn of
compact sets with real analytic boundary such that JL = Uint Kn. Hence we

Ir.
have by Yoshinaga's criterion of (DLFG)~spaces ([6], Theorem 11.6) the following.

Theorem 4.6. Suppose that Mp satisfies (M.0), (M.1), (M.2) and (M.3).

wh

'(f) is an (LFG)-space.
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