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A Realization of Riemannian Symmetric Spaces
N

By Toshio OSHIMA*

§0. Introduction

The purpose of this paper is tc comstruct an imbedding of
every Riemannian symmetric space G/K of'non~compactltype into
a compact real analytic manifold X. Here G is a semi-simple
Lie group and K a maximal compact subgroup. Our imbedding has
the following properties:

The action of G on X is analytic and the orbital decom-
position of X is of normal crossing type in the sense of Remark
6 in §2. Moreover, there appears the Martin boundary in X and
the system of invafiant differential equations on the symmetric
space has regular singularity along the Martin boundary in the
sense of Definition 5.1 in [9]. _

As for realizations of G/K there are several papers [1],
(21, [51, [7], [12], [13], [15] and [4], [10], [11], [14]. 1f
the rank of the symmetric space is higher than one, the Martin
boundary does not appear in the realizations given by {11, [2],
(51, (7], [12]1, [13], [15] and the orbifal decompositions have
more complicated geometrical structures than ours. The reali-
zationsgiven by [4], [10], [11], [14] are essentially the same
ones called Satake-Furstenberg compactifications. They are only
different in the methods of c¢ostructions. There exists a realiza-
tion among Satake-Furstenberg compactifications where the Martin |

boundary appears. But it is a compactification of G/K‘as a

* This work was partially supported by Sakkokai Foundation.
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manifold with boundaries and the natural analytip structure
around the'boundariesAis not investigated. In [8] we construct
an imbedding X' of G/K to solve S. Helgason's conjecture by
using a result in [9]. But it is not sufficient for further
investigations because there is only arlbcal action of G on‘f'.
This is a motivation to write this paper. The relation between
X' and X is shown‘in Proposition 11, which says that X' is an

open dense submanifold of .



§1. Notation and preliminaries concerning semif-Simple
Lie groups

We will use the standard notation 2 y R and € for the ring
of integers, the field of real numbers and the field of comglex
numbers, respecfively. The set of non-negative infegera is
’ denoted by N and the set of positive real numbers by IR+. Lie
groups will be denoted by Latin capital letters and their Lie
algebras by corresponding small German letters. If C is a ILie
group and t its Lie é.lgebra, the adjoint representation of C
is denoted by Ad (or Adc) and the adjoint representation of ¢ ny
ad (or ad; ). '

We will now list some standa.rd notation.conceming semi-
simple Lie groups used in this paper and subsequent papers. Let

G be a connected semi-simple Lie group with finite center 2, q

the Lie aléebra of G and < , > the Killing form of T Let 0

be a Cartan involution of 9 and q = R+ )3 the Cartan decomposi-

tion of q into the eigenspaces of 8. We also denote by 8 the
Cartan involution of G corresponaing to the Cartan involution 6
of o . Let v be a maximal abelian subspace of f, o* its dual,

ng the complexification of w*. If 1;/L € otg, let H, € L

W

be determined by A (H) <H, ,H> for He oo and put <2 g =

<H,,H,> . Let { be a Cartan subalgebra of o containing o.

Then | = o+ £ where %

7 n k. We denote by 9 the complexi-
fication of o and for angfsubspace 4 of «g we denote by 4,-0
the complex linear subspace]spanned by 4. For any root o of

( OJC’ }c), we fix a root vector Xd corresponding to o .
Introducing compatible orders in the spaée of reai valued linear

forms on o+ Yy-11 and 0l, we denote by P; the set of non-zero
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positive roots o such that o(‘n # 0, by 3z the set of restrict-

ed roots, by ;_',+ the set of restricted positive roots and by F =

{dl,.,.,dl} ‘the set of restricted positive simple roots. Let

? denote half the sum of the positive restrictéd roots with
multiplicity, that ig, 2f = (2% 4e 1,+<>()l(m(:. For any root o in

7., we denote by on the root space in ¢ corresponding to d .

+ _ - - + .
We put n” = Lu,w;:.“‘ﬂ“ and m = §(m”), then m —‘gr\
z d € P+Cxe( and n- = I 4 5" o, where 3~ denotes the set

of negatives of the members in 5_'.*. Let K, A.; N* and N~ denote
the analytic subgroups of G corresponding to %, n, nt ana n, |
respectively. .Let M denote the centralizer of A in K, M* the
normalizer of A in K and W the factor group M*/M, the (little)
‘Weyl group. The Weyl group W acts as a group of linear trans-
formations of m and also on g by (wi)(H) = 1(w'1H) for
He n, AE€ né and w € W. PFor ény element w in W, we fix its

representative m, in M*., We put at = {(He a ; d(H) > 0 for

any d in 2%}, which is called the positive Weyl chamber. Let
+ + ‘ +
Am=expa, A' = U, oy Ad(mw)A and P = MAN. Then A' is

the totality of regular elements in A, P is a minimal parabolic

subgroup of G and there exist the decompositions

(1.1) G =KATK | (Cartan decomposition),
- (1.2) G =KANY (Iwasawa decomposition),
(1.3) G = Uw c W meP (Bruhat decomposition).

Here.zT is the closure of A* in G and in (1.2) each g € G can be
uniquely written

(1.4) g = k(g) expH(g)n(g), k(g) € K, H(g) € oz, n(g) € N"..
Let U(og) denote the universal enveloping algebra of e

which is naturaly identified with D(G), the totality of the left
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G-invariant differential operators on G. The number [ which

‘equals dim m is called the real rank of G and the rank of the

symmetric space G/K. Let D(G/K) denote the algebra of left G-
invai‘iant differential Voperators on G/K and put [D((})K = {’D €
U(ep )5 Ad(k)D = D for any k € K}. Then D(G/K) is a polynomial
ring over € with ! algebraically independent generators and there
exists a natural homomorphism of rl)((})K onto D(G/K).

For an element w in W, we define subalgebras n;, u; and

uwof q by

L.5) ny= ntn adm)nt, ur=m*nadm,)n”

° - _ -1,  + - -1 + '
uw-Ad(mw)u.wz'n A Ad(m ") 7. |

We put N; = exP(vn;)’ U; = exp('u,:;)_ and U; = exp(u,;;), then they

are closed simply connected subgroups of G and

+ gttt + + _ '
(1.6) . N = NiU = U N, NoN Uw__{l}.
The Killing form defines a »Euclidian inner product on m* and
d; € F (i =1,...,1) defines the reflection wy : A s 2 -
2oy <Ay oy /<n(i, d4> on a*. We can naturally identify W

with the reflection group generated by Wdl,... ,wdl. Let w =

Wy W is the minimal expression for w € W as a product of

reflections with respect to the roots in ¥+, then the length/_
L(w) of w is said to be n. Let @ be the subset of ¥ and W®
be the subgroup of W genera.téd by the reflections with respect
to the elements in () . We note here that the number‘ of the

subsets of ¥ equals 2!, We put

| <®%=s5"n L, Rd,,
(1.7) , ie@®
@)

Then every element w in W can be written in one and only one way

{we w; wlc@®>*t c ol

in the form (cf. Proposition 1.1.2.13 in [16])



(1.8) W= W w(®), wg € W®,w(®) er W(@). |
Let w* denote the unique element in W such that Ad(w*) m*t = m~.
Then L(w*) z L(w) for any w ¢ W and L(w*) = L(w) means w = w¥, -

Let w@ and w*(@ ) denote the elements in Wy and W(®), respec-

tively, such that w* = w@ w*(®). Put P, = we Wy Pm_P. Then

| P® constitute the parabolic subgroups containing P when @ runs

through the subsets of ¥ . We define subalgebras ng (@),

'n.i 'n*(®), m. and m@(K) of ﬂ by

e’ ® :
‘mﬁs{ﬂen; d(H) = 0 for every o in @},
‘(@) ={Hea ;s <H,X> =0 for any X in ag},
+ = R - _ +
(1.9) ;rl@ L‘lé o<t 17 Mo 8(mg),
. - 2 - - + .
7 (®) > 1e<®>+(y v m @) = 86( n7(@)),
Mg = ™+ nt@) + nT(@®) + (@),
me(E) = mg N k.

Let Ag , A(®), N@ , N¥ (@), Mg, o and MgK)o denote the connected
- analytic subgroups of G corresponding, respectively, to Mg

+ ¥ +
an .

@), Ng» T ®), Mg and 'm®(K) Then A Ng 1is & closed
solvable subgroups of G and we have the direct decomposition
(1.10) : ' A = Ag A(B)
and the semi-direct decomposition

(1.12) N* = N§ NH@).
We put M®' = Nlg , and My(K) = mm@(x)o',,. then the group MgAg is

@

the centraligzer of g in G, M®(K) =Kn M® and we have the

decompositions (cf. §1.2.4 in [16]) |

(1.12) M® = M®(K) A(®) M (®) | (Iwasawa decomposition),

(1.13) Py = M® A® N® (Langlands decomposition),
+

(1.14) pg = Mo(K) AN,
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1.15) G = | N*m P (disjoint union),
( Uw € \1‘1((1;'0)':L woe

(1.16) G

0

Uw ¢ W@ U‘:",me® (disjoint union).

The decompositions (1.12), (1.13) and (1.14) give analytic
diffeomorphisms of the product manifolds M®(K)x‘A(®)xN*(®),
Mﬂ)xA@xNé, M@)(K)»(MN+ onto M®, P@ and P®, respectively, and if
w is in w®,Athe map (u,p) um_ p defines an analytic diffeo-~
morphism of the product menifold U:;XP® onto the submanifold
.+ )
N me® of G. Here we note

-1y g+ - _ + I
(1.17) Ad(m ") Uy c Ng = Ad(mw*(@)) U (@)% for w e W(@).
Hence G is the union of the open submanifold Né?® ‘and submani-

folds of lower dimensions.



§2. A realization of symmetric spaces in compact
manifolds |

In thls section we will construct a compact manlfold X such
that G acts analytlcally on G and that the open G-orbits are
isomorphic to symmetric spaces. To investigate all the G-

orbits appeared in 'i, we prepare the following lemma.

+
- Lemma 1. Put P®(K) = M®(K) A® Ng- Then P®(K) is a closed
subgroup of G and there exist the decompositions '

(2.1) G = Uwe W(@)'l m, wN (@) A(®) P®(K) (disjoint union),

(2.2) : G = Uwéw WN A(@)P (K).

If we w(@)‘l, the map (uw,n,a,p) —> u_nap defines an analytic
diffeomorphism of the product manifold U;xN-(®)xA(®)xP®(K) onto
the submanifold U N (®) A(®) p®(K‘) in G. And G is a union of
the open dense submanifold N~ A(®) P®(K) and submanifolds of
lower dimensions, _ | '

Proof. To show P®.(K) is a group we need only verify ma =

am, aNéa":l

C Ng and Ad(m)Ng C Ng for m € Mg(K) and a € Ag.  But

they clearly follow from (1.9) and the definition of M®(K).

The groups M®(K),, Ag and Né are closed in K, A and N*, respec-

tively. Therefore P®(K) is c¢losed in G because of the Iwasawa

decomposition (1.2). Next we note that Mg = NT(®) A(@) M®(K) (cf.

(1.12)). Then (1 5),‘ (1.13) and (1.12) imply that in (1.16)
Upm, By = m, (n Aot N m INT(@) A@) M (K)A®N®

N (@) A(@) 2y (K)

for m € W(@)"l and that v | _ '
N6P® = NéN'(@) A(®) Mp(K) Ag N% ’

-8 -
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This proves the rest part of Lemma 1. qg.e.d.

Remark 2. Suppose ® = ¥. Then g =W, W(@) = {11,
Mg = 6, Mg(R) = 6NK = K, Ag ={1}, A(®) = &, Nt = 1, N*(@) =
N*, By = G, Pg(K) = K and ( 2.1) is reduced to G = N AK
(Iwasawa decomposition). Un the other hand, suppose ®7 =¢.
Then Wg = {1}, W(@) = W, Mg = M, Mg(K) = M, Ag = A, A(@) = {1},
%
G= Upew mwN-P"

= N, N¥(@) = {1}, P = Bg(K) = MAN' = P and (2.2) equals

'If C is a Lie group and ‘¢ is its Lie algebra, we identify
r with the totality of left invariant vector fields on C. PFix

a basis {Yl,... ,Ym} of L. Then any real analytic vector field
Y on.C can be uniquely expressed as
Y= Zy2, ()Y

with real analytic functions ci(p) on C. This is clear because
for any point p in C, {(Yl)p,... ,(Ym)p} is a basis of ti"’xe
tangent space Tpc of C at p. Let {H;,... ’Hﬁ.} be the dual basis
of oo with respect to i. = {dyseensey}, that is, oy (Hy) = 815.
For 2 ¢ 7, we fix a basis {Xai; 1<ism(a)] of %1, where m()
= dim og* and put X., = -0(X, ).

* 4 P Sy A4

Lemma - Let 'iﬁ) be the homogeneous space G/P®(K). Pix
en element g in G and identify N xA(®) with the open dense
submanifold of f® by the map (n,a) r— gnaP®(K) (cf. Lemma 1 ).
For an element Y in ¢, let Ylia be the vector field on ')‘(’@
corresponding to the l-parameter group which is defihed by the
action exp(tY) on ﬁ@ (teR). Then at any point p= (n,a) inﬂ .



N xA(®), the vector field is expressed as

¥y - < = m(%)
(le®)p - Ll € £+ Ll=l c_xi(gin)(x_li)p
’ - ~m(1) -21loga
(2.3) YL@t 2521 ,\ (g,n) (X"“i)P

+ Z,die® c;(g,n)(H;)

by the identification TnN'eTaA((@) T (N"xA(®)) =~ gnaP (K)x®

"Here the real analytic functions c (g.n) and c. (g,n) are

24

determined by the equation
' -1 - 57 m(l) o

Ad"(gn)Y = - 3 (c (g,n)X., + ¢ (g,n

) L€ i'.."’ Ag’ 11 "li g, )

- 4
X_zi) I I

(2.4)
, ¢i(&m)H; + M(g,n), M(g,n)e m.

.

Proof. Assume |t| is sufficiently small. Then the direct
‘sum decompositions ¢ = W+ + ntrm= n+ (@) + m®(K) +
ng + né' and the relation [m, 7 ] ¢ m~ show that we can put
exp(tY) gn = gn exp N(t) exp A; () exp N} (%) exp M, (t),
(2.5) exle(t)a = aexpN, (%) exp A, (t) exp P, (t),
exp Nl(t) exp Al(t) a exp Ne(t) a ~ = exp N3(t) epr (t),
where Ni(t) € m~ (1=1,2,3), Nj(t) e ¥, A (¥) e, A (t) €

~ +
o (@), ¥,(t) em and P, (%) € 'm®(K) + o + -n.@. Hence we have

(2.6) exp(ty) gnaP@(K) = gn exp N;(t) aexp(Al(t) +A2(t)) P®(K).
Put (3N7(£)/2t)(0) = N (1=1,2,3), (3N}(+)/3%)(0) = N} ena
(bA'J.(t)/at)(O) = Aj (j=1,2). Then (2.5) shows that

a7 (gn)y
(2.7)  aAd”e)n}

NI+A1+NI mod M,

1]

N, +4, mod M (K) + 01. + n®,
Nl +Ad(a)N2 = N3.
If L € <®>+, we have

-1 -lloga
Ad " (a)X, = X
11 C Ay
i Ty
- 10~

) + e~4loga y



s em2210ga ,4-1(,)x mod me(K).

-s

i
On the other hand, if 2 € £*- <@®>*, we have

Ad"'].(a)x1 = e-llogax € 'VL+
i

Ai ®°
Then A2 = 0 and
- -1 -_ = ~m(1)
Ny +Ad (a)N2 -2_,1 J— Li:l c__li(g,n)](_li
- ~m(21) -211loga
+ cas(gyn)e X
L e<@t Bi=1 & EonJs -2’
Ay +A, = L‘di€® ci(g,n)H'i mod 01@. .
Thus we obtain (2.3 ) by (2.6) and (2.7). g.e.d.

Let X be the product manifold GxNxR eand let %= (g,n,t)
be a point in X (ge G, neN™, ¢ = (tl"“’tl)e iR!). Then (\'}vacts
on X by the correspondence (g'v,(g,n,t)) —> (g'g,n,t) for g'e G.
Put sgn £ = (agn t,,...,s8n t;) € {-1,0,1}2, By ={d e %3 ty #
0} and a(®) = exp(- Z‘ti,éo Hy log |til) € A(®£)’ where sgn s
= 8/|s| for se R~ {0} and sgn 0 = 0. We will define an equiva-

lencerelation for points in %. .

Definition 4. Two points £=(g,n,t) and &' =(g',n',t')

in f(A are equivalent, which will be denoted by'x~x', if and only
if the following two conditions holad.

(2.8) : sgn % = sgn R'.

(2.9) ' gna(2)pg (K) = g'n'a(ﬁ')P®£(K) in §®2.

Then we denote by X the quotient space of 3\( with the quotient
topology defined by the equivalence relétion.

Since the action of G on X is compatible with the equiva-

- 11 -
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lence relafion,'G also acts on X. Let 7 be the natural projec-—

tion of X onto X. Put ﬁg = R({g}xN’iml) for ge G. Then the
map (n,t) P-*_((g,n,t)) defines the bijection (cf. Lemma 1 )
| o 1. .
(2.10) yg s N xR 2 Ug.
Theorem 5. - The quotient space X has the following
properties.

i) X is a simply connected, compact, real analytic manifold

without boundary.

~v

i) X=VU

~

weWUmw8 UgeG‘Ug‘

~ Here ﬁg is an open submanifold of X with the topology such that
the map (2.10) is a real analytic diffeomorphism. Moreover

i-—ﬁgbis a union of a finite number of submanifolds of X whose
codimensions in X are not lower than 2.
iii) The action of G on ¥ is real analytic and for a point X in.
ﬁ, the G-orbit of (k) is isomorphic to the homogeneous space
G/P®ﬁ(K) and for points R and %' in %, the G-orbits of = (%) and
n(%') are coincide if .and only if sgn £ = sgn X'. Hence the
orbital decomposition of X with respect to the action of G is
of the form'

X U@)ci
where #® is the number of the elements of ® and 2‘“E (G/P®(K))

2%® (6/Pg(K)) (disjoint union),

is the disjoint union of 2*® copies of G/P®(K).

i) Identify the open G-orbit n({Re X; sgn £ = (1,...,1)}) with
the Riemannian symmetric space G/K and the orbit of the lowest
dimensionlxm({ie i; sgn % % 0}) with its Martin boundary G/P.

Let m(i) be theftofality of G-invariant differential operators<n1i

whose coefficients are real analytic functions. Then the
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natural restriction
| D(X) 2> D(G/K)
is bijective. For any homomorphism X of D(i) to € as élgebras,
the system of differential equations on X
TN, ¢+ (D= x(D))u =0 for DeD(X)
has regular singularity along the set of walls ii=%({(g,n,t)e

/)\{; ti=0}) with the edge G/P in the sense of Definition 5.1 in
(9l

Remark 6. Since .
(2.11) dim X - din G/Bg(K) = 1 - +@,
the open G-orbits in X are isomorphic to G/K and the number of
them equals 2! and that of all the G-orbits equals 3'. The
decomposition of X into G-orbits is of "normal crossing type"
in the following sense:

For every point in 3(', there exists a local‘ coordinate
system (xl,. ce9Xps¥yaee .',yl ) on a neighbourhood of the point
such that if sgn yy = sen y;j for j=1,...,L, two points (%9400,
xk,yl,...,yl) and (xi,...,xfc,yi,...,yi) belong to the same G-
orbit.

For example, put G = SL(2,R), N = {{ch 1] { X€ [R}, A=
{ (/0% J'F,} s te [R+} and z = x + J-1t. Then we can easily show

that X is isomorphic to the l-dimensional complex projective
space E’%=cu{oo} with the action of G

1 a ) c+dz 1
g > (|, o)) = SEF e
and that
X-Ul\J Umw* gug’ [Pc.
. zr=1/2

-13 -
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For the first step to prove Theorem 5, we prepare

Lemma 7. The map

is an analytic diffeomorphism between the open subsets of N-xiRg'.

Proof. Let Y be an eiement of 'g . By the ‘identification

-1
b
D - - g ~s
G/K & N xA e N XIRi > N MR‘l <= Ug’
W
v w —dl loga - -o(lloga
gnak «<— (n,a)~ (n,e IXERRL ) = (n,t)

the vector field Y]N'xIR'E corresponding to the l-parameter group
defined by the action exp(sY) on G/K for se R is expressed as

-nl _ - ~ m(1) 22 o
YINTxR, = L est Ly (cli(g,n)t + c_li(g,n)) x"li
(2.13) 2
2 2A(H,)  2A(H))
Here we denote by t°" the function tl tﬂ and the

functions C4a (g,n) and ci(g,n) are those which are determined
i

by (2.4 ) (see Lemma 3 ). Since 2A(H;) are non-negative

integers for 2 e ¥, the vector field YIN‘xIRi is analytically
extended to a vector field YIn“xr! on N'xmn‘.
For every point % = (g,d,%) in %X, pﬁt By = {(ti,...,tn)e r ;

sgn t, = sgn %i for 1<i <)} and define the identification
-1
g

~ - R - - 9' ~ 1
G/P®g & N 'A(®£)< o2 N‘:Bﬁ C N xR™ o= Ug‘
v v . —% loga . =9 loga
gnaP@ﬁ «t (n,a) = (n,sgn 3,0 yeers88N T, @ )

 Since (2.13) shows (IIN‘an)q € Té(N-xBx) for qu-xBﬁ, we can

1

restrict the vector field Y|N"xR' on N"xBy. Then, using the

above identification and comparing ( 2.3) and (2.13), we see
that its restriction on N'x'l?o2 is the same one defined by (2.3).

-14 -
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Hence by Definition 4 we have the following claim:

Suppose £ = (g,A,t) in X and Y in o satisfying that gha(®)e
exp(sY)gN “A@, )P® (K) for 0<s8=<1. Then there exists an open
subset V of N xIRR containing (d,%) such that ‘f(exp Y)g 50
defines an analytic diffeomorphism of V to an open subset of
v xrL. ,

For any %= (g,i,t), there exist Yl,...,Yk € + oz(@i) such
that fa(X) = ‘eprk exp Y, -+ expY,. Put y(s) = exp{(s-[s])
Ad(g)Y[S]+l} exp(Ad(g)Y[S])’ exp(Ad(g)Yl) for 0<s =<k, where
[s] is the largest integer satisfying [s] € s. Then y(s)gN_A(@)i)

@ (K) = gN A@, )P@ (K) and y(k)g gna(x) Applying the above
-1
claim to y(s) in place of exp(sY), we see that "ogﬁa(i)a‘f ,
. -1 . -1 -1
which equals (‘j)y(k)gOYY(k"l)g) °(‘fy(2)gofy(l)g)o(?y(l)go?g)1
defines an analytic diffeomorphism of a suitable neighbourhood
of (A,t) to a neighbourhood of (1,sgn %). l

~

Let @ be an arbitraly point in ﬁgn ﬁg.. Then there exist

%=(g,A,t) and X' = (g',ﬁ',%') satisfying w(®) = =(%') = §.

We denote by P®A(K)0 the connected component of P@ (K) containing
1. Then P (K) = P® (K) M. Since gna(x)P® (k) = g'A'a(R’ )P® (K)
we have (gna(ﬁ)) g'ﬁ'a(ﬁ ) = fff with A ¢ M and ﬁeP®i(K)o.

s +
Since we can choose Y{,...,Y}, in -m®(K) + g +71® so that § =
exp Yl'{, exp Yl'c' -1°°° exp Yi, we see by the same argument as in the

gna(x) Tg that ?gna(X)p Seha (2
diffeomorphism between suitable neighbourhoods of (1l,sgn X).

-1
gna(x) pii 5ogna.(z‘i)"((n $)) = (@ “ndi,t),

case of §° ) defines an analytic

Moreover, since ¥

_l o'
Parira(z) Tena(f)p

is an analytic diffeomorphism of N'leﬂ.

Thus we have proved that ‘f;lo zha(R)? ‘f;::'o sog'ﬁ'a(fc')’

- 15 -
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-1 o -1 ' :
| ‘fgﬁa(f:)f) gﬁa(i) and ?g'ﬁ'a(i')‘, (fgna(ﬁ)f: define analytic
diffeomorphisms of suitable open neighbourhoods of (1l,sgn %) to
open subsets of NxR!. Combining these maps and their inverse,
we see that ‘f;}o“fg defines an analytic diffeomorphism of an
open set containing (fi,f) to an open set containing (d‘',%'),
. -1 v -1 - ol

which implies ‘fg (Ugn Ug,) and cfg,(Ug’d Ug,) are open in N xR and
that the map (2.12) is an analytic local diffeomorphism. But

the mep is bijective, so we have the claim of Lemma 7.  g.e.d.

Proof of Theorem 5. . First we remark that the proof of

Lemma 7 shows that

(2.14)  Hgt wH(T) 2 (g',n,t) > Fghe P, ((n1,80)) € W3R

g

- defines a real analytic map of the open subset TL_l(’I\fg) of X to
NxR!. Therefore for any open subset V of N-HR!, 'n."lo ff’g(V) =
“f;l(V) is open in X. On the other hand, for any open subset v
of f(, ?;lo'l‘t(v) is clearly open in N"lel. Hence the map (2.10)
is a homeomorphism.

| For points x and x' in f, there exists g in G such that
ﬁg contains x and x' because Lemma 1 shows that {ge G ;?J'ga X
and {geG; ﬁga x'} are open dense in G. Since 5°g is homeomor-
~phic and N>R! ie Hausdorff, X is also Hausdorff.
Thus we see that X is a connected real analytic manifold.
The claims ﬂ) and i) are clear from what we have proved. The

.claim concerningf-ﬁg immediately follows from Iwasawa decom-
position (1.2) and Lemma 1.

Whitney's transversality theorem says that for any submani-
fold ¥ of ¥ satisfying codimfé?22 and for any differentiable

map T st (= the unit circle) —> X, there exists a differenti-

1

able map ¥': S —X-¥ C,’J\f such that 7 is homotopic to 7'.

- 16 -
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Therefore the fundamental group of X equals that of ’I\fg’ Since

the fundamental group of U is trivial, X is simply connected.

Consider the compact gubset B=Kx{l’sx[-—1,l]ﬁ of X. Then
n(B) is also compact because it is the image of a compact set
under the continious map. Since {exp(- Zj&l H:j log t‘i); 0 < tj <1
for 1< j<{} equals K;, Cartan deéomposition (1.1) shows that
7(B) contains all the open G-orbits of X. Therefore the com-.
pact set "W(B) is open dense in X, which implies w(B) = ¥ and
that X is compact.

To prove the claim in iv), we prepare the following:

Lemma 8. Let Y be an element of the Lie algebra ot+ 7 .
Then by the identification

NTA Le N'xrRQ s nxr?,

v -0 w

na =n exp(- Lj 1H logt ) «— (n,t)

the left invariant vector field YlN‘xtRi on the Lie group N A

corresponding to Y is expressed as

-0 o ~m(d) . A, R
YIN"‘R+ = L1€£+Li-l °. 1t x—-li j =1 %j Ja/atj’
where .
= 5 ~m(2) -1

Therefore Y|N «x Bf_ can be analytically extended to a vector field
on NxRL,
" Proof. For a=exp(- J'alHJ logt ), we have
' -Aloga 2
Ad(a)X =e”A X = t°X
-2 —24 2y’ o
which proves the claim (cf. the proof of Lemma 7). g.e.d,

Now we will prove iv). For a Lie subalgebra 4{r of cg, we
denote by U(4) the universal enveloping algebra of /{rc and
naturally identify U({,) with a subalgebra of U(g). Let

-17 -
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4t D(6)X — D(G/K) be the natural surjective map with the kernel
ID(G)Kn U(oa)fz. Then for DE‘D(G)K, there exists & unique element
D'e U( ot+ 1) such that D' = D mod U(g)fz because of the Iwasawa’
décomposition g = R+06L+ 7. Since D'-De U(?)E ’ Lem 8
proves that }L(AD)A can be analytically extended to a differential

operator on U_ for every g€ G. Therefore we have the analytic

extension D o: /L(D) on X because X is simply connected. Let
’tg be the transformation on X corresponding to the action of
g€ G. Since 'C;f)'-‘ﬁ vanishes on the open subset G/K of )A{', wé
have ’cgﬁ:'ﬁ on X, which shows 'ﬁem(’f). | Hence the map D(X) —
D(G/K) is surjective and the injectivity of the map ‘is clear
because G/K is open in X.

Now we remember the concept of regular singularity in [ 9]
and the structure of D(G/K) (cf. Chapter X in [ 6]). Let
(X peeesX yByyeee ’tl) be a local coordinate system of X such
that Sfj is defined by t5=0 for every j=1,...,l. Put JE] =
650/t 5, = (afyyeeesify) 804 1D, = (40/0%) ,53/0%Xp,00 1 93/0%,).
Let Pj be differential operators of order Ty (§=1yeee, ). 0n X
whose coefficients are real analytic functions. Then the system
of differential equﬁt.ions |

M+ Pju=0 for j=1,...,)

is said to have regular singularity alo_ng the set of walls {’J\fl,
coe ’il} if the following conditions hold: .
[RS-0] There are differential opérators Q},k of order< T 4T ~Ty

such that

[PJ’PkJ=Zi£1Q§,kPi for j,k=1,...,0

[RS-1] PFor any j, PJ ‘is of the form

PJ. = Pj(t,x,#,tnx).

(RS-2] Put aj(x,s) ='Pj(0,x,s,0) and let aj(x,t)

- 18 -
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be its homogeneous part of degree r:j with respect to s.
Then the solution of the system of equations
-]
al(x,s) = e =aﬂ(x,s) =0
"is only the origin s=0c¢ ¢t for any X. |
For De [D(G)K, let D; be a unique element of U(ez) defined by

the equation

(2.15) | D-D} € n7U(g) +U(g%
and put v ' ‘ '
(2.16) D, = e¥eD! o e7*

$loga for acA.

where e¥ is the function on A defined by e’ (a) =e
Then denofing by U(D‘L)w the subalgebra {D € U(or) ;Ad(mw)Dal) for
we W3 of U(), the map /'
T : 0(6)* — Un)
: w v
D +— D,
defines a surjective homomorphism of u)(G)K onto U(al«)w with thé
kernel D(G)Kn U(q)ﬁ. Therefore it induces the isomorphism
(2.17) T+ 0(6/K) 20(6)X/D(e)Enu(E 2 UV,
Here the order of T(D) equals that of D for De D(G/K) and ‘U(OL)W
is known to be a polynomial ring over € with | algebraically
independent homogeneous elements pl(Hl,. o ’Hl) RTEN 2 (ﬁl,. .o ’HJ.)‘
Now we will verify the conditions [RS-0], [RS-1] and [RS-2]
for the system (mx,_ which is expressed as » |
q’nx : (DJ—’,‘((Dj))u= 0 for j=1,...’,2,‘
where D;j = w-l(pj). Since [D(AG/K) is a commutative ring, [RS-0]
is clear. Moreover Lemma 8 shows [RS-1] and that in [RS-2]
(2.18) aj(x,sl,... '8y )= pj(?(Hl) ~Bysecey ?.(Hg)" 8 ) - ’X(DJ).
- Therefore the .system of equations aj(x,s) Epj(v-s)=0 for j=1,...,
§ implies s = 0.

Thus we complete the proof of Theorem 5.
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The following proposition will be used in a subsequent
paper. |

Proposition 9. We denote by ’t® the involutive automor-

phism of ¥ induced by.the map of X 3 (g,n,t)+—(g,n,s), where
s;=t; if d,;¢@® and sj=-tj' if dje ®. Then Tg end the action
of G are commutative mutually and T@D =D for any Deu)(’}\c').
Proof. The commutativity is clear seeing Definition 4.
For 'ﬁGU(g), we denote by D' the unique element in U(z+# )
satisfying D-D' e U(?)ﬁ. This correspondence induces the
identification
~D(X) % D(6/K) = U(7)/U(9)k S U(a+ 7).
Consider in the open submanifold ﬁl of X. The totality of left
N A-invariant differential operators on ﬁl is naturally identi-
fied with U(x+7) (cf. Lemma 8).  Since 't®('f51) =T, g
induces an involutive automorphism t& of U(m+7 ), which

satisfies

T*(H )=H,, _
e J 2“0(36@ X(HJ)X

(2.19) .
{ ’té(x_li) =(-1)

-11‘
Using thé identifications, D in lD('J\(’) can be expressed as
D= (D-D}) +Dy,
where D-D} € n U(a+n ) and es’oDa;'oe"S> € U(ln)w. Since T@Da'b =
Dy, and 73DE D(X), we have t*D =D ¢ 7 U(a+n7) 0 D(G/K).

Therefore the isomorphism (2.17) proves 'L-@D-D=0. q.e.d.

Put X, = Gx@! and identify X with the closed submanifold

Gxil}xR! of X. Then ffo has the analytic action of G and the

equivalence relation ~ induced by those on z. We remark here

that the analytic map ‘MXO H ﬁo —> ’i, which will be denoted‘by



1y ¥

g induces & homeomorphism of the gquotient space ?(O/rv with the
quotient topology onto X because the map T 3 X 2(g,n,t) > (gn,t)

€ X satisfies r(®) =% for Re¢ X (cf. Bourbaki [ 3]). Let &=(g,

0

t) be a point of Iio. Then by the natural identifications Tiioﬁ'
| ~ - . . ' . .

g +T,R and T?L(J"c)Ug' 7+ TR, the differential (d‘ito)ﬁ is

expressed as ' ‘

(amy)4(3/0t ). = ¥/oty, d=1,...,1,

(2.20) m(2) 22
(dmple(¥) = 20, 2 o1 (ea(8)% +i:_li(g),)X_1
- {
- L) eyl@ty9/6ty, Yeg,
where :
(2.21)  Aa(g™H)Y = Zlei,"‘ Zn;(jl) (eay (&)X +'c_li(g)X_1i)

- 1 .
* 24 cj(g)H‘1 mod m,
(cf. (2.13)). Therefore Ty is smooth, t‘hat is, (dﬁo)i is

surjective for any % eﬁo.‘ Moreover X has the following univer-

sal property.

' A
Proposition 10, iven an analytic map f of Xo to a real

analytic manifold ¥ such that f£(R) = £(R° ) if R~ R' in X 9 then

0
there is a unique enalytic map Tor ¥ to Y such that the follow—

ing diagram is commutative:

~N

X———vY

nol/

Proof. We have only to prove the analyticity rBf f. Let sg

be the analytic map of ﬁg to X, defined by (n,t)—>(g,n,t).

Since f|U, = foﬂoosg‘Ug g‘U for g€G, £ is also analytic.

q.e.d.
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In [ 8] another realization of G/K and G/P is given. The

following proposition shows the relation between the realiza-

tion in [ 8] and ¥,

Proposition 11. : The natural map

1 Mo v

Kx(-1, s mr! =2 ¥

induces an analytic diffeomorphism
Vs (gx(-1,1) — ¥
onto an open dense submanifold of X which contains G/P.
gggc_:_{; Let £=(k,t) be & point of Kx(~1, l) Then the
following
To)g(23/2%4) = Aty d= lyeesydy
(an )i(m(k)(xjL -X_ )) (+22-1)x 2, 2 e z*, i=1,..,00Q),

shows thatk)’che map A4m,: Ti(Kx(-l 1)Q)->T (i)x is surjective
because Ad X, -X_li) €k and t "-—1;40. Moreover, since
i

(k,t) ~ (km,t) for any m€ M, which is clear because kma(ﬁ)P@i(K)
= ka(i)P@i(K) , We obtain the smooth analytic map 213 (K/M)x(-1, 1)1
— ¥, Comparing the dimentions of the manifolds, we see that
1 is analytic local diffeomorphism.

Here we note that Cartan decoxfnposition (1.1) induces the
analytic diffeomorphism '.

K/M:A*Y — G/K
[\ Y]
(kM,a) —> kaK

onto an open dense submanifold of G/K. Therefore putting fi‘ =
K/Mx{(-1,1) _{0}331, we see that the restriction 1,\ 7 is injective
and 1(Z) is open dense in ¥. since .Z is.open dense in (K/M)
x(-l,l)g and ‘Ll’i is injec.tive and 1 is an analytic local diffeo-

morphism, we can con\:_lude that 2 is injective. Thus we can
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'identifyr(K/M)x(el,l)Q with an open dense submanifold of %
Moreover, since K acts transitively on G/P, we have K/MX{O}IQQ

G/P by Definition 4 and Theorem 5. o g.e.d.
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