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Chapter I Genelarities

In this chapter, we study the basic features of general
%[t,s}—l\/{odules and b-functions associated with them,
which are indispensable to later chapters. The author

develop the general theory of such b-functions and Modules

in [32].

%" . ,% [t,s] - Modules and b-functions.

Let €[t,s] be the associative algebra over ¢ with

generators s and t and defining relation

ts - st (1)

L}
ct

set Qrt,s1 = H ® clt,s].
; €

A %—— Module WM is called a %[s] - Module (restectively

% [t,s] - Module), 1if N D s (respectively WxDswur, M >AM)

holds. In this chapter, all Modules are £[t,s] - Modules
unless otherwise stated. Since tYs = (s + u)tY in view of
(1), Ker t¥, Coker t” and Im t° are J [t,s]-Modules

o
along with"rg'iven Qlt,s]-Module,
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Definition 1.1 Let Z be a D [sl-Module. If s ¢ £, (%)

has the non-zero minimal pglsrnomial’ we denote it by dz:(s),

and say " dz_.’(S) exists." "b-functions" for a '% [t,s]-Module T
defi b = ‘
are defined by T(,,D(S) dR/tVT(,_(S); Psl, 2o .

Usually, bT(_'l is abbfibiated as bﬂ . As is easily seen, bn,u
‘exist if and only if bl‘L exists.

It should be remarked that if liis a holonomic ¥ [t,s]-
Module d_(s) exists, since &OQQCZ)l(xeX) is finite
dimensional and &M(B(’i) is coherent [13].

Standard example of %[t,s] - Module is constructed as
follows. . Let f be a holomorphic function on UCX, lethe a
coherent %—Module and let u be its section over U. We

denote the annihilator of u by <! , that is; «§ ={ae® |qu=0}.

Define the ideal 3(5) C ¥[s] Dby the condition that

P(s,x,D) € 3(3) if and only if

m - ~ .
£™p(s,x,D +—§,—gr’ad £y € C[s]g_) ; for some m

We denote by T{ the Module 5[53/3'(5) and by f°u the
class (1 mod 3(3) ). YU = %ESstu is a $[t,s]-Module

with actions of t and s ‘33vem b/ ,

t: P(s) +—> P(s+l)f , s: P(s) /> P(s)s,



The map <t __is injective in TI . In fact, if P(s+1)f € 3(5)

then
me(s+1,x,D+?.- grad f)f = ZQijk

for some m and Qj ev) g The lefﬁfhand side equals to
£™1p (s+1,x,D+ 2L grad 1),

‘and the right-hand side can be rewrit‘ten in the form
ZRj(sﬂ)j

for some Rj € t;o .  Therefore,

+
£ 1P(s,x,D+%grad £) = :Zstj

5

which implies P(s) € 3(3).

The % - Module % £5u 1is coherent, and if u is a'

‘holonomic section, % f°u 1is subholonomic (SQA[32]>

Definition 1.2

With a non-zero polynomial p(s), we

associate a number w(p)< N, in the following manner

(w(p) is called the width of p.) ; !

13



then

i) If p(s)e ¢¥  w(p) = o0,

P

3 .
11) If p(s) = T(s++1)™% <€ ¢, &g #0 then w(p) = k+l,
\ .
\ i
iii1) If p(s) has the form.
3
p(s) = prj(s), where each pj(s) is of the form
=

in 11), py(s) = W (s+x%+31)E , and oL % A

¢
: J J
{ .
Theorem 1.3 If dzz(s) exists, then tw(Qt);f'= 0. Furthermore

if we assume that t is injective or surjective, then ;Z = 0.

Proof) we have

0=d,(s)Z D da_(s)t" %

z - z Z >
and by virtue of (1),
d . ’ d,) o

0 = t"(32a ()2 = ay(stua)e" (%) 7.
It follows from the definition of w(dz) that

g.c.d.(dzgs),q£s+w(dz)) = 1.

Hence the aésertion follows. When t is injecti ve or

surjective, it 1s obvious that ZZ= 0. Q.E.D.

A coherent & -Module Z is called holonomic (resp.

sub-holonomic) if EA//Q:(:(’, f&)= 0 for i<n (resp. i<n-1l).



This condition is equivalent to codim s\é(Z)z n  (resp.

codim SVS(;Z:)z n-1). 2 is called purely subholonemic

if &\;t; Z,%)= 0 for 1 # n-1. It is known that for any
coherent % -Module |, &otz (2, %) (resp. M:‘Q’,&)) is holonomic
(resp. sub-holonomic) and 8&},(r,2»)=o,1>n. Let W be an
irreducible component of S\é(z). Then the multiplicity of Z

v
at a generic point x of an irreducible component of 35(Z)

0
can be defined (which is denoted by m_ (#£)), and has the
-0

additivity, that is, if |

0 &« Z, €X, «2,«0,

is an exact sequence of coherent 8 -Modules, nix (Zz) =
o

m. (22,) +m, (2£,).
xo \ xo 3
Corollary 1.4 Let T{ be a sub-holonomic & [t,s]-Module
such that t: (=]l is injective. Then, TU is
purely sub-holonomic. '
Proof) Consider the exact seguence
; t
0 « TU/tTL &« TL < T(<0.
Set ;C= é&:(n,g). ‘Then L 1s holonomic and the long

. _
exact sequence of &k gives us the surjection L —>Z~> 0 .

Therefore Z.= 0 by virtue of Theorem 1.3. Q.E.D.

Proposition 1.5 Upon. the conditions in Corollary 1.4, ‘6-71. exists.
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. v _
Proof) Consider an irreducible component W of SS(J{).
Since t 1is injective, the multiplicity of TU/tT at
v
a generic point of W vanishes. Therefore codim SS(T/eN)=n
which implies that T/t is holonomic. Thus ’GTL exists

(and so doesfy ,» by the argument after Definition 1.1.). Q.E.D.

The conditions in Corrollary 1.4 are satified for

T{= HisIt3u, 1f one of the following two conditions
holds.

i) f is arbitrary holomorphic function, u = 1.

ii) f is quasi-homogeneous, 25u is holonomic.

In the present paper, we restrict ouréelves to case 1).
We investigate case 1i) in [32], where the detailed structure
of by ’v(s) and the relation between Wa( and %,f‘“u (¢e€)
are also discussed. The existence of le(s) for (=
g§[s}fsu with generzl f and %ixbeing holonomic can
be derived from that of case ii), following the

tecnique in of [14].(See [32] %_ ).

WF v Jis BiEry Estaz’, Wote @37 D%,
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A. General structure of 08 [t,s]-Modules

In %l we study the structure of bTC,U(S) and define
reduced b-functions. The relation between reduced b-function

of T(l and that of a sub-Module T{ is studied in §2.

2
The key theorem is the following.

Theorem 1.1 (Theorem (.3 in [Y])

Let Z be a & [t,s]-Module such that dz(s) exist.
w(dy) .
Then ¢ ( z l = 0.

Here, w(d) 1s the width of d_ . We recall its meaning

and add some more definitioéns.

Definition 1.2 For a non-zero polynomial p(s), we associate

a number w(p), called the width of p, and polynomials

A v
p(s) and p(s) in the following manner.

1) p(s)e ¢¥; w(p) = 0, P(s) = p(s) = 1
k .
f\'T(s+o(+i)£‘, €€, §6= 0; w(p) = k+1,

11)  p(s) = U
Bls) = (stafe, BYs) = (s+atr) k.
® /
1i1) p(s) = E'pj_(s), where each pJ.(s_) is of the form

in 11), pJ(S)' = T (s+x+1)E" , and oL ¢ &/
mod Z (J#§'); w(p)= max w(p;), B(s) ='\Ti>‘5(s),

¥s) =T By (s).
&
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Lg‘) . Structure of »%'Tt,'v(S) .

We first note that j’n 8) is of the significant
. )
structure. Given a rational function p(s), we use the notation

V~i
[p(s)], = Ifap(s+i) v>o, [p(s)]y = 1.

Theorem 1.2 i) There are a rational function ?Q(s),

pclynomials F/n(s) and CTL(S)’ unique up to a constant

multiple, and UOelNO’ such that for uzUO,
brep(s) = [oy (s)T,cp (s+W) (2)
= (B (] | | (3)
b (s)eyp (s+l) = CT\(S)E'TI (s). (h)

i1)  If t M- is injective, 'b‘d(s) is also a
pclynomial, and for psv, there are polynomials CT‘( D(S‘)
. ]

and cf
L

(s) such that
V2

b‘ﬁ.,v(s) = [EH(S)]VCQ,U(S+U)
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breyfs) = PP () Tpem s+

et () B ()]

, ;
cn)v(s)] CR,D’(S)’ CTI,D(S) C'I'L,D’<S) for YPsVy.

N _— A4 -,
b () | T (e), (e | B ) (5)

Moreover, it is possible to take VO = w(bﬂ) - 1, and

the following relations hold.

cqu @ | B L E (=0, (6)
b (| ()3 10 B (=0T s (7)
wlep) < Vg | (8)
Corollary 1.4  As easily seen, by (s) and o'y (8) cén be

so determit ~d4 that

Bum = bn,vﬂ(s)/bm\,(sﬂ),

b'T((S) = bn'w_l(s—v)/bﬂ,v(s—v) , V2V,
o (s) is called the reduced b-function of .- The
T

"special case of the part of this theorem 1s substantially

due to M.Sato [2].
o ¥ B AT 3

10
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Here after R, R, R', R) and C denote the set of the
roots of equations bn(s) = 0, En(s) = 0, F'n (s) = 0

bn b (s) = 0 and ¢ (s) = 0 respectively, when t is injective.
’d

L1
Proposition 1.5 RDR, R', C; RN(R+1) DC
Rtk = " R k-1 k-t _
K tko= 1K=J£<R+i) = Lkg)}(R+1)UC, R, = __O(R-i) = 'p;(R'-i)UC.

Proof 1is straightforward.

We end this section by adding the following remarks when

t < W(TL) is not necessarily injective.

N WA
Definition 1.6 We define the Sj[t,s]—Module 14 by
. v X - ) AMane
U /U Ker t¥ . (Hence t is injective in TU .)
vz
C(s) T

We can prove gn(s) = "c‘,(s+1)bﬁ(s)’ where c(s) = cn(s)/cz(s)

is a polynomial, and ‘t—a'n(s) =T)'~ﬁ~(s). The proof is omitted.

Propos'itibn 1.9 Let O~ X s T — T‘LI—* 0
’ /
be an exact sequence of ,%[t,s]—Modules, let t € MS( TU)

be injective, and let dit(S) exist. Then kn’;\_ﬁ,

For, since T(—»n/ and t ‘T’L' is injective, ;’Ukev(tis ‘->;2‘:

On the other hand, tw(di)z= 0 /““by Theorem 1.!. Theref‘ore;

T = Kee £ L Uker tV ) and WS W

11 |



§:)_, b-functions for a sub-Module

In terms of bTQ(S)’ we can estimate the b-function of

a submodule of T{ .

Theorem 1. 8 Let T, be ﬁ[t,s]—Module and let ]\(2 be its
submodule. Further assume 1 te Ewd (Y1) is injective,
2% a /70, (s) exists and 3° bp, (s) or bT(;_(S) exists.
Then, deg _STL\ = deg B"TL (= d) and there are polynomials
c(s) and:c'(s), unique up to a constant multiple, such that

|

c(g) , c'(s) | d ,~ (8), (15)
/e,
CTC, (s)e'(s) = cnz (s)c(s), | (16)

_ c(s) = c'(s)

Ercl(s) = mme(S), E'ml(s) = mg'nz

Corollary 1.9 v

bn2(s)| oy (83 41> bnl(s)[ [0y (5=Vo)] Yy +1(18)
by, (3) | [b I ISRIVRSE bn1<s)| (o gp, (5=V0) Ty 41 (19)
o gy, () | [bnl‘s”\{,w" bml(S) | [bmz(s'vo)] v, +K20)

|deg Cr. - deg Clt2\ < vod, (21)

1

where VO_= W(dﬂl/l"c2)’ y' = min ( W(bd‘ﬁl)’ W(blt2))‘

12
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Procf of Theorem 1. 7) It follows from Thm.l.[ and
condition 2 that TT'D‘twylz . Consider the following

diagram for V2y,,

_tVoh
> EEN
T 21, U o AN
O po-vy 1y 7 :
Ito Vo ‘nl
This immediately reads
1) by oy, () |0y v (o) ‘ (22)
b1 oy, (5¥V0) [PNIED | | (23)
11) by, (s) Ibl’v(s)d(sﬂi), (24)
bl,v(S) |d(s)b2,v(s). ' (25)

Here, we have used the notations,bi’b(s) = bn;’v(s),'ci(s) = cq,(s),
d(s) = d’n/nés). (22) and (23) tell us that the existence of

bl and that of b2
V= V,+1, we have (\§).

are equivalent. 1In particular, setting

i) gives also,

(V- Yy)deg b, + deg c, € deg b, + deg cl,'

2 1

(V- po)deg by + deg c;, g deg b, + deg c,,

13
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e

and letting V tend to infinity, we have deg Dj = deg b,.

This implies (21).

- -

‘ d
Because of (22) and (23), we can assume, bi(s) =T (s+n

(1)
g )

. =1
and n§l) S nsi])_ for ngi)e Z. Setting V ®0 1in formula
(22), we nave s+n{2|[5 ()], nence n{®>n{!). sinilariy

by (23), n§1)+V02 hizyl’herefore ry \)(S) = [S+ﬂ§l)]v/[3+ni2)]v_vo

is a polynomial. Then the relation

& gan(?) ovr & aen (D)
[T (st My, Co(s+v-Vo) | rl’o-\s)[}l'];(s+nj )1 e, (s4V),

for Y >0 yields néZ); nél), and similarly, ngl) +\)o)n§2).

Proceeding in this way,we have

ng.l) +V) 2 n§2) > ngl) j=1,..,d. O (26)

Sat c(s) = ‘ﬁ'[s+n§l)]n(2)_n (1), Then clearly c(s) is a poly-
| = N
nomial and the first of (17) holds. Uniqueness of c(s) is
obvious. We apply (17) to (25) and have, after cancellation,

c(s) e () | als)e,(stwrc(s),

taking V> 0 , c(s) ‘d(s).
State ments about c¢'(s) can be proved analogously, and
equation (17) applied to (2) and (3) gives (16). From

equation (17), we have

c(s:)[-‘t—az(s)]v = [—b;l(sh)]vc(s#‘;v)- (27)

(with v =V, + 1)

The definition of c(s), together with (26).and (27ﬂgives

14
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(19). Analogously, (18), (26) and (27) (withV=p+ ") prove (20)

Q.E.D.
2%)
Remark 1. b ﬂz(s) [bn‘(s)]L>o +1 (
holds even when t 1s not injective.
2. (27), (16) and (2) give
- ' (29)
c(S)b2)V(S) bl,u(S)C (s+V). q

3. Let h and k be the minimum and the maximum of the indices

which satisfy n§1)< n§2) respectively. Then by (15)
n£2) - nél)g‘ VO' It should be noted that this inequality
improves (26).

Traorem | .0 Let ¥' and X be complex analytic

and let T: X' =X be projective holomorphic map.
For an f(x) € (9X, we set f' = f.r. We assume

v lem o)) 2 x - £710). Then, Yr = D,[s1t° s a

e S

"
s .o=-Module of e = j re . ry = 029X'[s]f's, and

[bf',7t’l(x)(s)]vb+l‘ [bf','I_l(X)(S)]pb+w(bf,)' (3

Eere V. = w(d ﬂf/n,)'

So TEBIF EBZ TS



B. Structure of 25[5](fsu)

In the following sections, we investigate the structure
of special ,%)[t,s]—Module TC = Ey[sj(fsu). It is to be
proved that if u 1s a holonomic section, 19fsu is
subholonomic and .Erf*u is holonomic. The characterization
of reduced b-function \s also given.

In the sequel, ‘Tt always denote a fé [t,s]-Module
Ej[s](fsu) which is defined in S \ [Y]. Recall that the
operation ¢t: P(s)(fsu) —> P(s+1)f(fsu) is injective in T[

We denote by &i the annihilator of u. Basic concept
and notations are same with S-K-K and [ 3 ]. Especlally, a

coherent éa -Module is called a System.

%3. Preliminary results on Systems

We define some general concepts and collect propositions

which we shall need.

Definition .11 For a system ., we define

hol(Z) = i dim X - codim §g(2ﬁ) , Z#0,

- 0o ,1=0-

0 for i< dim X - hol(Z ).

(]

Note that S,o’rgi(i, %)

16
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Definition .12 1. Let ©:Y—>X be a holomorphic

map and let > be a system on X. We define the induced
Mcdule of - ¥ on Y by
~

Ko _ L xR 2
&{’\’ ~ Y>X E\’X

2. Let :Z‘il and 22 be svstems on X, and X, s respectively.
The product Module of 21 and Z 5 on Xlx X2 is defined by:
~ .
~5 ~ '50 = )< > » F
=1 @ ) .-\gj’x X X :) . ( Z 1 &"“2)'
1 2 A -2 C

3. Lef 7 and 7 be systems on X. The product Module

~ 1 &2

<

of them cn X 1s defined to be

where A : X—=> Xx X 1is a diagonal embedding.

For the Definition i.j2, 1. and 2. and the following

, A
Theorem, we refer the reader & S-K-K and M.Kashiwara [ 3 1,[ 1J.

Theorem |-13 1. Assume that for VC P*¥Y, the map

induced from the canonical projection is proper.
=1 -1
{ T A T(ss(L)) — V.

Then, '\%“"*‘9 is a system on Y and the following isomorphism hold§

et

17
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-3

R Nowg (2,5)0d1n XT & R Mewg (9%, %) (din v1.
By X &y Y

R B 7 R
2. 2,9 Z, 1is always a system and (*_1,252) =R
is an exact functor.

v v
3. If ss(?ﬁl) NSS(Z,) C X, 2 18 Z, 1is a system.
Statement 3 1is derived from 1 and 2 easily.

Proposition 1.\4 Upon the conditions in Theorem 1.13 s

1. hol (.~r*2:) =~ hol ()
2. hol (Z,§ Z,) = hol (2Z)) + hol (Z,),
3. hol (;{1 = ;5'2).$ hol (:Zl) + hol (;ﬁz).

Since this is an easy Corrollary of Theorem L3,

we omit the proof.

We note that Prof.;Bernstein considered above theorems
under a little different situation in of [4]. The

notation B 1is barrowed from it.

k. Holonomicity and subholonomicity of some Modules

In this section, we study the structure of é}[s]fsu and

L p% ; .
,b f u when E'u is holonomic.

18;



ot
We define the M:dules TI* and ‘bf‘u for xe¢ € as follows.

Definition {.\S -

Y, = W /G0N
We sue the notation

s(i) = { Péf;lP=Q(l) for some Q(s)¢ 3(3)}
Then [{, is isomorphic to 5)’/3(%). Let v ¢ [{. Then,
v mod (s-4)f{ is denoted by (v), . Especially, (fsu)“

is the class 1 mod a(x).
We define
.| X
= {Pc > ] me(x,D+-def‘)é~) for some m.
PR

Consider the Module :f//3% and denote 1 mod &* by

f. Thus S fu = 5/ %}*.

We also define

3(0’ - 3(5)/\9.

The following inclusions hold.

g(mC 8(04) - ﬁ“

19



Proposition [.lb Ideals 3}0), and 3%(are

coherent.

Proof. The proof relies on the following theoremof M.Kashi-

wara.
"Let EQ be an ideal of,£§ with filtration:

- (h)
\Q = \é‘om’ ‘% » J mCJ o4pe In order to be coherent

for \:2 over 55 , it is necessary and sufficient that

each t;an is coherent over (9’."

From this, the coherency of 2(0) and (%d follows.

Q.E.D.

Thus we have three systems with canonical surjectilons.
] .8
Deu - My — o, 'Y\[d—egfu——eo.

We study (sub-)holonomicity of these Modules in the

~

following.

20
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Theorem | 17 & & v

holonomic.

Prcof.

in [ 5 ]says that .

stratification

Lerrma -3

v ' v ,
Preof. Tt is sufficient to show  SS(Hf5) N ss(Hu) x

outside

stratification,

o
-
'3
D

is

Since

X =

%)fsm 9§u

£710) by 3.

)

(XO’ EO)

lim E(t)

is

rom the definition of W.

-1
Trvaltiidan ¥ f‘ 1 ',
‘ncludad in T(0), amd so s X$ q.

if necessary,

and there is

is

We first prove

{)xj.

is subholonomic‘outside' f

of Theorem |- \%.

such that each Xj is

or disjoint to it. Assume that

whizh has the following progerties:

an aralytic path x(t) -in

= EO' Since the tangeht of the
(kl(t),..,kn(t)), we have

d
= I f(x{t))

Therefore, the patﬁ‘ X

e.d.

Owing to the canonical surjection and injection

At Ly <o 8(fs®u)-—>gfsu —

u 1s subholonomic outside f

0,

-1 We use the

(0).

21

-1

subholonomic. when ngliS

5511 is holonomic, M.Kashiwara's theorem

v
SS(EBH);C;\JTi X for some Whitney

We refine the

such that x(0) = Xg > (x(t), g(t)) € W for

x(t)

(0).

*
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argument in of [31. Take the subholonomic part of
;%'fsu and denote it by Qf . Lemma‘L\S shows that the

support of the Module 8 fsu/z = 8 FL; is contained in
f—l(o). Therefore, considering the coherent (7 -Module

G%EEI , we have ap natural number k such that -

£Ka Sy ¢ ;ﬁ . Since 2§ £X. 5, and .Z}fsu are isomorphic,
the subholonomicity of Z%fsu is derived from that of

B ekortu . | Q.E.D.

We note thatthe holonomicity of ﬁafsu[éafk-fsu is
an easy consequence of the above theorem and injectivity of
t, considering multiplicity of each Module in the

following exact sequence along irreducible components of

ss(Beu).

0o — ArSu _tl; LSy » FetwBekeu — o,

22



When f 1is quasi-homogeneous, Tz = EB/ (0 ana
hence subholonomic. Thus le(S) exists, by Proposition |.§

nly

bed

In the general cases, we use the

fdo

tecnique of adding a parameter. Define f'(t,x) =

tf(x). Then YU = Z}Cxx/ §?) and hence there exists

b'{s) and Q(t,x,Dt,DX) such that
Q(t,x,Dt,Dx)f'S+lu= b'(s)f'Su.

Let QO(tDt’X’Dx)Dt = Z; aj(x,Dx)(tDt)j-D be the homogeneous

t
&
part of degree -1 in t of Q. Then, defining P by

P(S,X,D) = QO(S,X:D)’

we have

S

s+1 b'(s) 5.

P(s,x,D)f us =9

Thus b-function always exists. We denote by R the set of.

roots of the equation b(s)=0.

4
Theorem .20 2} f u is holonomic, when .81115 holonomic.

Proof) As in the proof of Theorem \.{7, one can see that
o
15 fk(f u) is holonomic for sufficiently large k. Then

the following diagram proves the holonomicity of 2}f“u.

00— % e Br%u — Jrsu @ KrSu > o

l | |
0 =8 s Jfu—> Jfw K- o
} ol v
0 0 0
23
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Theorem |. 2} Y‘(&'_\_',;’h‘-"*u if and only if o(¢ R + IN.

Proof. Let P ¢ 84, ord P = m. Then, there is Q(s) ¢ g}[s] such that
pr™ = (s+m-4)Q(s,x,D) mod 3(s). (4%)

To prove (40) , we prepare

Lemma \-22 For any R eﬁ;,ord R = m, the following equality

T
holds for some S(s?x,D)G %[s] with ord S<m.
{R(x,m% ar) - R(x,D+f§' df)} £ = (s-\’)S(s,x,D+% ar).

Proof. The proof is carried out by induction on m. When
m=0, the result is trivial. Let m>1l. For the simplicity
of the notation, we explain the case of one variable.. General
case 1is similar.

By the hypothesis of induction,

M1y el o (s-¥)Q_,(s,x,DHsE ).

Jo+sEH™ - (o4 ED)
Then,‘
JoesEH™ - ongfHm} £
1 m-1

{(D+s-§-')m~-l - (D+x§')m‘l} (D+s*?)fm + (s-%)(D+ Y—g-' yM=lerp

L1}

(S‘X)Qm_2(S,X,D+s_§').(f(D.,.S%f)+mfv) + (S'X)Qé_l(S,X,D‘FS%')ﬁI

24



’Q' l(s,x,D) = (fD+(¥—s+l)f’)(fD+(¥—s+2)f')..(fD+(X—s+m—l)f').
This yields the case m. ; g.e.d.

We apply this lemma for R = P, §= 4-m. Then, we have

P(x, D42 ar)ff P(x,D+5 df) = (s+m-w)Q(s,x,D+F df),
whizh proves (4=).
Lemma  |.23 tmr{/\(s+m—1)Tz _ (s+m—x)tm7T

w
0]

czus2 of the condition on (, (s+m-+) 1is not a factor of

: ¥
b, _(s). Hence we have an isomorphism

s+m- ¢

Te™ T ~— T /™77 . (4])

Now take an element v = (s+m-a)w & tT" T /" (s+m-x)TT .
1f we consider w mod t"YU in the left-hand side of (4l),
it turns out to be 0 in the right-hand side. Hence wé-tmTI s

that is v ¢ (s+m=-t" T . : ; q.e.d.

Owing to this lemma and (4y), we obtain

Pf™ = (s+m-4)Q'(s,x,D)f™ mod &(5)’

Note that R+IN=(R+W)UC. 75
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and hence

P = (s-4)Q'(s-m,x,D) mod d(s),

which proves the "if part".

("only if" part) Suppose K €R + iN. Then, 7p>0, such

that bn’v(o\—v) = 0.

that there exists P(¢g) & >§ [s], such that

It follows trom the definition of b

v s)

.Pp(s+p)fv = bn,u(s) me 4 3(S)A

Therfore PV(~0 S }d. If rliﬁﬁgf‘(were valid, we should have
PL(x) = 0(s) + (s-0R(s), 70(s) ¢ J(s).
Then, if we set Rv(s) = (Pv(s) - PD(J))/(S-\) + R(s),

R, (s+») £V

EOVICUZE N e A j\s)'

This contradicts the minimality Of'bﬂ v(s). Q.E.D.
: ’

There 1s a canonoical map

‘t . n A4y —, ’Tlf)( ) ,(s:‘{’)q'vk-)‘(r_“ .-w) T:‘ (:fju)\ .

As a map between %[s]-Modules, this is Q(s)1 +—> Q(s+1)f-1.

Since ( 3(s+1) * Fls1s-0)E C F) + Fls1(s-w),

A L L
this map is well-defined. There is also a map % f +a—9 x:flh)

26
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of
defined by fxﬁ};_3 f.fu. These maps are compatible with

the surjection @5%).

Theorem |. 2+ 1) 71x+1 N T4 if and only if o~ & R .

ii) When X &R, &£l %fi

le

Proof) We first prove "if part" of i) and ii). If *ARf,
we can define the map f :ITx'*7TAH: by 1 héb(%)—lP(d)i,

As a map between %[s]—Modules, P is R(s)le> b(s()—lR(s-l)P(%)i.
Then this is a well-defined homomorphism, since if

R(s) € 3(5) + B Is1(s=%), R(s-1)PErU= 0 mod (s=x-1)%[s] £
Similarly,

0(s) £P() £7h= 0(s)£{P(s-1) + (P()-P(s-1))}£%u

0

Q(s)b(s-1)f5u

"

b(4)Q(s) £  mod (s-+-1)§[s]fS.

Therefore, f?62(5)1)= f(Q(S+1)f'i) = b(d)-lQ(s)fP(%)i=:CU§)l‘
Analogously, R4 f(R(s)i) = R(s)i. Thus, f 1is the inverse
of T . The proof of ii) can be given in the same manner.

(only if"part) Tld+\::'rtx implies
<a<s+1> + % [s1(s-x))F = jm + $0s7(s-%).
Jence, if R(s)fsu= (s—x)Q(s)f%, then there is . Q'(s) such

shat R(s)f%u= (s=)Q'(s)f-tu. Therefore, if ¥ & R were

valid, the relation

27
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P(s)Efu= (s-02ESu= (s-90' () £:4%

S ‘
shows Q'(s)f-fu = :fi)fsq. This contradicts the minimality
of b(s). Q.E.D.
Corollary |}. 2§ i) When =« & R + N, the following

commutative diagram exists for any keiNo.
When % £ R + Z, it holds for k=< g. My > Nt
e o
G LX O ( -u=D
L3uS =10%
. s . > qi (L p*-k
ii) %ipfz1_k lig STow

is holonomic for Y.¢C.

a
Proof) i) iéTairect consequence of Theorems | .24 and |.2\.

ii) follows from 3,

28
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§S. Reduced b-functions

We can realize a reduced b-function as a b-function of
some é}[t,s]—Modulesl . The characterization of these Modules

are also glven. We are indebted to M.Sato[ 2 ] for basic

ideas in this section.

Definition |.%%

M, =Uben, €,

Do

- hﬂs)é(J}iﬂfwﬂjam,[Bw)hyw)étmT(# f

bze

Proposition | .27

"y

. / - o # \ S .
i) <4 and F{ are _%—[t,sj—ﬂodules. Ir YK is

coherent, Tl# is also coherent.

Proof) 1) r(# and ’r(# are easily seen to be

¢ '
be [t,s]-Mocules. To see the coherency of TZ # , We use the
operators P\,(s) which ‘a7i:dy
4
‘— l‘ s
Py, (s+V)f E-bﬂ’p(s) etk ‘8K3).

-

Since 97[5] is a noetherian ring, there is m¢[N such that

P.(s) + Aj(s)P__ (s) o +A ()P, (s) = 0.
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for some Au(s)e i"[s]. Since

Py (s)P (s*n) = c(s)Py, (s+n) mod 3(s+n‘;,

multiplying Pn(s+n) from the right, cancelling c(s) and

rewriting s to s-n, we have
Pm+n(s) + Al(s'n)Pan-l(S) + ...+ Am(s-n)P n(s) = 0 mod }(s).

Therefore, R# = :‘L:J; [B(S-D)]D £V - ﬁ—m“?\( .

ii) Obviously, [B(SH»N# - tU)"(# . Set
b (s) = by, wis). If b (s) # [b(s)], for some VL , there
is k'< k = deg b(s), such that deg 3u(s) < YV k' fory»0.
But the following diagram shows Vk € (+m-1)k'. This is

a contradiction. Thus we proved bn = -b
: #

0]
)
Yo AR, T/ —> ¢

v
n# ‘/tbw“w\(# '

It follows from the definition of Y\(# that T(# S T\( ,

and_b(s)h# C tT(# . Set ;(s) = bn#((s)and assume # b(s). Then
oru(s)€N, » Blshi(s) € e * yields [b(s)] B(s-1)v(s-1) € tmn# )

This relation is equivalent to _Ta(s) [b(s+|)]m\f(sj = tm+1n# .

Since ﬂ# is finitely generated over 5’;—[5], we see that

b (s) is a strict divisor of [b(s)] for sufficiently large
n#’m m

m. That is a contradiction. Hence bT(,#(S) = b(s). Q.E.D.

30



40

It is not for certaln whether TI# is coherent or not
when T{ 1s coherent. We have, however, the following

characterization.

Theorem | . 2% Let Yt/ be a Ej[t,s]—Module satisfying,

‘};.hl\j',\[ )]\C/:) Tt for some k. Then ch/(s) = b(s)

if and only if
n* > o> n,

Proof) (only if"part) Since b'Q/(S) = b(s),

we have relations

' > bes-1t Hprsb(s-Db(s-n TN (b(s-h)1,t ")

o> [B(s—h)]ht_hﬁ')klﬁo[g(s'h)lh‘fhﬂ. = 1 #

h2o

Then the following diagram
™M
wWomn, >tnw s>ttt @)

shows that d Tt’/t"‘ﬂ#(s) : divi des both d'(s)[b(s)]_
and [b(s)]md'(s+m) (where we set d'(s) = d ’“971# ),e
and hence one of ‘[E(s)]m for m> 0. But [B(s)]m igTﬁest
possible for the pair T y D tnlYI# . Theﬁ¥ore,

a TL’/t”‘R#(S) = [B(s‘)]m. Thus the definition of YU

proves Fl# D) Yl’ .
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(if"part) Consider the following diagram for m» 0.
/ Mo~ /
oM DT Dt >,

Then the definition of Tt . implies b/ (8) 1 Coy (s¥m) [b(s)],.
On the other hand, equation (|f) of Theorem [.§ shows
En/(s) = (c'(s)/c'(s+1))b(s). From these formulae,

we have ¢' = CT(./ = 1, and then bTL/(S) = b(s). Q.E.D.

Corollary |.29 Assume that w(b) = 1 in addition to the

I
condition on T in Theorem |.2§. Then,

bqy = b, if and only if n=n#

Proof) The "if" part is trivial. Consider the diagram
“b) when b = b. d nl/tmn#(s) = [b(s)]m is shown in
the proof of Theorem |.2¥ . Therefore, d'(s) = d 71’/11 {(s)
‘ - #
and d'(s+m) are divisors of [b(s)]m for large m. Since
w(g) = 1, this is actually possible only when d'(s) = 1,

that is, TU= T(# ) Q.E.D.
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