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Razumikhin type theorems for

differential equations with infinite delay

Junji KATO

Tohoku Unilversity

Our concern is on the stability problem for functional

differential equations with infinite delay
(1) x(t) = £(t,x,).

For functional differential equations with infinite
delay, there are several ways to specify the phase space.

A typical one is the Hale's spaceZﬁAsee [1]) consisting of

R

functions defined on (-«,0], which is provided a norm
and the conditions;
(i) if x(t) 1is defined on (-x»,a), a > 0, continuous
on [0,a) and X 553, then for t e [0,a), Xy eZﬁ

and it is continuocus in t, where

xt(s) = x(t + s8) for s e (-»,0];

This work was done when the author was a visiting
professor to Michigan State University, and partly reported
in "An International Symposium on Dynamical Systems" at

University of Florida, March, 1976.
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(i1) there exist two positive constants ¢, d such that

ohg e sup lo(s)] + dlolg

-B<s<0
for any B8 > 0, where

Iq)!B = inf { IIPI&; ] Eﬁ,w(s) = ¢(s) On»(-”,—s]}

together with other conditions.

In our case, the space ES is assumed to satisfy the

properties

[0 < Mlolg, lolg < mB)|o_gl g1t ¢ o e,

in addition to the conditions (i) and (ii), though ¢ and d
in (ii) may continuously depend on 8. In particular, if =x(t)
1s defined on (-«,a) and continuous on [T1,a),T < a, and if

X, € b/s, fhen we have

(2) ]xtlzsé:c(t—r) Tiggt]x(s)l + d(t—T)M(t*T)IXTlag

It is assumed for the equations (1) to have the trivial

Ssolution, where f(t,¢) in (1) is defined and continuous on
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R x R.

The following definition will be made:

Definition. The trivial solution of (1) is said to be
(I) stable if for any € > 0 and any T > 0 there exists a

§ > 0 such that
le|53< § implies |x(t)| < & for all t > T;

(I1) asymptotically stable 1f in addition to the stability
for any T > 0 there exists a 60 > 0 and for any € > 0

there is a T such that
|xT|13< §, and t > 1 + T imply [x(t)] < €3

where x(t) denotes any solution of (1). Here, §, GO, T may
depend on T but not on each solution. If these numbers are

independent of 1, then the stabilities are called uniform.

The following theorem is a simple version of the Liapunov-

Krasovskii's theorem (see [2] and also [3]).

Theorem A. Suppose that there exists a continuous

function V(t,¢) defined on R xY4 such that V(t,0) = 0,
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(3) a(]¢(0)[) < V(t,¢)

for a continuous, increasing, positive-definite function a(r)
and that for a continuous function c(t,r) > 0, which is non-

decreasing in r,
(4) V(%) £ - o8,V (%))
along any solution x(t) of (1), where

= TIm  ${V(t+h,x
h++0

V(t,x - V(t,x)}.

t) t+h)

Then the trivial solution of (1) is asymptotically stable

if for any r > 0

) t+T
(5) ! c(s,r)ds » ©» as T + =;

t
and uniformly asymptotically stable if the divergence in (5)

is uniformly in t and if we have
(6) V(t,¢) < b(]¢],)
| < o(folyg

for a continuous function b(r) with b(0) = 0.
Since the solutions may belong to the more restrictive
class as the time elapses, the following theorem is expected

to be more effective. Such a theorem has been given by



Barneal[l4] for the uniform stability of an autonomous system

with finite delay (also refer [5]).

Thorem B. In Theorem A, it is sufficient for V(t,¢)
to satisfy (4) under the case (¥) x(s) 4is a solution of (1)
at least on the interval [p(t,V(t,xt)), t], where the
continuous function p(t,r) < t 1is increasing in t > 0 and
in r > 0 and satisfies p(t,r) » © as t > o, p(t,r) » =«

as r »+ 0. For the uniform stability we assume
(7) p(t,r) = t - q(r).

Here, also we assume that the trivial solution of (1) is

unique for the stability and that f(t,¢) in (1) satisfies

(8) [£(t,9)]| < Ll¢l(8

for the uniform stability.
a(e)

Proof. Let € > 0 be given. Suppose that V(T,XT) <=

but V(t,xt) > a(e) for a t > t. Then there exists

t, = inf {(t > t; V(t,xt) > a(e)}.

a(e)
5 }.

Set t, = max {t <t V(t’xt) <

1°

Since we have



lthB:ﬁ C(t-T)nggt,X(S), + d(t—T)M(t—T)ffoZg

for t > 1t by (2) and since the unigqueness of the trivial
solution implies

(9) sup [x(s)| < K(t,T, |x |z)

T<s<t B

with K(t,t,r) ~ 0 as r > 0, we shall have

t e [t,,t;] and IXTtB< § dimply T < p(t,V(t,x.)).

a(e)

For this purpose, 1t is encugh to choose § so that ¢ < 5

and

a(e)

o] < A(p;l(r,a(e)),T,é) implies V(t,¢) < =5

b 2

l< a(e)

if 1t < pg T,=3 ), where A(t,t,r) = c(t=-1)K(t,T,r) +

d(t-t)M(t-1)r. Thus, by the assumptions V(t,xt) is non-
increasing on [t2,tl], which contradicts V(tl,xt ) = a(e).
1
If £ in (1) satisfies (8), we may choose K in (9)

so that

K(t,Tt,r) = K(t—r)r

for a continuous function K(t). Hence, in this case A 1is
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a function of t - t and r, and under the condition p(t,r)

=t - gq(r) &8 can be chosen independent of T so0 that

r < A(t + q(aée))’ T, 8§) implies b(r) < aée)

In the second step, we should note that

(10) ﬁ(t,xt) < - c(t,V(t,x,.)) as long as
CV(,x) > p;1<t’T)

and that p;l(t,T) tends to 0 as t + .

Let 60 and T1 be such that GO(T) = §(1,1) and

o+T

It 1
g

c(s,e)ds > n(o,t) - €,
_ -1
where 0 = p, (1,e) and
n(o,t) > sup {(V(o,¢); |¢[a3é:b(o-q) + c(o-1)M(o-1)8 (1)},

Suppose that for a tl >T + 1, T = Tl + 0 - 1, we have

V(tl,x ) > €. Clearly,

ty

-1
V(tl’xtl) > p, (tl,T).

Let t, = max {sup {t < I V(t,xt) = p;l(t,T)},T}. Then, by



(10), V(t,xt) is non-increasing on [tz, tl]. Hence,.we have

-1
P (E5,T) 2 V(t,,x, ) 2 V(by,x. ) 2 €,
2 1
which implies
T 2 p(t,,e).
Therefore, o def p;l(T,S) > t,, that is,

ﬁ(t,x

t) < - c(t,V(t,xt)) and V(t,xt) > e for t e [c,tl],

and hence we have

t
B
£ ;V(tl,xtl) < Vio,x ) = c(s,V(s,x ))ds
£y
< V(U,XG) - OI c(s,e)ds,
which implies
31
oI c(s,e)ds < n(o,1) - €.

This contradicts t. > T + T(1,e).

1
When p(t,r) =t - q(r), o =1 + q(e). Therefore, if



then we can choose
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the divergence in (5) is uniformly in ¢,

independent of T.

T
Remark 1. It is sufficient that in the Theorem B for
each 1T there exists a Liapunov function V(t,¢;t) which is
is continuous on [T1,%),

{(tﬁxt); € 2T, x(t)
(4) with a, c

defined on
X1 e%} and satisfies the conditions (3),

independent of 1, and corresponding to (6) we assume

b( sup |x_],)
T<s<t s ﬁ ’

A

V(t,xt;T)

because to estimate solutions we can choose different Liapunov
function for each sclution.
Now, we try to construct a Razumikhin type theorem for
(61,

the equations (1). Such theorems have been given in [3],
Here, we shall state the following theorem by extending

[71.

the ideas in [5], [8].

Theorem C. In Theorem B, suppose that p(t,r) i1is of
form (7).
x(s) in (¥) within a solution

the
Then, we can restrict

of (1) satisfying

V(s,xs) < F(V(t,xt)) for s € [p(t,V(t,Xt)),t],

(11)



where F(r) 1s a continuous function such that F(r) > r
and F(r)/r 1s non-decreasing for r > O.

To prove Theorem C, by Remark 1 it is sufficient to
construct a Liapunov function for each 1, which satisfies
the conditions in Theorem Bon [1,»). The existence of

such a‘Lé?unov function follows from the following lemma.

Lemma. Let F Dbe as in Theorem C, and let p be as
in Theorem B with q(t;r) =t - p(t,r) which is non-
“decreasing in ¢t.

If a Liapunov function V(t,¢) satisfies (3), (4)

under the condition (11) and

V(t,$) < b(t,|¢L8),‘

then for each 1 there exists a Liapunov function W(t,xt;r)

which satisfies

(12) ( t < Wit,x 51) < b¥(t,T,

a(|x(t)]) < X 3T) £ b¥(t,T Tzslgtlxsl)g)
and
(13) W(t,xy5T) < = o*(E,W(t,x 51)),

10



if x{(s) is a solution of (1) on [p(t,W(t,xt;T)),t], where

b¥(t,r,r) = sup b(s,r),
T<s<t

c¥(t,r) = min {c(t,r), ra(t,r)},

a, b, ¢, p, @ for V, and

L log —I—.
o

a(t,r)
AT e, F GG FT )

Proof. Define

W(t,x ;T) = sup V(S’Xs)ea(s,v(s,xs))(s - t),

T<s<t

and for a fixed x{(s) set

W(t) = W(t,x 51), V(t) = V(t,x.),

P(s,t) = V(S)e“(S,V(S))(S - t).

Since a(t,r) > 0 (r > 0), obviously we have (12).

To prove (13), we choose s(t) € [1t, t] so that

W(t) = P(s(t),t).

For small h > 0 we may assume that s{t+h) - s(t) as h - 0.

11
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Case 1. s(t+h) <t for small h > 0. In this case,

since W(t) > P(s(t+h),t), we have

W(t+h) - W(t)
h

in

P(s(t+h),t+h) - P(s(t+h),t)
h

W(t+h)%{l _ eoz(s(t+h),V(s(t+h)))h}

A

A

- W(t)al(s(t),V(s(t))) + o(L)

A

= W(t)al(t,W(t)) + o(1).

Here, we note that a(t,r) 1is non-decreasing in r, non-

increasing in t and that V(s(t)) > W(t).

Case 2. t < s(t+h) < t + h for some arbitrarily small

h > 0. Then, clearly s(t) = t. Therefore,
V(t) = W(t) > P(s,t) for any s < t.

Hence,

(1) V(s) > v(s)e=@(s:V(s))a(t,V(£)) for any

s e [p(t,V(t)),t].

Assume that x(s) 1s a solution of (1) at least on [p(t,

W(t)),t] and, in particular, T ; p(t,W(t)).

12
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If we can prove that

=
<
—~~
2]
~

(15) V(t) > F

(=4,
immediately we have
t < p;%s,F‘l(Yéﬁl)) ir s 2 p(t,V(t)),

and hence by the definition of a(t,r)

V(s)

a(s,V(s))a(t,V(t)) £ log —3 >
F (V(s))

which implies V(t) > F 1(V(s)), that is,
F(V(t)) > V(s) for s e [p(t,V(t)),t] with (15).

This fact also proves (15) for all s e [p(t,V(t)),t], and

hence we have
(16) F(V(t)) > V(s) for all s e [p(t,V(t)),t].
Since s(t) = t, we have

W(t+h) - W(t)
h

- V(s(t+h))%{e

13

a(s(t+h),V(s(t+h)))(s(t+h)-t-h)

- 1}



, V(s(t+h)) - V(%)
h

=V(t)a(t,V(t)){§£Eiﬁ%_:_£ -1} + V(t)ELEi%l_:_E
+ o(1)
< - W(B)a(t,w(e)){1 - .S_(_'Ci_h)_'__E}

h

- c(t,W(t))S—(—E”—;L‘—t- + o(1)

- c*(t,W(t)) + o(1),

A

s(t+h) - ¢
h

To complete the proof of Theorem C, it is sufficlent to

pecause V satisfies (4) under (16) and

note that if q is independent of t, then so is o and that
the property (5) for c(t,r) implies the same property for

c¥(t,r).

Remark 2. As is clear from the lemma, for the stabllity
it is sufficient that the property (5) holds for c¥(t,r). In
addition to the case given in Theorem C, this is satisfied

if ¢ is independent of t  and

ST 4
t

1 "> o gs T > o,
a(p;~(s,r),r)

The asmptotic stability of

14

e [0, 17.

93
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x(t) = - ax(t) + b(t)x(p(t)),
|o(t) | i B < a, p(t) = €t, 0 <e <1,

can be proved as the case.

However, unfortunately the case where

o () =,/I—:_§E -1

is not covered by our result, though the asymptotic stability

can be proved by the method in [3].
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