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The Boundary Layer Equation

£+ 2xx" + 2\(1-x"") = 0

Keio Univ. K. Hayashi

In the theory of viscous fluids the following non-linear boundary
value problem for a function x(t) of a real variable t =0 involving

a constant )\ plays an important part ;

(1) X"+ 2xx" + 2\(1-x'%) = 0
(2) x(0) =x"(0) =0, x'"(co) =1
(3) 0 <x'"(£) <1 'for 0 <t Lo

For )\ = 0 H.Weyl(1942) first proved thdt there exists a continuous
solution of the problem.

‘For X < 0 ( l>\| small) S.P.Hastings(1971) first showed the :existence
of solutions as far as we know.

On the other hand, it is known that the separation phenomenon of‘
boundary layer occurs for >\ = -0.1988.. , and M.Iwano(1974) tried to
show the existence of solutions for negative ) as small as possible.

In this report we shall extend the value of such >\ as closely as
possible to the value -0.1988..

Our method of proof, which is close to that of W.A.Coppel(1960),
owes to Kneser's property,which was shown by M.Hukuhara(1967). Although

we can solve this problem by using ;he continuity dependence property of



solutions to initial data, because the equation (1) has the property
that the solution for an initial value problem is unique, our proof was

found by examining the paper of M.Hukuhara(1967).
1. An Existence Theorem of Solutions

Theorem 1. If X > -1/6, then the equation (1) has a continuous
solution satisfying (2) , (3)

We choose x as a new independent variable and y = x'2 as a new
dependent variable. The equation (1) is transformed into

@ T = -yRss + ) = £069)
the boundary condition (2) into

(5) y(0) =0, y(oo) =1

and the condition (3) into

(6) 0 <yx) <1 for ‘0<% <o -

Consequently, Theorem 1 replaced by the following
Theorem 1'. If XN > -1/6, then (4) has a continuous solution

satisfying (5) , (6)

To prove the Theorem, we construct three functions

Qy > Qe , wE .
Here y = (W(x) 1is a continuous function for 0 < xr<co , satisfying the
conditions : wW(@O) =0 , 0< WK1 for O <1x < oo . And
:?i(x,y) s é:l(x,y)' are continuous functions for 0<d X <eo, WE) Ly L1,

with DD =0, 0< Qey< Oy
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Using these three functions, 1\

we define a compact subset D

in the (x,y,z)-space as follows
D: X £ x£K

wx)Ly<Ll

Oy <z < Q) o T —
o K

We divide the boundary oD into seven parts Sg s 84 4. 8¢
So is a segment : XL x<K , y=0, z=1

We remark this segment is itself a solution curve of (4)
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oAy, WE <y<l, Gy <z< Q&)

Sy x =K, 7 . 4 .

Since the x-component of the velocity vector is 1 , any point of S,
is a strictly ingress point and any point of S; is a strictly egress point.
We call a point (x,¥,z) in 2D an egress point if the solution curve
(x,y(x),2z(x)) passing through (i,;,i) is in the interior of D for
X-¢ £ x ¢x for some positive £ , if in addition there is a small € > ©
such that for X <x éﬁ; 4+ ¢ the solution curve (x,y(x),z(x)) - is not
in. D , the point is called a strictly egress point. The ingress point
and strictly ingress point are similarly defined.

And we define

53 : A <x K,

y=1,
Q& <z & Q&)

It iskeasily verified that any point of S, is a strictly egress

3

point.



S, : ®£x<K , w®<gy<l , z= Q6y,
Sg t oL xX<K , y=wx , Q6y <z< QGEy),
S, : o <x<K , o®aey<l , z= &y,

The boundary D = Se+ 8, + ... +85, .

Now we impose S47, S, S the following conditions

(E) Any point of S, is a strictly egress point ,

(1) Any point of Sg , S¢ 1is a strictly ingress point .

Then any point of D 1is a
strictly egress point or a strictly
ingress pbint or in S, which is a
solution curve contained in oD .

We consider solutions starting

from a point of a segment

Lo ox=o , yrw@) , Qe czg Oy

contained in 2D . And we define a map p ¢ L —> 29D as follows ;
for (%x,¥,z) in L, p(x,y,z) is the first point (x,y,z) ,

X =X where the solution starting from (X,y,z) meets O D, , the set

of all egress points.

By the uniquness property for an initial value problem, the solution
curve starting from a point in I cannot meet the set S, . In this case
EBDQ =8,+8S3+ S8, , and any egress point is a strictly egress point.
Hence it is easy to prove that themap p : L - SDC is continuous. If
this condition is not satisfied, that is, there is a point which is an
egress point but not a strictly egress point, then the map p .is not

always continuous.



Since L 1is a connected set, p(L) 1is also a connected set contained
in S?.+ Sy + S4 . For the lowest point P, in L , p(P,) = P, because
P, in 84 is an egress point. And ique construct these walls approp»riatrely
it is easily calculated that the solution starting from the highest point
P, in L meets Sg3 first. that is, p(P‘l) € Sy

Consequently p(L) , which is =1 S, S,

contained in S, + S3 + S, , intersects
S3 and S, . p(L) 1is a connected set
but 83 + S4_ is not connected, hence

p(L) intersects S, . That is, p(S,)

is a nonempty compact subset of L.

And we obtain a solution y(x) of (4) for o £x £ K, with
y(o) =@ () and (Do, @(x)) £5(%) , w® < y® <1  for
x<x<K

If K <K', a solution starting from a point of L reach to the
set S.)_I corresponding to K' must pass through the set S; corresponding
to K . Therefore p"(Sfl) C 13'(le) <. Since these sets are compact, there
exists at least one point P

P e M) b Gy

Kk \av-ae
And we obtain a solution y(x) of (4) for o £ X C oo -

In this case y(x) >0, ;7(0() > 0 . But this equation has a sort of
monotone property as follows ( P.Hartman(1964) ).

If for the initial condition y(ot) = }3 R 3‘7(0() =Y 2 0, there is
a solution of (4) satisfying (5) , (6) , then for the initial condition
0 Sy(a) g p s 0 g);((x) LY ., there is a solution of (4) satisfying

(3) , (6)



" In particular there is a solution of (4) with initial conditions
y(X) =0 , y(x) =0 f01‘: any X >0 small .
Using the continuity dependence pro?erty for the initial data, we
obtain a solution y(x) with initial conditions
y(0) =0 , 3(0) =0
for 0 £x <

This is the desired solution.

It is remained to construct three functions f—)_(x,y) s Q”(x,y)
W) satisfying the conditions (E) and (I) ’
‘ As sufficient conditions for these conditions, we have following
€) Oy + Q. &y Oy > &y, (67)
for 0<x<oo , WE) £2y<1
I Q) > |
Ty + Q0 D6y 7 £y, Q)
for 0<x < o0 V
We can construct ﬁ(x,y) to satisfy the condition (I') comparably
easily. ( From now on, we denote QE Q . ) Therefore it is essential

to construct two functions Q(x,y) , wWi{(x) satisfying the following

conditions
(E') k= Q;Q%Q—f70 for 0<X<oo » WE) Ly <1
(1) Q&) > w x) for 0 < X <oo
2L
We put O &y = 22y (1-y) .

In solving this problem, this function proposed by N.Kikuchi is

essential.



Then we have
L 3
k= 2yX(1-y)( 1 + 2) - X'y X(1-y))
If we define a continuous function y = (x) dimplicitly by
3
2 _ L2
y=wx & x° = yr1+2))/(1-y)
then k 20 for 0 <x<oco , WE) £¥<1 . Thus the condition (E')
is satisfied ( the equality in k 2 0 is not essential )

By differentiating both sides of this relation w.r.t. y , we have

o 3 2
2x o—‘—;( = (1/2+ N)y* (3-y) / (1-y) .

Then the condition (I') becomes

L
2xy A(1-y) > dy
dx »

LS e
fo Rr | N
(/24 N)y1G-y)/ (A-y} > y2/(1-y) ,

and then

N > -1/2 + (1-y)/(3-y) = h(y)

Since sup h(y) = -1/6 , for ) > -1/6 this inequality holds,
o<‘}<\ .

so the condition (I') is satisfied.

This completes the proof of Theorem 1 .
2. More precise estimate for )

In order to have a more precise estimate for ) we shall construct

D&,y by the following form.

L
Q&,y) = 2xy (1-y)u(y)

-1



And we have obtained an esti.mate‘ for >\ of the following type.

Theprem 2. Let u(y) be a continuous functionon 0L y<£ 1
such that the follqwing conditions are satisfied

(i) of class C' and/pieﬁewise C2 on 0 <y< 1.

(ii) 1€£u€2, u"&0 on 0<cy<l

u(l) =1, lim (I-y)u'(y) =0
F>1 :

(iii) g(y) >0 on 0<y<1.

Here g(y) 1is defined as follows :

v(y) = 1+ (I+y) (u-1)/(1-y) - 2yu’ (21 f£rom (ii) )

g(y) = 3-y)/(-y) - 2y@"/u + v'/v) .

Then for )\ > sup ( -u/2 + (v-yu')/g ) there exists a continuous
0<y< |

solution for (1) satisfying (2) , (3)

In this case
k=2y*(1-y)[ u+ 2\ - xy2u(l-y)v ] ,
As a implicit function of k(x,y) = 0 we take y =(J(x) . That is "
we define y = ) (x)  implicitly by
2 3
y =W (& & oxt =yt (42w /A-y)v .

Differentiating this relation we have

1
2% ZL;;= yl[ (w/2+ \N)g +yu' 1/ (1-y)uv .

To satisfy the condition (I') () (x, w(x)) > w (x)

v
2y T(U-y)u > 2 (3= W& )

(u/2+ N)g >v=-yu',



From the condition (iii) g3 o for 0<<y<K1
N > -u/2 + (v-yu')/g 5 h(y)
By the similar way to the proof of Theorem 1 , we can obtaine a solution

of (4) for A > sup h(y)
o< y< |

This completes the proof of Theorem 2 .

Using this Theorem, we can obtaine a more precise estimate for >\ . If we
construct a continuous function u(y) on 0 £y <1 satisfying (i) , (ii) ,

fortunately the condition (iii) is satisfied in most case. Then for

X > sup h(y;u)

o< y<t

we have a solution of (1) satisfying (2) , (3)
The function u(y) has characters u'< 0, u(l) =1 . If we take
for example |
u=1+ 0;18(l—y)?
then we have sup h = .-0.1962..

LES T

And constructing the function u(y) to make
h(y;u) - ( -0.1988 )

as small as possible, we can obtain the value )\‘j> -0.1988..
This function u(y) waé obtained almost by solving an ordinary differential
equation .

h(ys;u,u',u") = -0.1988
for an unknown function u(y)

This equation is eqﬁivalent to the original one. In fact, if h(y) = X\ ,
vehave (), + Q) Q0 0®) = £66w6, Qe @)
O E,w)) = W(x)
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w = _QI + D\?C‘O(X)
Q.+0,Q
£(x, wx), ()x,w(x)))

£(x, W(X), D)) |

This relation shows that the funétion W (x) 1is a solution of (4)
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