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NOTES ON THE THEORY OF DOUBLY STOCHASTIC OPERATORS

AND REARRANGEMENTS
YOJI SAKAI, SHINSHU UNIV.

1. Introduction.

The purpose of the present paper is to present basic
properties and recent results on the theory of doubly stochastic
operators and rearrangements. In section 2, we shall refer to
doubly stochastic matrices and rearrangements of vectors, and in
section 3, to the infinite version of doubly stochastic matrices.
And then, in section 4, we shall refer to doubly stochastic
operators and rearrangements of functions. For doubly stochastic
matrices we can consult an important paper of Mirsky [6]. Also for
doubly stochastic operators and rearrangements of functions, we
can consult Luxemburg [5] or Chong and ﬁice [1].

2. Doubly stochastic matrices and rearrangements of vectors.

We shall denote the set of all (n,n) real matrices byiM. vV
stands for the set of all n-dimensional vectors. For x ;c(xl, e ,xn)t

we shall denote by x* ...,x;; the numbers arrahged in non-ascending

l’
order of magnitude, and let x* = (x*i,...,x;)t. Ji(x) is the i-th
projection. We shallwrite x ) y whenever Ji(x) 2 &i(y) (i=1,...,n).

For A¢T}, A+ is its adjoint. Weshallwrite A= (aij) 2 O whenever

a; 20 (i,j =1,...,n). P-stands for the set of all permutation

matrices, Q for the set of all sub-permutation matrices. E stands

for all (rij)é..n’tsuch that rij =0Oor 1l (i,j=1,...,n). We shall
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denote by x.y the multiplication of x,ye V. 1€V is the unit vector
(1,...,1)t. AeJN will be called multiplic?tive whenever é‘i(A(x.y))
= Ji(Ax). Ji(Ay) (i =1,...4n). We shall denote by CO(S) the
convex closure of 5 , also let denote ¢ (5) the set of all
extreme points of a convex set § .
- DEFINITION 2.1. Weshall define the following sets of matrices.
1. s-77=}Aell}: A20, Al < 1} $ sub Markov.

2.

1 } § Markov.

"

{
7z ={AeT: A20, Al
3. @ ={Ae:m: A20, Al = 1, A*1 1} 3 doubly stochastic.
. A& ={A€M:A20, A1 & 1, A1 £1} ; doubly substochastic.
THEOREM 2.2 ([13]). £(s-72) =Rns-2z, £(m) =Rm: £60) =2 ,
and é(J) = ¢ . That is, extreme points of the whole set in
Definition 2.2 coincide with each multiplicative elements. Moreover,

s-7 = CORns=-72), = COBA) , = COW), and £ = CO(@) .

DEFINITION 2.3. Suppose x, ye V.

k
1. : x whenever ¥ ¢ x* (k=1,.0.,n).
' Y « gy £ é". i [ s
2. ¥y 4« x whenever ¥y « X and $y. = X, .
: @ 1 & 1

We shall denote by ©(x) (resp. .8(x)) the orbit of x by D € &(resp.
Se,g) . The following two theorems are fundamental in the theory of
d.s. matrices (See [61]).
THEOREM 2.Lk. y< x iff yeCO(Px:Pep) iff yved(x),
when x,y 2 0, y« x iff ye Co(Qx : QeQ) iff  yeld(x) ..
THEOREM 2.5.

1. y<x Aiff g'y!(yi)

LT

2.  y<«x iff 2,¢(yi)

N

2}‘ (xi) for any non-decreasing convex
]

function ¢ : R—R.

¥ ¢ (xi) for any convex function #: R—R.
]
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3. Infinite doubly stochastic matrices and rearrangements
of vectors

In this section, let us use.several notations and terminology
which appeared in section 2 as their infinite analogies. For

instance, t@stands for the set of all infinite d.s. matrices (dij)

o ‘o0
(i, j =1, 2,...). This means that dij 2 0, st'dij = 1 and g-:adij = 1
(i, § =1, 2,00 Tt A= (a,)¢T, x= (x), xp,...) €V, we shall

denote by Ax the infinite dimensional vector (Z a

[
eee)
1573, 2 825%5°

whenever Zaijx‘ is convergent for i = 1, 2,... . Givena topologi-
j:l '

cal space (X,T). We shall denote by ET the T -closure of 5 ¢ X. >

stands for the vector space consisting of the boundedly line-summ-

able infinite matrices A = (a. .) characterized by A€3 if and only

if Al = max {sup ng,la s sup {V_""lalal} { = (see [3]). The
following was established by Kendall [4]

THEOREM 3.1. If ¥ is given the weakest locally convex

Hausdoroff\topology TK which makes all components, row-sums, and
column-sums continuous as linear functionals, then O = E_OTK(F’) .
If the cartesian product &of countably infinite sets of real
lines is given the topology of pointwise convergence Ty =§ '(-567;(!9)
Further more, £ (&) = /0 and é(,S) =@ .

Let X be a vector space of matrices such that lAll,, = sup ZI

3=
is finite, for which we give the w*-operator topology. Where, a
subbasic neighbourhood of O € Jll in this topology is given by
N(f, u,e)={Aez.|§flJ§a ol <e}f (f ye §Y u

(ul, Uy el . The following is fundamental (see [13]).

1’ 2,...

THEOREM 3.2.
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1. £(s=m) =R rns-m, £ =P Ay, £O) = o,
£(4) =@ , (B~ =@Aw2. And each set of the
above formulas coincides with the multiplicative elements of the set
in each bracket.
2. The above set in each bracket is compact in the wk=’
operator topology, and it is the w*-closure of each convex closure

of extrme points except a@ .

-k - *
3. p v=Q,\W, 8 =c§f\m.
For any x = (xl, xz,...)eﬂ“ we shall define Mk(x) =
SUp X, + +.. + X, andm (x) = inf x, + ... + x, (k =1, 2,...),
11 1k k 11 1k

where the upperbound or lower bound are taken with respect to all
sets of k distinct positive integers il goeey ik. The following.-
are analogies of Theorem 2.5 (see[13]).
THEOREM 3.3.
- L . .
1. Sx=y,5€4,x e ) implies Mk(?s(‘xl”’ f(szf),...)g

Mk("( Iyll ), ¢( | y2| ),.+.) for any non-decreasing convex function

¢:R—>=R.

2, Dx=y,Dedd, x el” implies Mk(?!(xl), F(x_)yeee) 2

2
Mk(ﬂyl)’ ¢(y2),...) for any convex function ¢ : R—R .
In particular, Mk(x) 2 Mk(y) 2 mk'(y) 2 mk(x) .
It xed , then $°x. = i"y. .
‘ = 1 = 1
As an infinite version of Theorem 2.4, we have the following
(see [127) .

THEOREM 3.4. - Suppose 0 <X, ¥y e 11. Then y < x iff yef(x).

Suppose O £ X, ¥ € 1. Then vy« x iff yel(x).
L
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L. Doubly stochastic operators and rearrangements of functipns .

Let (X,A,4) be a measure space. By M(X,A,M) we shall denote
the set of all extended real valued g-measurable functions on X. Also
we shall denote' the set of all functions f 2 O, fe M(X,&4) by M (X,).
If E is a set, then /‘[E will denote the characteristic function of
E. Let R be the set of all real numbers and R be the set of all
extended real numbers. We shall denote by df(t) =,a[f 4 t} (teRr)
the distribution function of fe& M(X,u). Suppose (X,A.4) and (X,A,&)
are measure spaces such that a(X) = #(X') in the sense that both may
be infinite. Let fe M(X,u), fe M(X,4). Then we shall say that f
and f’ are equimeasurable and write f ~~f’° iff u(£'[J]) =,u'(fl-’[J])
for every bounded closed interval J of R where J may be the
singleton set (-~} or (=} If AX) = H(X) = a { - and feM(X,u),
f'e M(X, &), £~ £’ isequivalent to d_. = d_,. Let feM(X,4), w(X) =

f f

a { =. Then the right inverse of its distribution function df will be

denoted by f* and will be called the decreasing rearrangement of f.

That is, if 0 { s £ a, then f*(s) = inf {t td (1) & s} . Then f* is
a decreasing right continuous function on [0,a] such that f*_f. The
next theorem play the important role on the theory of d.s. operators
and decreasing rearrangements (see [8, 1]).

THEOREM 4.1. If (X,A,d) is anon-atomic finite measure space
and if f eM(X,4) then there exists a measure preserving trans-
formation ¢ : X —> [0, 4(X)] such that f = f*(0 M-a.e.

DEFINITION 4.2. Suppose (X,A,4) and (X ,A,i) ‘are finite
measure space with #(X) = 4(X) = a, that fe Ll(X,,u), ge Ll(X',,u.').

Then, we write
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1. f €& g whenever Ls fxdt ¢ Lsg*dt for all O & ;s < a.
2. f < g whenever f¥g and J: fdp = J:gd/l. |
In this case f is said to be majorized by g.

Evidently « and <« are paftially orders for certain elements
of M(X,4) and M(X’4). Here, we list up fundamental properties for
these partially orders.

PROPOSITION 4-»3.

1. f—\..geL1 is equivalent to f« g and g« f or f< g and g« f.

2. If £f<g, then rf + s<rg + s for all r, seR.

3. If f.<g, then Ufl < gl and Wfl, £ gl .

L.  Suppose f, f & Ll(X,ﬂ), 9, g, € Ll(X',,u') and ‘fn-< 9,
(n=1,2,...). 1f f,— f and 9,— g in L} or L_é‘ norms, then f< g.

5. f'<.XX implies f = Xx AM~a.e.

1

. e < (£* e * . .
6 (fl + + fn) (f1 + + fn) for f y fne L

177"

ceof € £x,, fx,
n n

7. If 0 s fl""" fné Ll(X,,u), we have f 4

1
The following is a simple characterization of < (see [14])4.
THEOREM 4.4. Suppose 4(X) = 4(X’') < =, that feL (X) ,

9eL™(X'). Then f<g iff ff(“)d,u 2 Ig(“)d,u' and Ifd,u = ngu’

for all K& R. Where f(“) is the trancation of f at «.
We shall denote by M' the set of all feM' (R) such that
df(t) { « for any t€éR" = (0,=). For any feM', let f* be defined

on R by £*(s) = inf{t: a.(t) & s} if s> 0, £*(s) = 0 if s £ O.

Then the symmetrically deéreasing rearrangement f of fe M is f‘(s)

= f*(2 [s]). It is easy to see that the function f decreases
symmetrically on each side of the origin and satisfies fT~f. If

s s j 0
J f*xdt ¢ Jg*dt for any s€ R’ and det = rgdt in the sense that
o ° ~o8 -0
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both may be infinite, we write f4g. f@®g(s) = rf(t)g(s-t)dt is
-
the convolution of f, ge M.
THEOREM k.5 ([11]). If f.€ M (i=1,..., n) and 9 e Mt
(3 =1,..., m) then £, ®...®@f+ %1@...®i‘n and
,(fl Feeot fn) ®(gl Foeot gm)-é-(g‘l Foeet %n)®(81 Fooot am).
THEOREM 4.6 ([14]). If f, ge Ll(R)n M" then feg iff
f@ﬁ-\‘-ﬁ@fi for every heM+.'
The following is the extension of the notion of doubly
stéchastic matrices to operators defined on the L1 space.

1 P 1
DEFINITION 4.7. A linear operator T : L (X u') =— L (X,)

is called doubly stochastic (in short d.s.) whenever Tf< f for

all fe Ll(X',,I/), where #(X') = u4(X) < .

From now on to Definition 4.20 let us assume that A(X) =
H(X) { =. The following ié a fundamental theorem in the theory of
d.s. operators. It was first established for the Ll[O, a] space by
Ryff [8] .

THEOREM 4.8 ([2]). Let T be a linear map of the simple

functions of Ll(/l.') into Ll(/l). The following are equivalent

1. T extends to a d.s. operator on Ll(,a') .

. < ’ = 7, - I.
2 0%TX £ X, and ITXEd.u #(E) for all E € A
3. There is a linear extension of T to Ll(,a') such that

Tf< f for all fe Ll(ﬂ').

THEOREM 4£.9. A linear operator T : Ll(X,,,a,) - Ll(X,,ll) is
d.s. iff A

1. T 2 0, TZX,=X,T*X)(=XXI.

2. TIX:= Ay I T, £1, T20.



We shall denote by (X}X) the set of all d.s. operators
T: Ll(X',,a') —_ Ll(X,/l) . For every f€ Ll(X:,M') we set Sf(X',X)
= {Tf :TGQ(X',X)} . The following theorem is due to Ryff (8l
who first established it for the Ll[O,l] space.

THEOREM 4.10. '@(VX',X) is convex and compact in the w*-
operator topology, when it is regarded as a set of operators acting
on L (X).

THEOREM 4.11 ([21). If Te¢®(X,X), T* (acting on L“) always
admits a unique extension to L1 operator which belongs to @(X,X') .

By the above theorem, @(X,_X) is a selfadjoint compact convex
semigroup. The following extension of Ryff’'s theorem [8] to the
Ll(X,/t) is due to Day [2].

THEOREM L4.12. Let fé€ Ll(x’,,u'). Then a@f(x’,x) is w-compact.
In addition, if g€ M(X,4), then g<f iff ge O (X,X).

The following ‘;heorem was originally given for positive
functions on (0,1) by L;Jrentz and Shimogaki [9] .

THEOREM 4.13 ([2]). If f,, £,€ LY(X\4) and geM(X,#) and

g<f. + f2 then there are g, 9,€ Ll(X,,U) such that g = g, + 9, and

1

gl< fl

‘and gz< fz. ,

For Ll((O,a)) space we have the following (se’e riol).

THEOREM 4. 1L.

1. If f~g and f aﬁd g are simple functions on (O,a),i then
there exists an invertible measure preserving transformation ( on
(0,a) for which T,f = fo (= g holds.

1 v
2. Suppose f, geL (0,a) and f~g. Then Tf = g holds for a

d.s. operator which is a wt-cluster point of a sequence of members
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of {To.) where ( is ar;l invertible measure ’preserving map on (0,a).
For equimeasurability of functions we have the following
two theorems which were first established for the Ll(O,a) space
by Sakai and Shimogaki [10) . e(f:A) is the set {x : >f(x)>/1}
and each function feLl(X,/l) will be called smooth if ,a{x : f(x) =

7

O for all AE€R.

THEOREM 4.15. Suppose fé LY(X,4) and ge L'(X,4) and

Tf = g for Te®(X,X). Then the following statements are equivalent :
1. fag.
o «
2. Tf( ) = g( ) for all &éR.
. = € R.
3 Txe(f:l) xe(g:),) for all A€ R

L. T*g = f.

THEOREM 4.16. For every smooth function f&Ll(X,ﬂ) there is
one and only one d.s; operator T such that Tf* = f. This operator
T is inducedv by some measure preserving transformation. Moreover,
f* = Sf, S€&® implies S = T*.

The following are .characterizations of d.s. operatbrs which
are induced by measure preserving transformations (see [10]).

THEOREM 4.17. Let T be a d.s. operator on Ll(O,a). ~ The
following statements are equivalent

1. T is a permutator: Tf~f for all feLl((O,a)).

(®) )(0() for all K& R

2. T is trancation invariant : Tf = (Tf
and all fe Ll(O,a).
3. T is multiplicative: T(f.g) = Tf.Tg for all f, geL“.
L, T is ar; isometry in Ll(O,a). |

5. T*T = I.
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6. T is induced by a measure preserving transformation.
In péfficular, a ds operator T is inducec‘liby anv im}erti‘t;le |
measure preserving transformation 1f an’d’onl‘ybf bif TT*:Y= T*’T = I.
THEOI;EM 4,18 ([16]). ’If 6 .émq ¢ are measﬁré pl;eskerving
transformatio;'xs on (0,1) with 'e bim‘rerf;it;le, ‘then o
T =T ¢ £(9((0,1),(0,1))).
We shall denote by .§ the set» of a‘11~L°.(R+) éperétoré éuéh
that (1) Sf 20 for 0% feL (RY), (2) S1% 1, and (3)
f: Sfdt & rfdt for 0 £ fe Ll(R+),\L°°(R+); In particular, let
: 4 S , .
denote by A* the set of all Se€Jd such that S1 = 1. 4 Recently,
Sakamaki and Takahashi [15] established the following .' - “
THEOREM 4.19. Suppose 0o £f, geLl(R+) and g is decreasing
on RV, 1f rgdt < rfdt for all se R’ and rgdt = J.Sfcit, then
o ) . o o L
there exists T€d such that g = Tf. Moreover if f, geLu(RJr),
there exists an operator T 63 such that g = Tf.
Recently, Takeuchi [17] introduced the notion of
? -rearrangement.
DEFINITION 4.20. If a subfamily P= {xk: , kep} of A satis-
fies the following conditions, we shall call $.avstratus. (l.)
P= {4®) :pen, 4® ¢=}. () X =6, 4x) =k (ke[).
(3) X = kgr)&( and k ¢ k¥ implies )&(c Xk,. If there exists a
measure preserving rﬁapping m : X — X such that 4(m™(E)a E")
=0 for each pair E, E‘¢ A with &(E) = u#(E)), thén we shall call
that (X,A,4) is homogenuous. We shall call (X,A,4) a stratus

system whenever (X,A,4) is homogenuous and have a stratus. We

shall define P(X) = sup {k: x;{xk} and J'f.(x) = inf {t td (t) £ f’(‘x)}

10
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for all x€X. r(x) will be called the F-distance and X}(x) will

be called the 5;-rearrangement.

DEFINITION 4.21. Suppose (X,A,4) is a stratus system. An

operator T : Ll(X,ﬂ) — Ll(Xgﬁﬂ will be called a doubly substo-

chastic Markov opefator whenever T satisfies the following

conditions. 1. T 2 0.
. ;
2. LTf@a S J;fcyl for all 0 £ fel (X,2) (keP).
k K
3. T*Xx = xx.

We shall denote byugLnthe set of all doubly substochaétic Markov
operators.

THEOREM 4.22 ([17]). Suppose (X,A,4) be a stratus system |
and f, geLl(x,,a) satisfies Jf 20, Jgg 0 and Lé'fd,u= Ld‘gd,a.

Then the following statements are equivalent :

1. ap ¢ .
Lk;f Y chfgd,u (ke )
2. Xf=fM§ for some TEAM
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