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ON THE CONTINUOUS COHOMOLOGY OF THE LIE ALGEBRA OF

VECTOR FIELDS ASSOCIATED WITH NON-TRIVIAL COEFFICIENTS

Toru TSUJISHITA

§1. Let M Dbe a smooth manifold and LM the topological
Lie algebra of all smooth vector fields on M. Recently
Haefliger ([4]) proved the Bott conjecture, which states that

the continuous cohomology of L with trivial coefficients is

M
isomorphic to the singular cohomology of the space of cross-—sections
of a certain fibre bundle over M. As for the case associated with
the Lie derivative action on a tensor space A on M, Losik ([5],
[7]1) has computed the cohomology of a certain subcomplex (called
diagonal) of the standard cochain complex, and Reshetnikov ([91)

has announced partial results concerning the total continuous
cohomology -H*(L.,, A). In this note we state a theorem which
reduces essentially the caluculation of H*(L,, A) to that of

the diagonal cohomology HK(LM’ A) and the Gelfand-Fuks cohomology
H* (L) . R

Details will be published elsewhere. -

§2. Let W be a topological LM—algebra.

Let cP(L » WY{p > 0) Dbe the space of all continuous alternating

p-forms on LM with values in W and CO(LM, W) = W. For

(o)

1), we define dw & Cp+l(LM, W) Dby
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(Xl, e, X € LM), and for W € CO(LM, W) = W, dwX) = Xw (X GLM).

p+l

We also define ®w AnecPfdr , w) for we CP(LM, W) and

M’

ne Cq(LM, W) by
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w(xl v ’ Xl }T](xj ¢ v X )
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(X s s Xp, 0 € Ly

Then  C*(Ly, W) ={® CP(LM, W), d} turns out to be
a commutative differential graded algebré (DG-algebra for short).
Putting W=R, W= C (M), we get two DG-algebras C* (LM, R) and

C* (L, C™(M)).

Furthermore, put

I

0 [+ 0] (o]
CA(LM, c”(M)) cr ),

c® Ly, cmon) = {o € cP(Ly, C°M); supp w(Xy, -+er X))

p
_ _f\supp Xi(xl' **t, X € Ly} (p > 0).
i=

P

Then CZ(LM’ Cm(M)) =@ CLZ(LM, C®(M)) is a DG-gsubalgebra of

C*(L,, C%(M)).
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We note that the de Rham complex Q*M of M can be naturally

identified with a DG-subalgebra of CK(L, Cm(M)).

§3. _Let C* (L, Qﬁ) = C*(LM, R) @'Qﬁ be the completed tensor
product of Dé—algebras, which is again a DG-algebra. Just as before
we get a DG-subalgebra CK(L ’ Qﬁ) of C*(L,, Qﬁ) which consists of
support preserving cochains. The inclusion map ' : RC¢—- Cw(M)

‘ being an LM-homomorphism, there is a DG-algebra homomorphism

1% 1 C*(Ly, R)— C*(Ly, C (M)). Consider & = 1, ®3 : c*n,, )

= C* (L, R) ® % —>C*(L,, C (M), where j : QC—sC*(L,, C (0).
It is easy to see that the image of K 1is contained in CZ(LM, C*®(M)).

Thus we get the following commutative diagram of DG-algebra

homomorphisms :

C*(Ly, C”(M))<——C*(Ly, oF) \

(1) ]J

* *® *‘ *
CA(LM’ c (M))<%——-CA(L v Q) -
From this there arises a natural homomorphism"bf graded algebras :

CX(L ’ Qﬁ '
; C°(M)) —> H* (L, C°MM)),

o : Tor (C*(L,,, Qﬁ), CX(L

M

where Tor denotes the differential torsion functor (cf [1]) and

H*(LM, CGXM)) the cohomology algebra of the DG-algebra C*(L,, c*(M)).

Theorem I. o ié an _isomorphism if dimRH*(M, R) < w.



§4. We recall the results of Losik ([5]), Guillemin {[31)
and Losik ([6]) and Haefliger ([4]), rewriting in more suitable

form for our purpose.

Let‘ a(n) be the topological Lie algebra of formal vector ‘
fields of n-variables and ao(n) the subalgebra of a(n) consisting
of elements without constant terms in the coefficients. We get
two DG-algebras C*(a(n), R) and C*(ao(n), R) associated with
the trivial module R. Let S*V and S*U be minimal models
for C*(a(n), R) and G*(ao(n), R) respectively. Here

U=RO, @ °°° @ Ren (deg Gi = 21 - 1) and S*U 4is the exterior

1

algebra over U with trivial differentials. ' (As for S*V, see

[4]). Then

Theorem L ([5]). There is a quasi-isomorphism
* (X P ®
o ? S*U —> C% (Ly, C (M))

which is Q¥-linear. Here £ ® Ss*U is the twisted tensor
T

product of &F and S*U defined by the twisting 7T(8;) = p;,

P; being the i-th pontrjagin form of M with respect to a

Riemannian metric.

L(Fof the notion of twisted tensor product, see [4].)

Recall that a DG-algebra homomorphism is said to be a
quasi-isomorphism if it induces an isomorphism on cohomology

level.



Theorem GL ([3], [6]). There are a twisted tensor product

Qﬁ ® S*V and a quasi-isomorphism
o]

B Qf® SV —> CH(Ly, o),
)

which is Qﬁ—l inear.

Let Qg‘d ® V be the graded vector space such that deg(w & V)
= =-degy + deg v. Let S”‘(Qf}I & V) be the graded algebra of

graded commutative continuous forms on 913}1 ® v.

Theorem H ([4]). There are a DG-algebra structure on

s* (QD”/‘I ® V) and a guasi-isomorphism
y 2 S*(Qf @ V) —> C*(Ly, R).

Let e : oy ® S*V —> Qy @ S* (QM ® V) Dbe the algebraic
o
evaluation map defined in [4]. Let ) : S*V——= S*U be the

DG-algebra homomorphism corresponding to
1* : C*(a(n), R) —> C*(ap(n), R)

induced by the inclusion 1 : a, (n)C—sa(n).
Remark. It is easy to see )\(SlV) = 0.

Lemma 1. We have the following commutative diagram of DG-

algebra homomorphisms:

€ id®a
Qx B S*(FQV) —————— Q* ® S — > O ® S*U
M M g M T

idéy B o

szﬁ@c*(L ; R) ¢ CX (L, 2f) ———>CF(L,, CT(M).



Recall the following

Proposition ([l]). Suppose the following commutative

diagram of DG-algebra homomorphisms is given:

—
A
-2

(2) A

R« =
=

a

N

2

where A, u and Vv are guasi-isomorphisms. Then the induced
U

]
map TorU(M, N) —— Tor (M', N') is an isomorphism.

Thus we get

Theorem I'. There is an isomorphism of graded algebras:

*RC R
QM%S \Y

N |
H* (L, C (M)) & Tor (2% @ S*(QABV), @, ® S*U).
: - T

§5. We give a geometric paraphrase of Theorem I'.

ILet B be the principal U(n)-bundle associated to the
complexification of the real tangent bundle of M. Let ﬁUn be
the restriction of the universal prinéipal U(n)-bundle to the
2n-skelton of the base BUn with respect to the cell decomposition

with even-dimensional cells. Put E = B x BU . Fixing a
’ U(n)

R X
fibre inclusion mapping U(n)C_,EUn, we get an inclusion mapping:
BC—5E. Let T(E) be the space of all continuous sections of

E with the compact open topology. Let ¢ : M x '(E)—>E be the

evaluation mapping.



Let Xk A*(X) be any contravariant functor which associates
to each topological space a commutative DG—algebra A* (X) over
R such that H(A*(X)) - H*(X, R) (cf. [11]). Corresponding to

the diagram of topological spaces:
8 N
M x '(E)—> E «<—B
We get a diagram of DG-algebras:
A*(M X T(E))«—— A*E — . A*B,

We say that two triples of DG-algebras T = {M<«—U—>N} and
7' = {M'«U'—>N'} are equivalent if there is a sequence of

T T = T' such that for each 1

triples Tg =T, T n-1’ Th

l’ 'o.'

(0 ¢ i€ n-1) there is a quasi-isomorphism T, —> Ti+1 or

T,,, —>T;. Here, a quasi-isomorphism {Me—U-—->N} — {M'«—U"'

i+l

—N'} is simply a commutative diagram (2) such that A, u and

y are dquasi-isomorphisms. Note that if T and T' are equivalent

U

]
then TorU(M, N) = Tor  (M', N').

' ; = * *
Lemma 2. Triples Ty {QM @)S (QM®V)e-QM %)S v —> QM §>S*V}

and {A*(M x T(E)) A*E > A*B} are equivalent.

On the other hand, we can show the: following

Lemma 3. ¢ : M X T(E)—> E 1is a Serre fibering.

Recall the following

Theorem (Eilenberg-Moore-Gugenheim [1], [2].) Let X ——E

be a serre fibering and 1 : B——> E a mapping. Let Y = 1%X

be the induced fibering. Assume that vl(E) = 0. Then we have

an _isomorphism of graded algebras:

g



Tor® E(a* (M x T(E)), A*B) z H*(Y, R).

Let Y be the fibering over B induced from € : M x T (E)
—~>E by B“—sE. Then, in view of nl(ﬁUn) = 0, we have

the following

Theorem II. If dimRH*(M, R) < «® and ﬂl(M) = 0, then

H* (L, C (M) x H*(Y, R).

§6. We consider examples.

Let M = R". Since RC—» Q*n is a quasi-isomorphism, it is

R
easy to see that the triple T n is equivalent to
R
id
{8*V <—— §*V —-->3S*U}. Hence

*
HY (L, c®(®R™)) = Tor® V(S*V, S*U) x S*U.

R

Thus

o c”(R™)) =z s*u.

Corollary 1. H*(L _, c”(R™)) ~ H* (L
g o A
R R
Let M = Sl. Then it is easy to see that the triple T can

sl

be replaced by

B
T' = {sS*(t, o, §) = S*(t, o) —> S*(t, 8)}

where deg t = deg 6 =1, deg 0 = 3, deg £ = 2, dt = d6 = do = 4§ = 0,
a(t) = t, a(o) = t§ + ¢, B(t) = t, B(o) = 0. Here S*(x, y, °*°*)

denotes the free anti-commutative graded algebra generated by



X, Yy **+. We can check immediately that T' is equivalent to
-

T" = {S*(t,‘o, g)<r§;—s*(t,o )-§e>s*(t, 6) }

where a(t) = t, alo) = 0. Thus

TorS* (819) (s (t, o, ), S*(t, 8)) = S*(t, 8, £).

|

Corollary 2. H*(L 1 Cm(Sl))'Z S*(t, 8, &), where
s

deg t = deg 6 = 1, deg £ = 2.

§7. Finally we consider the general case.

Let 'Gk(k >1 ---) Dbe the Lie group of k-jets at the origin
0 of diffeormorphisms of R™ fixing 0. Let A be a finite

dimensional real Gk-module. For a smooth manifold M of dimension

k

n, we denote by 8 M the Gk-principalbundle canonically associated

to M. Put g = SkM x A. Then ¢ is a Diff (M)-bundle over M.

Gk

Hence Ay, = T “(a) can be naturally regarded as a topological

- 1 * *
LM module. We can then define C (LM, AM), CA(LM’ AM), and
H*(L,, Ay,) Jjust as in §2. The natural pairing cm(M)C)AM___ﬁ.AM
gives rise to a differential graded CX(LM' C®(M)) -module structure
on CZ(LM, Ay). Using the DG-algebra homomorphism « : CX(L,, Qﬁ).
———a-CZ(L ;, C°(M)), we regard CZ(L » By) as a differential
greaded CX(L ’ Qﬁ -module. On the other hand, the Gk—module A

gives rise to an ao(n)—module A canonically (cf [10]).



1

Theorem III. If dim H*(M, R)< » and dimERHl(ao(n), A)< o

(i =0, 1, <), then there is an isomorphism of graded vector

space:
' ~ C*(L,,, Q%) :
* =
H* (L, Ay) Tor A "M'" "M (C* (Lyyr ), CH(Ly, Ay)).
1 k . . k 1
Remark. Let G ——> G be a lifting of G ——=> G~. Then A

can be regarded as a Gl-module. If A is completely reducible
Gl-module, it is east to see that AdimRHi(aO(n), R)< o
(i =0, 1, 2, ¢«-).

Under the hypotheses of Theorem II, we have the following

corollaries.

Corollary 3. There is a spectral sequence converging to

* 7 - y
H (LM, AM) whose E2 term is

Tor® (8 s 8 (m(c* (1, Q2N H(CK(L, A

* = * =
Corollary 4. If H (QK(L ’ AM)) 0, then H (LM, AM) 0.

. * _ . _ .
Especially, H (LM, LM) 0, where LM is the LM module defined

by the adjoint action.

. i 3 _— LA )
Corollary 5. dlmEDH (LM, Ay) < » (i=0,1, 2, ). (cf [91).
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