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ON DECOMPOSITION OF LATTICE Ideals of A LATTICE-ORDERED SEMIGROUP

KENTARO MURATA

Our purpose of the present note is to obtain a unique
decomposition theorem of lattice ideals of l-semigroups
treated in [2]. The decomposition theorem is a generali-
zation of the unique factorization of elements in the
arithmetical l-groups [{7]. Applying our theorem to sub-
modules over a maximal bounded order of a ring, we obtain

a decomposition of the modules [5].

1. PRELIMINARIES. Let L = (L,+,<) be a (conditionally) complete
l-semigroup with multiplicative unity e. We assume the following two
conditions:

(1) L has a map a;_>a_l into itself with two properties (i)

aa_laS a and (ii) axa < a implies a<< a~1.
(2) e is maximally integral: czfgc and e< ¢ imply c = e.
For any a of L we define a* = (a_l)_l, and define a*ob* = (a*b*)*

= (ab)* [2]. Then the set L* = {a*; a € L} is a complete l-group

under o and < [3]. Hence the group (L*,o) is commutative by the well
known theorem of l—grdups. If we classify I by the quasi-equal rela-
tion a ~ b defined by a-l = b_}, then the set L/~ of all cosets forms

an l-group canonically and it is isomorphic to (L*,.,<). We now put
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the ascending chain condition in the sense of quasi-equa{iift‘yé fory'r

integral elements of L.. Then we can prox}e that p* = p for any prime
p which is not quasi-equal to e [2]. 1In the following [P will denote
the set of all primes not quasi-equal to e. Then any element a of‘ L

is factored into a finite number of primes:

a N—[T pv(p'a)
peP

where VY(p,a) is the p~exponent of a. We have then (1°) V(p,a) = 0
for all but finite many p EJP, (2°) a~Db if and'only if VY(p,a)
V(p,b) for all p€lP, (3°) y(p,a) = V(p,a*), (4°) V(p,ab) = V(p,a) +
V(p,b), (5°) W(p,aub) = min{ ¥Y(p,a), V(p,b)}, (6°) a<b* (i.e. a*
< b*) if and only if W(p,a) = V(p,b) for all pe P.

A lattice ideal (abbr. l-ideal) J is called closed if a€J implies
a*€ J. Let A be any non-empty subset of L, and let A' be the join
semi-lattice generated by A. Then the set-theoretical union of all-
principa;l closed l-ideals J(a*)’s generated by a€A' is the closed
l1-ideal generated by A. Let P be any subset of P. 1frp is non-void,

-1

the closed 1-ideal generated by {pil-v-pn H pie P} is called a P-

component of the cone I and denoted by I If P is void, I, means I

P* P

itself. A P-component JP of the closed 1-ideal J will be defined to
be the closed l-ideal generated by J-IP = {xy; x €J, yGIP}. For
convenience the closed 1l-ideal generated by the l-ideal J will be

denoted by J*. For two l-ideals Jy and J, we define quasi-equal

relatlon by J,~ Jy&=> J* = Jy*. J;0J, means the closed l-ideal
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generated by {xy; x€Jy, Y€ Jz} for any two l-ideals J; and J,. Then

1
the Set of all' closed l-ideals g= (g,o,__C_) forms a complete l-semi-
grbﬁp w)&hich contains the cl-semigroup (L*,.,<) isomorphically. It
can be seen that (gf,o) is a commutative semigroup.

The set-theoretical union Z__ of the rational integers Z and
the symbol -o© is a totally ordered additive semigroup. For any 1-

ideal J of L we define

V(p,J) = inf{V(p,a); a€ J}.

Fixing J and moving p over ]P, Y (p,J) is considered as a map from]P '
into Z_,,. The map is written by VJ, that is VJ(p) = V(p,Jd).

Let now O be a map from ]P into Z__, such that Glp) < 0 for
almbst all P€]P, and let S be the set of all such maps. Then the
set G of all vectors [ ¢(p)] forms a complete l-semigroup under the
usual addition and the orderb ﬁ defined by [T (P)]I K [ 0'(p)] <>

O (p) > o' (p) for all pélP. In symbol: G = (G,+,=<).

2. LEMMAS AND MAIN RESULTS.

LEMMA 1. For each G €8S, the set K[g] of all x€ L such that
V(p,x) = o(p) for all peIP forms a closed 1-ideal of L.

Proof. This is immediate by (2°), (5°) and (6°) in Section 1.

LEMMA 2. For each closed l-ideal J we have K[VJ] = J.

Proof. Similarly obtained as the proof of Lemma 3 in [7].

LEMMA 3. For each G € S we have VY c.

K[o]
Proof. Similarly obtained as the proof of Lemma 4 in [7].
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By using LEMMAS 2 and 3 we obtain the following

THEOREM 1. The map f: J+—>£f(J) = [VJ(p)] gives an l-semigroup

isomorphism from ( g,o + €) onto (G,+,3).

Let P, (J), Py(J), P_(J) and P__(J) be the sets of primes p in
H? such that vb(p) is positive, zero, negative and -9°, respectively.

LEMMA 4. Let J be a closed 1l-ideal such that both P+(J) and
P_(J) are void. If P,(J) is contained in the set-theoretical union
of PO(J(a)) and P+(J(a)), then a is contained in J and conversely.

By using Corollary to Theorem 2.3 in [2] we get the following

LEMMA 5. Let J be a closed l-ideal. If J is multiplicatively
closed, the vector f(J) has no integral coordinate except zero, and
vice versa.

LEMMA 6. Let J be a closed l—ideél containing the cone I. If

J is closed under multiplication, J is the P;W(J) —éomponent of I.
THEOREM 2. Any l-ideal J of L is decomposed as follows:
Vo sV
* P . U Pyy.
(*) 3 NPIGIP+J(p ) (V3 e 2D 1,

where Vp = VJ(p), P, =P _(J¥%), P_=P_(J*), \U' denotes a finite

+
join and V denotes the set-theoretical union of all J(U'pvp) . Con-
versely, let A, B, C be any three subsets of [P such that they are
disjoit and one of them is finite, e. g. so is A, and let (Xq and —@q
be positive and negative integers respectively such that O(q corre-

sponds g€ A and -pq corresponds to g€ B. Then

(+%) T 5% -8
gen 3@ H- (Va Wy afay.1,
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is an l-ideal of L. Moreover if J of (*) is quasi-equal to (**),

w=Cr V, =0, (p€P), V,=—f, (PEP)

by suitable enumeration of p; that is, the decomposition (*) is

then P, = A, P_ = B, P_

unique within quasi-equality.

Proof. Let J be any 1¥ideal of L. Firstly’we suppose that J
isrclosed. £(J) is represented as f(J) = u (J) + u_(J) + u_(J),
where u, (J), u_(J), u_q(J) are the vectors whose p-coordinates are
\)J(p) if p is positive~, negative-, —0@-gspots (zero otherwise),

- ]
respectively. It is clear that £ l(u+(J)) = 17- J(pvb). Take

peP
any element a of f_l(u_(J)); and let a* = pllo...opﬁ:n, PiG]P- 1f

)\i 5? 0 for all i, then a* is integral, hence so is the element a.
Therefore a is contained in V J( Loj‘pvp). If 7\1 L0, ..., )\r L0,
>\r+l> 0,..., 7\n> 0 for r with 0 < r < n, then we obtain a < a*<
p;lo...opékr 5;(prpl U= \)prvpr)* = inpl ... (};EYPr. This
implies a € J(pl\)pl .. Y perr) . Hence f_l(u_(J)) c V a( O’pivpi) .
The converse inclusion is easy to see. Next, by using LEMMAS 5 and 6

1

we obtain f~ (u_(J)) =1I The last part of the theorem can

Poo(a)
be proved easily.

3. APPLICATION.

1. Let R be a noncommutative ring with a bounded maximal order
AT, and let ;t, be all the non-zero fractional two-sided -“U-ideals
(abbr. ideals) in R [4]. JL is then a conditionally cqmplete l-semi-
group under module-product and set-inclusion. We assume throughout

this paragraph that the ascending-cain condition in the sense of
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quasi—equality holds for integral ideals [l1]. The term submodule
means a two-sided “AJ-submodule of R which contains a regular element
of R. A submodule M of R is said to be closed if (L € M implies @ *
- (othHt C M, where 0Ol is an ideal and oUl is the inverse of OL.
The set-theoretical union M* of ¢l* for the ideals ¢l contained in M
is the closed submodule generafed by M. Two submodules Ml and M2 are
said to be quasi-equal iff Ml* = M2*. In symbol: Mlnvsz. If we
define MIMZ of any two closed submodules Ml and M2 to be the set-
theoretical union of all ideals ( §Z§=101i{}i)* where OL;, C M., 4?i§
M2’ then the set wWe* = (W1*,-, &) of all closed éubmodules of R
forms a commutative cl-semigroup. If we classify the cl-semigroup
797U consisting of all submodules of R by the quasi-equal relation ~v,
then U/~ , the set of all cosets‘[Mlj, My],..., is a’commutative
cl-semigroup which is isomorphic to ( #(*,-,<), where the product of
two cosets is the coset containing (M;jM,)* and the order < is defined
by [M] < [M,] €= M * C My*. Let J be any closed l-ideal of L.
Then the set-theoretical union M(J) of all ideals in J is a closed
submbdule of R. Conversely the correction J(M) of all ideals in the
closed submodule M is an l-ideal of J. Then we have J> M(J)+>
JM(J)) = J and M+>JI(Me>M(T(M)) = M. Let (L*,o,<C) be the cl-
semigroup consisting of all closed l-ideals in L ., where "o" is
defined as in the former section. Then the map M+>J(M) gives an 1-
semigroup isomorphism from (UTL*,O,sg) onto (f*,o,<). Under that

isomorphism the cl-group consisting of all ideals corresponds to the
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principal lattice ideals. By using THEOREM 2 we obtain:
M e . ny.
~fr e ba (P

where P, (3M0) ={f;,-c by o = V5 2o = {9 ), B= -V,

P is the complement ofLP_w(J(M)) in the set of all prime ideals not
quasi-equal to 4, S/ denotes the restricted sum, and 43§ is the P-
component of “J. Moreover the above decomposition is unique within
qguasi-equality. If in particular AJ is Asano, each (non-zero) sub-

module of R is uniquely decomposed (within commutativity) as follows:

M = fl‘xl...;n (Zq{(”‘m‘

Furthermore the Pl—component M, of M is represented as follows:

}1 : Jr O AL AV

where {;1,...,(? ¥ —{}1,...,}11 — P, and {%A} {qun Py (CE.

[4] and [5]:.)

2. Let 4} be a Dedekind domain withits quotient field K. Then
any non-zero “J-submodule M of K can be decomposed as in the case of
the former paragraph. By using the decomposition we can prove the
following statements.

The map P:x l——)SO(x) from a non-zero 'O'—submddule Ml to a
non-zero “J-submodule M, is an 45;isomorphism if and only if there
exists a non-zero element t of K such that Px) = tx for all XEMl.

Two non-zero -U -submodules Ml and M2 are said to have the same -o00-

- T

type iff {T P (MZ).
6o’

(M ) Then in order that Ml and M2 have
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the same -9 -type, it is necessary and sufficient that there is an

ideal Ol such that M, = MlUL. Let 1 be the ideal generated by

2
all prime ideals in P__(M), and let ¢l be an ideal. Then M is U-
isomorphic to MJU if and only if 0l is represented as Ol= 4 (a)
for a non-zero element a of K. Any intermediate ring T of A)J and K
is a P-component of J, and it is a Dedekind ring. An integral T-

ideal "1? of T is prime if and only if ‘:"2= GaT, where J; is a prime

'ideal in PO(T).
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