<table>
<thead>
<tr>
<th>Title</th>
<th>On Decomposition of Lattice Ideals of a Lattice-Ordered Semigroup (半群論セミナー)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>MURATA, KENTARO</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1977), 292: 168-175</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1977-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/106174</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
ON DECOMPOSITION OF LATTICE IDEALS OF A LATTICE-ORDERED SEMIGROUP

KENTARO MURATA

Our purpose of the present note is to obtain a unique decomposition theorem of lattice ideals of \(l \)-semigroups treated in [2]. The decomposition theorem is a generalization of the unique factorization of elements in the arithmetical \(l \)-groups [7]. Applying our theorem to submodules over a maximal bounded order of a ring, we obtain a decomposition of the modules [5].

1. PRELIMINARIES. Let \(L = (L, \cdot, \leq) \) be a (conditionally) complete \(l \)-semigroup with multiplicative unity \(e \). We assume the following two conditions:

1. \(L \) has a map \(a \mapsto a^{-1} \) into itself with two properties (i) \(aa^{-1}a \leq a \) and (ii) \(axa \leq a \) implies \(a \leq a^{-1} \).

2. \(e \) is maximally integral: \(c^2 \leq c \) and \(e \leq c \) imply \(c = e \).

For any \(a \) of \(L \) we define \(a^* = (a^{-1})^{-1} \), and define \(a^* \circ b^* = (a^*b^*)^* = (ab)^* \) [2]. Then the set \(L^* = \{a^*; a \in L\} \) is a complete \(l \)-group under \(\circ \) and \(\leq \) [3]. Hence the group \((L^*, \circ) \) is commutative by the well known theorem of \(l \)-groups. If we classify \(L \) by the quasi-equal relation \(a \sim b \) defined by \(a^{-1} = b^{-1} \), then the set \(L/\sim \) of all cosets forms an \(l \)-group canonically and it is isomorphic to \((L^*, \circ, \leq) \). We now put
the ascending chain condition in the sense of quasi-equality for integral elements of \(L \). Then we can prove that \(p^* = p \) for any prime \(p \) which is not quasi-equal to \(e \) \([2]\). In the following \(\mathcal{P} \) will denote the set of all primes not quasi-equal to \(e \). Then any element \(a \) of \(L \) is factored into a finite number of primes:

\[
a \sim \prod_{p \in \mathcal{P}} y(p, a)
\]

where \(y(p, a) \) is the \(p \)-exponent of \(a \). We have then (1°) \(y(p, a) = 0 \) for all but finite many \(p \in \mathcal{P} \), (2°) \(a \sim b \) if and only if \(y(p, a) = y(p, b) \) for all \(p \in \mathcal{P} \), (3°) \(y(p, a) = y(p, a^*) \), (4°) \(y(p, ab) = y(p, a) + y(p, b) \), (5°) \(y(p, a \cup b) = \min \{ y(p, a), y(p, b) \} \), (6°) \(a \leq b^* \) (i.e. \(a^* \leq b^* \)) if and only if \(y(p, a) \geq y(p, b) \) for all \(p \in \mathcal{P} \).

A lattice ideal (abbr. 1-ideal) \(J \) is called closed if \(a \in J \) implies \(a^* \in J \). Let \(A \) be any non-empty subset of \(L \), and let \(A' \) be the join semi-lattice generated by \(A \). Then the set-theoretical union of all principal closed 1-ideals \(J(a^*)' \)’s generated by \(a \in A' \) is the closed 1-ideal generated by \(A \). Let \(P \) be any subset of \(\mathcal{P} \). If \(P \) is non-void, the closed 1-ideal generated by \(\{ p_1^{-1} \cdots p_n^{-1} ; p_i \in P \} \) is called a \(P \)-component of the cone \(I \) and denoted by \(I_p \). If \(P \) is void, \(I_p \) means \(I \) itself. A \(P \)-component \(J_p \) of the closed 1-ideal \(J \) will be defined to be the closed 1-ideal generated by \(J \cdot I_p = \{ xy ; x \in J, y \in I_p \} \). For convenience the closed 1-ideal generated by the 1-ideal \(J \) will be denoted by \(J^* \). For two 1-ideals \(J_1 \) and \(J_2 \) we define quasi-equal relation by \(J_1 \sim J_2 \iff J_1^* = J_2^* \). \(J_1 \circ J_2 \) means the closed 1-ideal

(2)
generated by \(\{ xy; x \in J_1, y \in J_2 \} \) for any two \(l \)-ideals \(J_1 \) and \(J_2 \). Then the set of all closed \(l \)-ideals \(J = (J, o, \subseteq) \) forms a complete \(l \)-semigroup which contains the \(cl \)-semigroup \((L^*, o, \subseteq) \) isomorphically. It can be seen that \((J, o)\) is a commutative semigroup.

The set-theoretical union \(Z_{-\infty} \) of the rational integers \(Z \) and the symbol \(-\infty \) is a totally ordered additive semigroup. For any \(l \)-ideal \(J \) of \(L \) we define

\[
\nu(p, J) = \inf \{ \nu(p, a); a \in J \}.
\]

Fixing \(J \) and moving \(p \) over \(\mathbb{P} \), \(\nu(p, J) \) is considered as a map from \(\mathbb{P} \) into \(Z_{-\infty} \). The map is written by \(\nu_J \), that is \(\nu_J(p) = \nu(p, J) \).

Let now \(\sigma \) be a map from \(\mathbb{P} \) into \(Z_{-\infty} \) such that \(\sigma(p) \leq 0 \) for almost all \(p \in \mathbb{P} \), and let \(S \) be the set of all such maps. Then the set \(G \) of all vectors \([\sigma(p)] \) forms a complete \(l \)-semigroup under the usual addition and the order \(\preceq \) defined by \([\sigma(p)] \preceq [\sigma'(p)] \iff \sigma(p) \geq \sigma'(p) \) for all \(p \in \mathbb{P} \). In symbol: \(G = (G, +, \preceq) \).

2. LEMMAS AND MAIN RESULTS.

Lemma 1. For each \(\sigma \in S \), the set \(K[\sigma] \) of all \(x \in L \) such that \(\nu(p, x) \geq \sigma(p) \) for all \(p \in \mathbb{P} \) forms a closed \(l \)-ideal of \(L \).

Proof. This is immediate by (2°), (5°) and (6°) in Section 1.

Lemma 2. For each closed \(l \)-ideal \(J \) we have \(K[\nu_J] = J \).

Proof. Similarly obtained as the proof of Lemma 3 in [7].

Lemma 3. For each \(\sigma \in S \) we have \(\nu_{K[\sigma]} = \sigma \).

Proof. Similarly obtained as the proof of Lemma 4 in [7].
By using LEMMAS 2 and 3 we obtain the following

THEOREM 1. The map \(f: J \to f(J) = [\mathcal{V}_J(p)] \) gives an 1-semigroup isomorphism from \((\mathcal{J}, \circ, \subseteq)\) onto \((G, +, \subseteq)\).

Let \(P_+(J), P_0(J), P_-(J) \) and \(P_\infty(J) \) be the sets of primes \(p \) in \(P \) such that \(\mathcal{V}_J(p) \) is positive, zero, negative and \(-\infty\), respectively.

LEMMA 4. Let \(J \) be a closed 1-ideal such that both \(P_+(J) \) and \(P_-(J) \) are void. If \(P_0(J) \) is contained in the set-theoretical union of \(P_0(J(a)) \) and \(P_+(J(a)) \), then \(a \) is contained in \(J \) and conversely.

By using Corollary to Theorem 2.3 in [2] we get the following

LEMMA 5. Let \(J \) be a closed 1-ideal. If \(J \) is multiplicatively closed, the vector \(f(J) \) has no integral coordinate except zero, and vice versa.

LEMMA 6. Let \(J \) be a closed 1-ideal containing the cone \(I \). If \(J \) is closed under multiplication, \(J \) is the \(P_\infty(J) \)-component of \(I \).

THEOREM 2. Any 1-ideal \(J \) of \(L \) is decomposed as follows:

\[
(*) \quad J \sim \prod_{p \in P_+} J(p \mathcal{V}_p) \cdot (\bigvee_{p \in P_0} \mathcal{V}_p) \cdot J_{I_p}.
\]

where \(\mathcal{V}_p = \mathcal{V}_J(p) \), \(P_+ = P_+(J*) \), \(P_- = P_-(J*) \), \(\bigvee' \) denotes a finite join and \(\bigvee \) denotes the set-theoretical union of all \(J(\bigcup' \mathcal{V}_p) \). Conversely, let \(A, B, C \) be any three subsets of \(P \) such that they are disjoint and one of them is finite, e. g. so is \(A \), and let \(\alpha_q, -\beta_q \) be positive and negative integers respectively such that \(\alpha_q \) corresponds \(q \in A \) and \(-\beta_q \) corresponds to \(q \in B \). Then

\[
(**) \quad \prod_{q \in A} J(q^{\alpha_q}) \cdot (\bigvee_{q \in B} J(-q^{\beta_q})) \cdot I_C
\]

(4)
is an 1-ideal of L. Moreover if J of (*) is quasi-equal to (**), then $P_+ = A$, $P_- = B$, $P_{-\infty} = C$, $\forall p \in P_+$ $\forall p \in P_-$ by suitable enumeration of p; that is, the decomposition (*) is unique within quasi-equality.

Proof. Let J be any 1-ideal of L. Firstly we suppose that J is closed. $f(J)$ is represented as $f(J) = u_+(J) + u_-(J) + u_{-\infty}(J)$, where $u_+(J)$, $u_-(J)$, $u_{-\infty}(J)$ are the vectors whose p-coordinates are $\forall J(p)$ if p is positive-, negative-, $-\infty$-spots (zero otherwise), respectively. It is clear that $f^{-1}(u_+(J)) = \prod_{p \in P} J(p)^{\lambda^+_p}$. Take any element a of $f^{-1}(u_-(J))$, and let $a^* = p_1^{\lambda_1} \cdots p_n^{\lambda_n}$, $p_i \in P$. If $\lambda_i > 0$ for all i, then a^* is integral, hence so is the element a. Therefore a is contained in $\bigvee J(\bigcup_{p \in P} J(p))$. If $\lambda_1 < 0$, ..., $\lambda_r < 0$, $\lambda_{r+1} > 0$, ..., $\lambda_n > 0$ for r with $0 < r \leq n$, then we obtain $a \leq a^* \leq p_1^{\lambda_1} \cdots p_r^{\lambda_r} \leq (p_1^{\lambda_1} \cup \cdots \cup p_r^{\lambda_r})^* = p_1^{\lambda_1} \cup \cdots \cup p_r^{\lambda_r}$. This implies $a \in J(p_1^{\lambda_1} \cup \cdots \cup p_r^{\lambda_r})$. Hence $f^{-1}(u_-(J)) \subseteq \bigvee J(\bigcup_{p \in P} J(p))$. The converse inclusion is easy to see. Next, by using LEMMAS 5 and 6 we obtain $f^{-1}(u_{-\infty}(J)) = I_{P_{-\infty}}$. The last part of the theorem can be proved easily.

3. APPLICATION.

1. Let R be a noncommutative ring with a bounded maximal order O, and let L be all the non-zero fractional two-sided O-ideals (abbr. ideals) in R [4]. L is then a conditionally complete 1-semigroup under module-product and set-inclusion. We assume throughout this paragraph that the ascending chain condition in the sense of
quasi-equality holds for integral ideals [1]. The term submodule
means a two-sided \(\mathcal{O} \)-submodule of \(R \) which contains a regular element
of \(R \). A submodule \(M \) of \(R \) is said to be closed if \(\mathfrak{a} \subseteq M \) implies \(\mathfrak{a}^* = (\mathfrak{a}^{-1})^{-1} \subseteq M \), where \(\mathfrak{a} \) is an ideal and \(\mathfrak{a}^{-1} \) is the inverse of \(\mathfrak{a} \).

The set-theoretical union \(M^* \) of \(\mathfrak{a}^* \) for the ideals \(\mathfrak{a} \) contained in \(M \)
is the closed submodule generated by \(M \). Two submodules \(M_1 \) and \(M_2 \) are
said to be quasi-equal iff \(M_1^* = M_2^* \). In symbol: \(M_1 \sim M_2 \). If we
define \(M_1 M_2 \) of any two closed submodules \(M_1 \) and \(M_2 \) to be the set-
theoretical union of all ideals \(\bigoplus_{i=1}^{n} \mathfrak{a}_i \cup \mathfrak{b}_i \) where \(\mathfrak{a}_i \subseteq M_1 \), \(\mathfrak{b}_i \subseteq M_2 \), then the set \(\mathfrak{m}^* = (\mathfrak{m}^*, \subseteq) \) of all closed submodules of \(R \)
forms a commutative cl-semigroup. If we classify the cl-semigroup
\(\mathfrak{m} \) consisting of all submodules of \(R \) by the quasi-equal relation \(\sim \),
then \(\mathfrak{m}/\sim \), the set of all cosets \([M_1], [M_2], \ldots \), is a commutative
cl-semigroup which is isomorphic to \((\mathfrak{m}^*, \subseteq) \), where the product of
two cosets is the coset containing \((M_1 M_2)^* \) and the order \(\subseteq \) is defined
by \([M_1] \subseteq [M_2] \iff M_1^* \subseteq M_2^* \). Let \(J \) be any closed 1-ideal of \(\mathcal{L} \).

Then the set-theoretical union \(M(J) \) of all ideals in \(J \) is a closed
submodule of \(R \). Conversely the correction \(J(M) \) of all ideals in the
closed submodule \(M \) is an 1-ideal of \(\mathcal{L} \). Then we have \(J \mapsto M(J) \mapsto
J(M(J)) = J \) and \(M \mapsto J(M) \mapsto M(J(M)) = M \). Let \((\mathcal{L}^*, \circ, \subseteq) \) be the cl-
semigroup consisting of all closed 1-ideals in \(\mathcal{L} \), where "\(\circ \)" is
defined as in the former section. Then the map \(M \mapsto J(M) \) gives an 1-
semigroup isomorphism from \((\mathfrak{m}^*, \circ, \subseteq) \) onto \((\mathcal{L}^*, \circ, \subseteq) \). Under that
isomorphism the cl-group consisting of all ideals corresponds to the
principal lattice ideals. By using THEOREM 2 we obtain:

\[M \sim \prod_{i=1}^{n-1} \mathfrak{p}_i^{\alpha_i} \times \prod_{\mathfrak{q} \in \mathcal{P}} (\sum_{\mathfrak{x} \in \mathfrak{q}} - \mathfrak{p}) \cdot \mathcal{P}_\mathfrak{p} \]

where \(\mathcal{P}(\mathcal{J}(M)) = \{ \mathfrak{p}_1, \ldots, \mathfrak{p}_n \} \), \(\mathcal{P}_\mathfrak{p} = \mathfrak{p} \setminus \mathfrak{p}_0 \), \(\mathcal{P}_\mathfrak{p} = - \mathfrak{p}_0 \), \(\mathfrak{p}_0 \) is the complement of \(\mathcal{P}_\mathfrak{p}(\mathcal{J}(M)) \) in the set of all prime ideals not quasi-equal to \(\mathcal{J} \), \(\sum' \) denotes the restricted sum, and \(\mathcal{P}_\mathfrak{p} \) is the \(\mathcal{P} \)-component of \(\mathcal{J} \). Moreover the above decomposition is unique within quasi-equality. If in particular \(\mathcal{J} \) is Asano, each (non-zero) submodule of \(R \) is uniquely decomposed (within commutativity) as follows:

\[M = \prod_{i=1}^{n-1} \mathfrak{p}_i^{\alpha_i} \times \prod_{\mathfrak{q} \in \mathcal{P}} (\sum_{\mathfrak{x} \in \mathfrak{q}} - \mathfrak{p}) \cdot \mathcal{P}_\mathfrak{p} \]

Furthermore the \(\mathcal{P}_1 \)-component \(\mathcal{M}_{\mathcal{P}_1} \) of \(M \) is represented as follows:

\[\mathcal{M}_{\mathcal{P}_1} = \prod_{i=1}^{n-1} \mathfrak{p}_i^{\alpha_i} \times \prod_{\mathfrak{q} \in \mathcal{P}} (\sum_{\mathfrak{x} \in \mathfrak{q}} - \mathfrak{p}) \cdot \mathcal{P}_\mathfrak{p} \]

where \(\{ \mathfrak{p}_1, \ldots, \mathfrak{p}_n \} = \{ \mathfrak{p}_1, \ldots, \mathfrak{p}_n \} \setminus \mathfrak{p}_1 \) and \(\{ \mathfrak{q}_1 \} = \{ \mathfrak{q}_1 \} \setminus \mathfrak{p}_1 \) (Cf. [4] and [5]).

2. Let \(\mathcal{J} \) be a Dedekind domain with its quotient field \(K \). Then any non-zero \(\mathcal{J} \)-submodule \(M \) of \(K \) can be decomposed as in the case of the former paragraph. By using the decomposition we can prove the following statements.

The map \(\gamma : x \mapsto \gamma(x) \) from a non-zero \(\mathcal{J} \)-submodule \(M_1 \) to a non-zero \(\mathcal{J} \)-submodule \(M_2 \) is an \(\mathcal{J} \)-isomorphism if and only if there exists a non-zero element \(t \) of \(K \) such that \(\gamma(x) = tx \) for all \(x \in M_1 \).

Two non-zero \(\mathcal{J} \)-submodules \(M_1 \) and \(M_2 \) are said to have the same -type iff \(\mathcal{J}_{\mathcal{P}_{\mathcal{J}}(M_1)} = \mathcal{J}_{\mathcal{P}_{\mathcal{J}}(M_2)} \). Then in order that \(M_1 \) and \(M_2 \) have

(7)
the same $-\infty$-type, it is necessary and sufficient that there is an
ideal \mathfrak{a} such that $M_2 = M_1 \mathfrak{a}$. Let \mathfrak{m} be the ideal generated by
all prime ideals in $P_{-\infty}(M)$, and let \mathfrak{a} be an ideal. Then M is \mathcal{O}-
isomorphic to $M \mathfrak{a}$ if and only if \mathfrak{a} is represented as $\mathfrak{a} = \mathfrak{m}(a)$
for a non-zero element a of K. Any intermediate ring T of \mathcal{O} and K
is P-component of \mathcal{O}, and it is a Dedekind ring. An integral T-
ideal \mathfrak{p} of T is prime if and only if $\mathfrak{p} = \mathfrak{p}T$, where \mathfrak{p} is a prime
ideal in $P_0(T)$.

REFERENCES

(1949) 98-134.

Journ. Institute of Polytec., Osaka City Univ. 4 (1953) 9-33.

Acad. 50 (1974) 584-588.

[6] K. Murata, On lattice ideals in a conditionally complete lattice-
oordered semigroup (Forthcoming).

[7] K. Murata, On lattice ideals in arithmetical lattice-ordered groups,